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We present a theory of viscoelasticity of amorphous media, which takes into account the effects
of confinement along one of three spatial dimensions. The framework is based on the nonaffine
extension of lattice dynamics to amorphous systems, or nonaffine response theory. The size effects
due to the confinement are taken into account via the nonaffine part of the shear storage modulus
G′. The nonaffine contribution is written as a sum over modes in k-space. With a rigorous argument
based on the analysis of the k-space integral over modes, it is shown that the confinement size L in
one spatial dimension, e.g. the z axis, leads to a infrared cut-off for the modes contributing to the
nonaffine (softening) correction to the modulus that scales as L−3. Corrections for finite sample size
D in the two perpendicular dimensions scale as ∼ (L/D)4, and are negligible for L� D. For liquids
it is predicted that G′ ∼ L−3 in agreement with a previous more approximate analysis, whereas for
amorphous materials G′ ∼ G′bulk + βL−3. For the case of liquids, four different experimental systems
are shown to be very well described by the L−3 law, which also can explain previous simulation data
of confined jammed granular packings.

I. INTRODUCTION

Lattice dynamics can be extended to deal with disor-
dered systems where the positions of atoms or molecules
are completely random, to arrive at theoretical expressions
for the elastic constants and for the viscoleastic moduli1–4.
The resulting theoretical framework is sometimes referred
to as nonaffine lattice dynamics or NALD1,3. The theory
has proved effective in quantitatively describing elastic,
viscoelastic and plastic response of systems as diverse as
jammed random packings and random networks2, glassy
polymers4–6, metallic glass7, colloidal glasses8,9, and per-
fect non-centrosymmetric crystals like quartz10. Further-
more, NALD intrinsically takes into account long-range
correlation phenomena11,12 that are present also in liquids
and give rise to acoustic wave propagation. Because of
its microscopic character, and to its ability to represent
contributions to elasticity in terms of eigenmodes of the
Hessian or dynamical matrix of the systems, NALD is
thus a promising framework to describe size-dependent
effects due to confinement. Understanding these effects
at the microscopic level is important for a wide variety of
systems in condensed matter and materials physics13,14,
polymers15–18, and amorphous and glassy systems19,20.

In this paper, we present a detailed analysis of size-
dependent effects on the viscoelastic shear modulus of
amorphous systems confined in one spatial dimension,
including liquids and glasses. We evaluate the nonaffine
integral over k-space generally by allowing the “infrared”
limit to vary with polar angle θ and hence evaluate the

scaling properties of the nonaffine contribution to the
shear storage modulus. An analysis of four published
experimental data sets shows that this scaling law is
shared by many different systems, and remains valid
for arbitrary chemical composition and microscopic or
mesoscopic structure of the system. Although we focus
on linear viscoelasticity, these results could be useful
also for understanding of plasticity of confined systems21,
and also for understanding mechanical fragmentation pro-
cesses in dispersed, colloidal and biological systems, where
mesoscopic aggregates display size-dependent mechanical
properties22.

II. NONAFFINE VISCOELASTIC THEORY

The usual starting point is the equation of motion of
a microscopic building block, i.e. an atom or a molecule
for atomic liquids or molecular liquids, respectively. In
the case of polymers, the building block could be iden-
tified with a monomer of the polymer chain4. Following
previous literature1,2, we introduce the Hessian matrix
of the system H

ij
= −∂2U/∂q̊

i
∂q̊

j
and the affine force

field Ξi,κχ = ∂f
i
/∂ηκχ, where ηκχ is the strain tensor.

For example, for simple shear deformation the xy entry
of tensor ηκχ is given by a scalar γ, which coincides with
the angle of deformation.

As shown in previous works1,4, the equation of motion of
an atom i in a disordered medium subjected to an external
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strain, in mass-rescaled coordinates, can be written as:

d2xi
dt2

+ ν
dxi
dt

+H
ij
xj = Ξi,κχηκχ (1)

where η is the (Green-Saint Venant) strain tensor and

ν is a microscopic friction coefficient which arises from
dynamical couplings mediated by the anharmonicity of
the pair potential. The term on the r.h.s. physically rep-
resents the effect of the disordered (non-centrosymmetric)
environment leading to nonaffine motions: a net force
acts on the atom i in the affine position (i.e. the position
prescribed by the external strain tensor ηκχ).

In a disordered or non-centrosymmetric bonding envi-
ronment, in order to keep mechanical equilibrium on all
atoms throughout the deformation, an additional non-
affine displacement is required in order to relax the force
fi acting in the affine position. This displacement brings
each atom i to a new (nonaffine) position.

The equation of motion Eq. (1) can also be derived from
first principles, from a model particle-bath Hamiltonian as
shown in previous work4. Using standard manipulations
(Fourier transformation and eigenmode decomposition
from time to eigenfrequency1), and applying the defi-
nition of mechanical stress as derivative of the energy,
one obtains the following expression for the viscoelastic
(complex) elastic constants1,4:

Cαβκχ(ω) = CBorn
αβκχ −

1

V

∑
n

Ξ̂n,αβΞ̂n,κχ
ω2
p,n − ω2 + iων

(2)

where CBorn
αβκχ is the Born or affine part of the elastic

constant, which is what survives in the infinite-frequency
limit. Here, ω represents the oscillation frequency of
the external strain field, whereas ωp denotes the internal
eigenfrequency of the liquid (which results, e.g., from
diagonalization of the Hessian matrix4). We use the
notation ωp to differentiate the eigenfrequency from the
external oscillation frequency ω.

An atomistic expression for G∞ ≡ CBorn
xyxy is provided

by the well known Zwanzig-Mountain (ZM) formula23, in
terms of the pair potential V (r) and the radial distribution
function g(r). The sum over n in Eq.(2) runs over all
3N degrees of freedom (given by the atomic or molecular
building blocks with central-force interactions). Also, we
recognize the typical form of a Green’s function, with
an imaginary part given by damping and poles ωp,n that
correspond to the eigenfrequencies of the excitations.

At this point, we consider the dynamics of elastic waves
in liquids. The propagation of longitudinal acoustic waves
in liquids is of course a well known fact, with firmly es-
tablished both experimental and theoretical evidence of
longitudinal acoustic dispersion relations24–26. For trans-
verse or shear acoustic waves in liquids, instead, there is
no propagation below a characteristic wavenumber. In-
deed, there is an onset value of k, that we shall denote
kg, above which these modes can propagate in liquids.
This represents a gapped momentum state seen in a num-
ber of different systems, including liquids, supercritical

fluids, plasma, Keldysh-Schwinger theory, relativistic hy-
drodynamics, holographic and other models such as the
sine-Gordon model27. The gap increases with tempera-
ture and the inverse of liquid relaxation time (see, e.g.,
Refs.28,29).

Following the analytical steps presented in Ref. 30,
we arrive at the following expression for the frequency-
dependent storage modulus G′,

G∗(ω) =G∞ −B
∫ kD

kmin

ω2
p,L(k)

ω2
p,L(k)− ω2 + iω ν

k2dk

−B
∫ kD

kmin

ω2
p,T (k)

ω2
p,T (k)− ω2 + iω ν

k2dk , (3)

where the first integral represents the nonaffine (negative
or softening) contribution due to longitudinal (L) acoustic
modes, while the second integral represents the nonaffine
(also softening) contribution due to the transverse (T)
acoustic modes. In the above expression, kmin is an “in-
frared” cutoff, which is kmin = 0 for a standard bulk
material, which can be considered as large in all spatial
dimensions (L = ∞). B is an arbitrary prefactor. For
liquids, kmin = max (kg, kconf), for the transverse modes,
with kg the onset wavenumber for transverse phonons in
liquids (the k-gap), and kconf is the wavenumber set by
the confinement length (see below).

Upon taking the real part of G∗, which gives the storage
modulus G′, and focusing on low external oscillation
frequencies ω � ωp, in both integrals numerator and
denominator cancel out, so that both integrals reduce
to the same expression, a volume in k-space. Therefore,
as anticipated above, the final low-frequency result does
not depend on the actual form of ωp,L(k), nor of ωp,T (k),
although the latter, in liquids, due to the k-gap, plays an
important role. In the experiments where the size effect
of confinement is seen31–35, kg � 1

L . This is because the
typical speed of sound c in these systems (e.g., short-chain
unentangled polymers) is of the order of 1000 m s−1 and
the (Maxwell) relaxation time τ is in the range (0.001–
0.01) s.36 Hence cτ is in the range (0.1–1) m and is
much larger than L (which is on the submillimeter scale),
therefore kg = 1

cτ � 1/L is justified. Similarly, for ionic

liquids, we find that c ∼ 1000 m s−1, while η = 0.38 Pa
and G′ = 10 Pa (data from Ref. [32]) which gives τ =
0.038 s, and again 1/cτ � 1/L is satisfied. For the
case of nanoconfined water, we lack data on the speed of
sound, however, in that case L = 10−9 m. This would
require an astronomically high speed of sound for the
above condition to be violated, which is extremely unlikely.
Future work will address the situations where, instead,
the above condition breaks down and kmin lies inside the
k-gap, which makes the Frenkel k-gap equation a directly
relevant constraint in the above calculations.

Assuming that kmin ≈ 1
L , an approximation that we

further expand on in the following section, we have

G′ = G∞ − α
∫ kD

1/L

k2dk = G∞ −
α

3
k3D +

β

3
L−3. (4)
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FIG. 1. (a) Schematic section in real space of the confined
cylindrical sample. (b) Geometry of the different regions over
which the k-space integral (3) can be taken; see full explanation
in text. This is not to scale; in fact kD � 2π/L. Both parts of
this diagram have full rotational symmetry about the z axis.

For bulk (unconfined) liquids in thermodynamic equi-
librium, it can be shown37 that G∞ − α

3 k
3
D = 0, thus

leaving:

G′ = β′L−3. (5)

For amorphous solids, instead, G∞ − α
3 k

3
D > 0, and one

has the final scaling on L given by

G′ = G′bulk + β′L−3, (6)

where G′bulk is the value of shear modulus for unconfined,
bulk samples. In equations (4–6), α, β, and β′ are arbi-
trary prefactors.

Evidently, the scaling L−3 is easier to observe in liquids,
as in amorphous solids it may be overshadowed by noise.
Nonetheless, it is important to present the theoretical
prediction also for amorphous solids, as it may be verified
experimentally or in simulations in future work.

FIG. 2. 3D rendering of the geometry of integration in k-space
for the confined system of Fig. 1.

III. GENERAL PROOF OF THE L−3 LAW

We consider a cylindrical system confined to length L
in the z direction; for now we allow its extent in the per-
pendicular directions (that is, the cylinder’s diameter) to
be infinite. We use spherical polar coordinates, measuring
the polar angle θ from the z axis (Fig. 1(a)). Since our
system has cylindrical symmetry, no quantities depend
on the azimuthal angle φ and its origin is therefore arbi-
trary. In this notation the volume element in k-space is
dVk = k2dk sin θdθ dφ. If an integrand does not depend
on θ or φ, then dVk = 4πk2dk, demonstrating that the
integrals in (3) represent, to within a constant factor that
can be absorbed into the prefactor, a volume in k-space.

If the system were unconfined, the lower limit on k
would simply be zero. Thus the region of allowable states
would be a sphere in k-space, with radius equal to the
Debye wavenumber kD and hence volume 4

3πk
3
D.38–41 In

our confined system, however, the maximum possible
wavelength in the z direction is approximately λmax ≈ L,
giving a minimum wavevector of kmin ≈ 2π/L. In our pre-
vious analysis,30, we made the simplifying approximation
that the lower (“infrared”) limit of the k-space integral
(3) is kmin regardless of the direction of propagation of the
wave. In this approximation, the lower limit is a spherical
surface in k-space with radius 2π/L, so that the integral
should be taken over the pink narrow hatched volume in
Fig. 1(b).
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FIG. 3. The same construction as Fig. 1, but allowing for the
finite diameter D of the cylinder. Here D/L = 4. Compared
to Fig. 1, (b) has been enlarged for clarity.

Here we relax that assumption, showing that the L−3

scaling holds even if we allow the lower limit to vary
with θ. If measured at an angle θ from the z confine-
ment axis, the extent of the confined medium is L/ cos θ
(Fig. 1(a)). Taking this value, as before, to be the maxi-
mum allowed wavelength in that direction, we now have
kmax = 2π cos θ/L. In the range 0 ≤ θ ≤ π, this equa-
tion describes two spheres with radius π/L, centred at
(0, 0,±π/L) in k-space. The integral (3) must now be
taken over the wide blue hatched volume in Fig. 1(b). A
3D rendered version of the same geometry is presented in
Fig. 2.

The volume of the two small spheres is

Vk,min = 2× 4
3π
(π
L

)3
=

8π4

3L3
. (7)

The allowable volume in k-space is therefore

Vk = 4
3 π k

3
D − 8

3 π
4 L−3 , (8)

displaying the same L−3 scaling as derived previously.

We can extend this analysis still further by considering
the effects of the finite cylinder diameter D � L (Fig. 3).
The analysis proceeds as before except that the extent is

now limited by D rather than L near θ = π/2:

kmin =

{
2π cos θ/L |tan θ| ≤ D/L
2π sin θ/D |tan θ| ≥ D/L

. (9)

In this case, the infrared limit surface is the intersection
of the two spheres and a toroidal shape. The internal
volume is

Vk,min = 2× 2π

∫ tan−1(D/L)

0

∫ 2π cos θ/L

0

k2dk sin θdθ

+ 2× 2π

∫ π/2

tan−1(D/L)

∫ 2π sin θ/D

0

k2dk sin θdθ

=
8π4

3L3

(
1− 1 + L2/D2

2(1 +D2/L2)2
+

2L2/D2

1 +D2/L2

+
3L2

2D2

[
π

2
− tan−1

(
D

L

)])
=

8π4

3L3

(
1 + 3(L/D)4 +O

(
(L/D)6

))
.

(10)

As expected, this recovers the previous result (7) in the
limit as D tends to infinity. Furthermore, it approaches
this limit rather quickly, with the difference term being
fourth-order in the aspect ratio L/D. In typical exper-
iments, L ≈ 0.1D, so that the difference from (7) is
negligible within experimental error.

We conclude that the G′ ∼ L−3 scaling presented above
in (4) is robust in two senses. First, it does not depend
on the simplifying assumption previously made in Ref. 30.
Second, the correction term to allow for finite system
size in the non-confined direction scales as the fourth
power of the aspect ratio, making this correction negligible
for typical experimental conditions where confinement is
along the z axis only.

IV. DISCUSSION AND COMPARISON WITH
EXPERIMENTS

The above theory clarifies that the confinement between
two plates is able to “remove” certain low-frequency nor-
mal mode collective oscillations of molecules, associated
with the nonaffine motions (i.e. negative contributions
to the elasticity), which are otherwise responsible for
the fluid response of liquids under standard macroscopic
(“unconfined”) conditions. These nonaffine motions are
directly responsible for reducing the shear modulus, ba-
sically to zero in macroscopic liquids and to G′bulk in
amorphous solids. Under confinement, instead, the shear
modulus becomes non-zero for liquids, because these col-
lective oscillations modes are suppressed, and the theory
we (A.Z. and K.T.) have recently reported30 provides the
law by which the shear modulus grows upon reducing the
confinement size L. In particular, the static shear modu-
lus grows with the inverse cubic power of the confinement
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size L. For amorphous solids, the bulk shear modulus
acquires an additional positive contribution ∼ L−3, due
to confinement.

In Ref. 30, the law G′ ∼ L−3 was found to provide
a good description of experimental data of the short-
chain (non-entangled) polybutylacrylate upon varying the
confinement L, using a conventional rheometer under good
wetting conditions (see also Ref. 42). Given our conclusion
in the previous section that this result should be robust
across a wide range of media and experimental conditions,
we now extend our comparison to more experimental
systems. In Fig. 4, we show the fits of this scaling law to
three more experimental data sets. We observe that the
scaling law agrees well with experiments performed using
short chain polymers, ionic liquids and nano-confined
water.

The sources of the experimental data are given in the
figure caption; we give here some further details of how
these experimental studies relate to our own work. In
Ref. 33, experimental data on the plateau of G′ at different
temperatures were also presented. The data in Fig. 2
of Ref. 33 taken well above the glass transition at T =
114.30oC also follow the L−3 scaling law reasonably well.
The experimental data on nanoconfined water were taken
from Fig. 2(b’) of Li and Riedo34. These data correspond
to an oscillation magnitude X0 of the AFM tip equal to
0.66 nm, which is the middle value of those reported in
Ref. 34 and presents the best compromise: the lower value
X0 = 0.4 nm is too close to the molecular size of water,
whereas the larger value 1.32 nm might be close to the
nonlinear elastic regime and presents a less pronounced
decay with L.

Lastly, we note that prior work has addressed finite
size scaling of the self-diffusion coefficient D with hy-
drodynamic arguments, where a negative correction was
predicted with a scaling proportional to (ηL)−1.43,44 The
results given here for G′ imply that a similar negative
correction is necessary to recover the bulk value of dy-
namic viscosity η, due to the proportionality G′′/ω ∼ η′
and the Kramers-Kronig relation between G′ and G′′.
Thus, the scaling of the viscosity described here, which
was previously treated as a constant, shows the need
for an additional higher order corrective term for the
self-diffusion.

V. COMPARISON WITH NUMERICAL
SIMULATIONS OF AMORPHOUS SOLIDS

Over the past decades, many numerical simulations of
the mechanical response of amorphous solids have been
performed, in which the variation of the elastic moduli
was studied for different “coarse-graining” sizes.45–47 In
these systems, the shear modulus G′ is also found to in-
crease upon decreasing the coarse-graining size. However,
the overall effect is phenomenologically different from the
finite-size effects discussed here. For example, in Ref. 47
G′ increases as r−0.6c , where rc is the coarse-graining size

and hence has a very different exponent than the value
−3 discussed here. The difference lies in the fact that
the local sizes discussed in Ref. 47 do not refer to actual
“confinement” as there are no physical boundaries involved,
and the local regions are merely “cropped” within the
same simulated material sample. In the absence of phys-
ical solid boundaries, the cut-off mechanism in k-space
discussed here is not active, hence the L−3 scaling in
elasticity we discuss does not apply.

On the other hand, the situation presented by Goodrich,
Liu and Nagel48 is very similar to the confinement effects
we discuss above. In Ref. 48, jammed packings of friction-
less soft spheres, one of the most widely studied models of
amorphous solids,49 were studied by systematically vary-
ing the size of the simulation box that was subsequently
subjected to shear deformation. In those simulations, it
was found that the shear modulus increases by a pos-
itive correction that scales with 1/N upon decreasing
the system’s size N , where N is the number of particles
in the simulation box. For Euclidean (non-fractal) sys-
tems in three dimensions, N ∼ L−3, hence the correction
∼ 1/N ∼ L−3 exactly coincides with the correction that
we predicted for amorphous solids, G′ ∼ G′bulk + βL−3.
To our knowledge, this is the first theoretical derivation of
the scaling 1/N for the shear modulus of confined jammed
packings. This comparison more firmly establishes the
ability of nonaffine response theory to predict the elastic
properties of jammed systems. This theory has already
provided a succcessful quantitative account of the shear
modulus as a function of the distance to the jamming
point, including prefactors.2

VI. CONCLUSIONS

In summary, we presented a microscopic theoretical
framework for the size-dependent viscoelasticity of con-
fined amorphous systems, both liquids and solids. For the
case of liquids, a previous approximate treatment30 has un-
veiled the surprising solid-like response under confinement,
where the confinement effectively cuts off some nonaffine
softening modes, leading to the scaling G′ ∼ L−3 for the
low-frequency shear modulus. In that earlier description,
the integral over k-space, which provides the negative
nonaffine correction, was evaluated approximately assum-
ing that waves in any direction have the same maximal
wavelength. Here, we presented a rigorous and general
proof of the same result that takes the full k-space geom-
etry of the problem into account, allowing the maximum
wavelength to vary with the polar angle θ. Our analysis
shows that the G′ ∼ L−3 law still holds when the initial
approximation is relaxed. Furthermore, it is extremely
robust with respect to finite sample size in the two per-
pendicular directions. These results are supported by an
analysis of experimental data from the literature on four
different liquids and complex fluids, all of which obey the
G′ ∼ L−3 law.

We also derived a similar law for amorphous solids,
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(a)
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Data of Noirez et al. Philos. Mag. 2011 Data of Mendil-Jakani et al. JPCL 2013

Data of Collin & Martinoty Physica A 2003
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FIG. 4. Experimental data of low-frequency shear modulus G′ versus confinement length L for different systems: (a) short-chain
(non-entangled) polybutylacrylate;31 (b) an ionic liquid;32 (c) short-chain (non-entangled) polystyrene melts;33 (d) nanoconfined
water.34 Circles represent experimental data while the solid line is the law G′ ∼ L−3, with a prefactor determined by fitting to
the data.

with a predicted confinement-induced enhancement term
in the low-frequency shear modulus that also scales with
L−3. This correction for amorphous solids is probably
more challenging to verify, either experimentally or in
simulations, but it may inspire further investigations. On
a more theoretical level, this result suggests that the limit
of G = 0, identically satisfied, for the zero-frequency shear
modulus is attainable only in the thermodynamic limit
of L → ∞. This appears to broadly agree with earlier
more formal results by Lebowitz50 and Ruelle51, recently
re-discussed by Saw and Harrowell52, which point out
that a nonzero shear modulus is the result of averaging
over a constrained configuration space.

Finally, it would be interesting in future work to study
the interplay between confinement or boundary effects
like those presented here and other low-k phenomena
in condensed matter such as hyperuniformity53 and its
ramifications54. Also, our theory predicts a ∼ L−3 posi-
tive correction term for the shear modulus of amorphous
solids, which exactly agrees with the 1/N (where N ∼ L3

is the number of particles) finite-size correction term
to the shear modulus observed numerically near the
jamming transition of random jammed packings48,55,56.
Future work should be directed to further extending
the above framework to deformation geometries other
than shear, such as e.g. hydrostatic compression where
nonaffine deformations can also be important for certain
systems46.

ACKNOWLEDGMENTS

M.B. acknowledges the support of the Shanghai Mu-
nicipal Science and Technology Major Project (Grant
No.2019SHZDZX01) and of the Spanish MINECO ”Cen-
tro de Excelencia Severo Ochoa” Programme under grant
SEV-2012-0249. C.S. is supported by the U.S. DOE grant
number DE-FG02-05ER46236. A.Z. acknowledges finan-
cial support from US Army Research Laboratory and US
Army Research Office through contract nr. W911NF-19-2-
0055. Discussions and input from Prof. Laurence Noirez
are gratefully acknowledged.

∗ a.e.phillips@qmul.ac.uk
† matteo.baggioli@uam.es
‡ timothy.w.sirk.civ@mail.mil
§ k.trachenko@qmul.ac.uk
¶ alessio.zaccone@unimi.it
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