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In this paper a two dimensional phase field crystal model of graphene and hexagonal boron nitride
(hBN) is extended to include out of plane deformations in stacked multi-layer systems. As proof
of principle the model is shown analytically to reduce to standard models of flexible sheets in the
small deformation limit. Applications to strained sheets, dislocation dipoles and grain boundaries
are used to validate the behavior of a single flexible graphene layer. For the multi-layer systems,
parameters are obtained to match existing theoretical density functional theory calculations for
graphene/graphene, hBN/hBN and graphene/hBN bilayers. More precisely it is shown that the
parameters can be chosen to closely match the stacking energies and layer spacing calculated by
Zhou et al. [1]. Further validation of the model is presented in a study of rotated graphene bilayers
and stacking boundaries. The flexibility of the model is illustrated by simulations that highlight the
impact of a complex microstructures in one layer on the other layer in a graphene/graphene bilayer.

I. INTRODUCTION

The properties of materials that can exist as stable
two-dimensional (2D) layers and stacks of such layers
has been of great interest due to their unusual prop-
erties and possible technological applications [2, 3].
Much of the initial interest has focused on graphene,
but has now been extended to other interesting sys-
tems such as hexagonal boron nitride (hBN) and
various transition metal dichalcogenides (TMDs) in-
cluding MoS2, MoSe2 and WSe2. Example applica-
tions include photodetectors [4, 5], catalysis [6] and
solar energy absorption [7]. One difficulty in using
these materials is the ability to grow large defect-
free structures as it is well known that topological
defects (dislocations, grain boundaries, domain-wall
solitons and triple junctions) or phase interfaces can
strongly impact electronic, mechanical, thermal and
other properties in three dimensional (3D) materials.
For example, in polycrystals the magnetic coercivity
[8–11] and yield strength [12–17] vary by many or-
ders of magnitude with changes in the average grain

size. Naturally, similar changes in material proper-
ties can occur in 2D materials as has been observed
in the thermal conductivity of graphene [18–20] and
hBN [21] and in the electronic properties of TMDs
[22, 23]

The purpose of this work is to develop a computa-
tional efficient method for studying the mechanical
properties of such 2D materials and stacks of them
using the phase field crystal (PFC) approach. The
model presented incorporates out of plane deforma-
tions of each individual layer, coupling between the
layers and elastic and plastic deformations within
each plane. For this purpose the PFC approach [24–
26] is used as it has already been developed for in-
plane graphene [27] and hBN [28, 29] models and has
been used to study defected structures such as grain
boundaries, triple junctions and polycrystals. These
prior publications provide extensive evidence that
the models reproduce various experimental and nu-
merical results such as the structure of dislocations
and the non-monotomic change in grain boundaries
with misorientation [27, 30, 31]. While atomistic
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methods such as molecular dynamics (MD) and den-
sity functional theory (DFT) can give great insights
into such systems, it is extremely difficult to use
them on the time and length scales relevant for many
phenomena. It possible to exploit PFC type models
as initial conditions for MD and DFT calculations
to significantly reduce relaxation times. Such an ap-
proach has been used for MD studies of thermal con-
ductivity in graphene and hBN [18–21] and MD and
DFT studies of grain boundaries, triple junctions
and polycrystals in graphene [27, 32, 33]. However,
compared to atomistic approaches the PFC model-
ing can address much larger length and time scales.

In order to incorporate out-of-plane deformation
in 2D PFC models another field, the height (h(x, y)),
will be introduced to account for small out-of-plane
deformations. In this work the Monge gauge is as-
sumed, i.e., h is a single-valued function. This is in
contrast to more sophisticated finite-element meth-
ods that allow for more complex three-dimensional
shapes as in for example, the modeling of phase sepa-
ration in multicomponent lipid bilayers [34, 35] and
more relevantly in the PFC model for deformable
spheres [36, 37]. While the use of a single-valued
h field does limit the applicability of the model,
it reduces the mathematical complexity and corre-
spondingly increases the computational speed. As
will be shown in Sec. II the mathematical form of
the model is such that Fourier methods can be used
which enhances the speed of calculations. To vali-
date the model, it is shown analytically to reduce to
traditional continuum models used to study flexible
sheets [38, 39] and graphene [40] in the small defor-
mation limit. Furthermore, in the numerical studies
of strained sheets, 5/7 dislocation dipoles and grain
boundaries are shown to reproduce analytic results
and MD or DFT calculations in subsection II B.

These calculations are followed by a section
devoted to stacks of 2D layers, with particular
emphasis on graphene/graphene, hBN/hBN and
graphene/hBN flexible bilayers. The individual lay-
ers are characterized by the graphene and hBN mod-
els developed in prior work [27–29, 32, 33] extended
to incorporate out-of-plane deformations. A rela-
tively simple coupling between the planes is intro-
duced to match the stacking energies and distances
between layers to those calculated in prior DFT cal-
culations by Zhou et al. [1] as a continuous function
of the stacking orientation. The end result of this
work is the development of continuum models for

large scale systems incorporating elasticity and plas-
ticity. The models are parametrized for graphene,
hBN and their bilayers.

The paper is organized as follows. Section II
first introduces a 2D PFC model that allows for
out of plane deformations and subsection II A shows
that in the limit of small deformations it reduces
to standard models of deformations in 2D sheets.
Following this are applications to strained sheets,
dislocation dipoles and grain boundaries. In Sec.
III modeling of the coupling of multiple 2D lay-
ers is discussed in general and then applications to
graphene/graphene hBN/hBN and graphene/hBN
bilayers are presented. Parameters introduced in
these models are fit to DFT calculations of Zhou et
al. [1]. Sample applications to twisted bilayers and
the influence of a defected layer on another layer are
also presented for graphene/graphene system in this
section. This is followed by a discussion of the re-
sults and conclusions in Sec. IV.

II. MODEL OF A FLEXIBLE 2D SHEET
WITH CRYSTAL STRUCTURE.

The free energy functional in the original PFC
[24–26] (or conserved Swift-Hohenberg [41]) model,
Fn, can be written as,

Fn
cg

=

∫
d~r

[
∆B

2
n2 +

Bx

2
(Ln)2 +

τ

3
n3 +

v

4
n4

]
.(1)

where L is the operator 1 +∇2
xyz. ∇2

xyz is the tra-
ditional Lapacian in Cartesian coordinates and cg
sets the energy scale. For certain parameters this
free energy is minimized by a hexagonal (triangu-
lar) lattice for τ > 0 (τ < 0) in 2D and a BCC
lattice in three dimensions. More complex forms of
the operator L have been proposed for other crystal
symmetries such as all five 2D Bravais lattices [42],
chiral lattices [43], quasicrystals [44, 45] in 2D and
FCC, and simple cubic and diamond lattices [46–49]
in 3D. For the purposes of this work the simple free
energy given in Eq. (1) will be used as the starting
point.

Consider a flexible 2D sheet parameterized by the
Cartesian coordinates (x, y) with height h(x, y) de-
noting deviations from the (x, y) plane, which is
assumed to be single valued, i.e., a Monge gauge
is employed. Transforming from the Cartesian co-
ordinates ~r = (x, y, z) to the sheet coordinates
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~w = (x, y, h(x, y)) leads to integration in the sheet’s
plane of the form

∫
d~r →

∫
d~r J , where J is the Ja-

cobian determinant of the transformation and now
d~r ≡ dx dy. This implies that the total density dif-
ference of the system is

ntot =

∫
d~r Jn, (2)

and as such it is convenient to introduce an in plane
density nh such that

nh ≡ Jn, (3)

with corresponding conservation law ∂t
∫
d~r nh = 0.

The free energy functional then becomes,

Fh
cg

=

∫
d~rJ

[
∆B

2

n2
h

J2
+
Bx

2

(
Lw

nh
J

)2

+
τ

3

n3
h

J3
+
v

4

n4
h

J4
+
κ

2
(∇2h)2

]
(4)

where Lw ≡ 1 +∇2
w and ∇2

w is the Laplacian in the
~w coordinates as described in App. (A). The last
term has been added to include bending energy and
the parameter κ is the bending energy coefficient.
It is assumed that the dynamics are dissipative and
driven to minimize the total free energy functional
such that the dynamics for nh are conservative, i.e.,

∂nh
∂t

= Mnh
∇2µnh

(5)

and non-conserved for h of the form,

∂h

∂t
= −Mhµh, (6)

where Mnh
and Mh are phenomenological constants

and

µnh
≡ δFh
δnh

(7)

and

µh ≡
δFh
δh

. (8)

To simplify calculations it will be assumed that
gradients in h are small and the Laplacian operator
can be approximated as (see Eqns. (A5) and (A6) )

∇2
w ≈ ∇2

xy − (h2
x∂

2
x + h2

y∂
2
y + 2hxhy∂x∂y), (9)

where hx ≡ ∂h/∂x and hy ≡ ∂h/∂y. To further
simplify the model, it will be assumed that h varies

on length scales much longer than the atomic spac-
ing such that ∇2

wnh/J ≈ (∇2
wnh)/J . Finally all

J-factors will be expanded to lowest order to obtain
the final simplified free energy functional,

Fh
cg
≈
∫
d~r

[
∆B

2
n2
h +

Bx

2
(Lwnh)

2

+
τ

3
n3
h +

v

4
n4
h +

κ

2
(∇2h)2

]
. (10)

One difficulty concerning Eq. (10) is the assump-
tion that h varies on much larger lengths than nh.
Considering that the free energy contains a term
∝ (∇2h)2 it might be assumed that this would
be enough to suppress fluctuations of h on atomic
scales. Test simulations reveal the possibility of nu-
merical instabilities at small length scales, however.
To ensure that such fluctuations are explicitly sup-
pressed the bending energy term will be replaced by
the contribution,

Fb =
κ

2

∫ ∫
d~rd~r ′C(|~r − ~r ′|)h(~r)h(~r ′) (11)

where, C can be written in Fourier space as

C(k) =

{
k4, k < kmax;
Cmax, k > kmax,

(12)

where kmax and Cmax can be tuned to eliminate
small scale fluctuations. Equation (1) typically se-
lects patterns with wave vector k ≈ 1, so kmax < 1.
To summarize, the final proposed free energy density
is

F
cg

=

∫
d~r

[
∆B

2
n2
h +

Bx

2
(Lwnh)

2
+
τ

3
n3
h

+
v

4
n4
h +

κ

2

∫
d~r ′C(|~r − ~r ′|)h(~r)h(~r ′)

]
(13)

Equations (5), (6) and (13) complete the model. Ex-
pressions for the functional derivatives that enter the
equations of motion are given in App. (B).

A. Amplitude expansion and small
deformation limits

In 2D the amplitude expansion as exposed by
Goldenfeld et al. and others [50–54] is obtained by
writing the density, nh, in terms of complex ampli-
tude, ηkl, i.e.,

nh = n0 +
∑
kl

ηkle
i ~Gkl·~r + C.C. (14)
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where C.C. stands for complex conjugate, ~Gkl =
k~q1 + l~q2, (k, l) are the Miller indices and (~q1, ~q2)
are the principle reciprocal lattice vectors and n0 is
the average of nh. It is assumed that the amplitudes
vary on length scales much larger than the atomic

spacing ∼ 2π/|~G01|. For a honeycomb (or triangu-
lar) lattice the principle reciprocal lattice vectors are

~q1 = q0(−
√

3/2,−1/2) and ~q2 = q0(0, 1), where q0 is
the equilibrium wave vector and a lattice constant
ax = 4π/(

√
3q0). The minimal set of modes needed

to construct the lattice are ~G10, ~G01 and ~G1̄1̄, where
k̄ ≡ −k, etc.. For the free energy functional given
in Eq. (13) in this lowest order mode expansion,
q0 = 1. As discussed previously the variable h is
also assumed to be varying on such length scales.
While the amplitudes generated from the polyno-
mial terms in the free energy have been published
in many papers [50–54] (and for other symmetries
[55]), the term (Lwn)2 has not been considered.

Assuming h and ηkl are slow variables it is
straightforward to show that this transforms as∫

d~r|(Lwn)2 → 2
∑
kl

∫
d~r |

(
(1− h2

x)Lxx

+(1− h2
y)Lyy − 2hxhyLxy

−(hxG
x
kl)

2 − (hyG
y
kl)

2 − hxhyGxklG
y
kl

)
ηkl|2 (15)

where Lab ≡ ∂a∂b + iGakl∂a + iGbkl∂b.
In the small deformation limit the complex ampli-

tudes can be written,

ηkl = φe−i
~Gkl·~u (16)

where ~u is the displacement vector that enters con-
tinuum elasticity theory. To lowest order φ is ap-
proximately constant and can be determined by min-
imizing the free energy functional in the limit ~u = 0
with respect to φ and gives

φ =
3n0v + τ +

√
τ2 − 15∆Bv − 4n0v(6τ + 9n0v)

15v
.

(17)

In the limit of small deformations (i.e., small gradi-
ents in the displacement and height fields), the elas-
tic portion of the free energy is,

Felas

cg
=

∫
d~r

[(
9

2

(
U2
xx + U2

yy

)
+ 3UxxUyy

+6U2
xy

)
Bxφ2 +

κ

2
|∇2h|2

)
. (18)

where the strain tensors, Uij are given as,

Uij =
1

2
(∂jui + ∂iuj + hihj) (19)

Equation (18) along with the strains defined by
Eq. (19) are consistent with free energy functionals
used to study graphene sheets [38] and other flexible
sheets [40]. Thus it is apparent that in the small de-
formation limit the model reduces to a well-known
result. While this particular calculation was done for
hexagonal (or triangular) symmetry, which is elasti-
cally isotropic, it could be repeated for other sym-
metries (square, rectangular, etc.) and the resulting
free energy would respect that symmetry.

B. Applications

In the following sections several applications
will be considered to validate the model and il-
lustrate how it can be used to consider com-
plex physical microstructure such as dislocation
dipoles and grain boundaries. In all cases the in
plane parameters used in Hirvonen et al. [27] for
graphene (referred to as PFC1 in that work) will be
used. The parameter set is (cg,∆B,B

x, τ, v, n0) =

(6.58eV,−0.15, 1, 0.5/
√

0.98/3, 1, 0) and gives rise
to equilibrium periodic structures with maxima in
n forming a hexagonal lattice as depicted in Fig.
1. These parameters give very good agreement with
2D molecular dynamics (MD) calculations using an
AIREBO potential for low angle grain boundary and
polycrystal energies, but somewhat larger difference
for high angle grain boundary energies. In addi-
tion this parameter set and model was shown [27] to
reproduce the same 5/7 defect structures observed
commonly in experiments and other simulations.

1. Strained Sheet

One simple analytic calculation that can be ex-
amined is that of a compressed sheet. Consider a
sheet with an initial strain, ε, in the y direction in
a periodic system. In this instance the sheet should
buckle to reduce the compression. For large values
of κ, h will be roughly sinusoidal, i.e., for a system
of size Ly

h(y) = H cos(Qy), (20)
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FIG. 1. Hexagonal geometry. For graphene ax ≈ 2.56
Å, while in dimensionless units the PFC model gives
ax ≈ 4π/

√
3. The red (blue) lines illustrate zig-zag (arm-

chair) directions.

where Q = 2π/Ly. Minimizing Felas (i.e., Eq. 18)
with respect to Uyy, subject to the boundary condi-
tions uy(y = 0) and uy(y = L) = εL gives,

uy(y) = εy +H2Q sin(2Qy)/8 (21)

Equation (21) can be substituted into Eq. (18) to
obtain the free energy per unit length,

Felas

Lcg
= αε2 +

1

2

(
1

2
κQ2 + αε

)
(QH)2

+
α

16
(QH)4 (22)

where α = 9Bxφ2/2. Minimizing with respect to H
gives

H2 = −2

(
2ε

Q2
+
κ

α

)
. (23)

Substitution of Eq. (23) into Eq. (22) gives

Felas

Lcg
= −κQ2

(
ε+

κQ2

4α

)
. (24)

This gives a critical value of κ, κc, for which no out
of plane deformation will take place of,

κc = − 2α

Q2
ε. (25)

The above results imply that a solution only exists
for a compressive stress, i.e., if ε < 0, as expected.

To test these predictions with the full model, sim-
ulations were conducted in a periodic domain using
semi-implicit spectral methods [56] with a mesh size
∆x ≈ ∆y ≈ 0.48. The exact values were chosen
to perfectly fit the periodic lattice in the simulation
box. Simulations were constructed for a compressed
sheet with an initial strain of ε = (a0 − aeq)/aeq =
−0.0219. The height of the layer, H, as defined by
Eq. (20) was measured as a function of κ and com-
pared with Eq. (23). This comparison is shown in
Fig. 2. As can be seen in this figure the numerical
results are quite close to the theoretical prediction,
but there are some deviations. These deviations are
likely be due to using a lowest order mode approxi-
mation in Eq. (14). It is interesting to note that if
the magnitude φ is taken as an adjustable parameter
the fits become very good as shown in Fig. 2.

FIG. 2. In a) and b) the maximum height H and free
energy difference of the buckled sheet are shown as func-
tion of the bending energy coefficient κ, respectively.
The blue points correspond to the numerical simulations.
The dashed black line corresponds to predictions from
Eqs. (23) and (24) using the approximate analytic form
for φ given by Eq. (17). The dashed red line corresponds
to Eq. (23) using a φ that is 1.031 times that given in
Eq. (17).

2. Dislocation Dipole in Graphene

Dislocations play a key role in determining ma-
terial properties and grain boundary structures [18,
20, 32]. In graphene the dislocations often form a
Stone-Wales defect which is comprised of a a 5/7
pair of rings instead of the 6 ring equilibrium honey-
comb structure that is illustrated in Fig. 1. These
defects create long-range elastic fields that can be
significantly reduced in 2D materials by out of plane
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deformations. To examine this phenomena it is use-
ful to first consider the case of a flat sheet (i.e., con-
stant h). A honeycomb lattice is elastically isotropic

and the displacement (~u) and stress (~~σ) fields due to
an edge dislocation can be determined using classi-
cal elasticity theory (see for example Chaikin and
Lubensky [57] chapter 9 section 3). The result is

ux = b (θ + sin(2θ)/3) /2π;

uy = −b (ln(r)/3 + cos(2θ)/3) /2π;

σxx = −D sin(θ)(2 + cos(2θ))/r;

σyy = D sin(θ) cos(2θ)/r;

σxy = D cos(θ) cos(2θ)/r, (26)

where for Eq. (18) D = 2bcgB
xφ2/π and b is the

magnitude of the Burgers vector which is b = ax for
an edge dislocation. Integrating the free energy over
θ = 0, 2π and r = ax, L gives the elastic energy of a
dislocation, F elas

disl ,

F elas
disl

cg
=
b2Bxφ2

π
ln
L

ax
. (27)

For a dislocation pair the elastic energy would be ap-
proximately twice this value when far enough apart.

To examine the influence of out-of-plane deforma-
tions, simulations of a dislocation dipole were un-
dertaken using the same parameters as the previ-
ous section. For these simulations a system of size
(Lx, Ly) was considered such that Lx = (N+1/2)ax,
Ly = May, Lx/∆x = Ly/∆y with N and M inte-
gers, ax and ay the equilibrium lattice constants in

the x and y directions (i.e., ay =
√

3ax) respectively.
To create the pair, in the middle (top/bottom) half
of the simulation am

x = Lx/N (at
x = Lx/(N + 1))

implying N (N + 1) rows of atoms in the middle
(top/bottom). This configuration includes a net
bulk strain that goes to zero as N →∞. Mesh sizes
(∆x,∆y) ≈ (0.48, 0.48) were chosen to be exactly
compatible with the period boundary conditions in
both directions. The bulk strain is

εm,t =
am,t
x − ax
ax

= ± 1

2N
, (28)

where the + (−) sign corresponds to the middle
(top/bottom) layer. To measure the energy of the
defect pair the energy of the bulk strained state was
first determined by averaging the corresponding free
energy density, fm (ft) for N (N+1) rows. This bulk
energy scales as ≈ 1/(2N)2 since the strain energy

FIG. 3. Free energy density difference between strained
and unstrained states as a function of system size. The
slope of the best fit line (dashed line) is 1.96.

scales as the square of the strain. This is illustrated
in Fig. 3. The free energy of the dislocation dipole,
Fd was then taken as the total free energy minus the
energy of the strained state, i.e.,

Fd = Ftot −
LxLy

2
(fm + ft). (29)

Numerical simulations were conducted for the flat
case (κ → ∞), for κ = κG, and κ = 4κG, where κG

was chosen to match that used in a recent study of
graphene bilayers by Dai et al. [58], cgκG = 1.38 eV
which was used by Chen and Chrzan [59] in their
continuum simulations of dislocations in graphene.
Systems sizes ranged from smallest containing only
43 unit cells up to the largest of approximately
45, 000 unit cells. The fields n and h were evolved
via Eqs. (5) and (6) until the free energy per unit
area was constant. In principle the dynamics should
lead to the annihilation of the defect pair if the sys-
tem size is too small, however the symmetry of the
initial condition avoids this result.

To compare Eq. (26) with numerically simulated
results for h = 0 it is useful to note that for the con-
tinuum result, σxx(0, y) = σyy(0, y) = −σxy(x, 0) =
−D/r for (x, y) > 0 and D/r for (x, y) < 0. To make
a comparison of the numerical results from the PFC
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FIG. 4. Comparison of simulated stress fields (red, blue
and green) with continuum (black) results, i.e., Eq. (26)
close to the dislocation core for a flat sheet.

model with the analytic calculations, the stress fields
must be calculated from the numerically obtained
density deviations, n. The method to achieve this
follows that of Refs. [60–62] as discussed in App.
C. It should be noted that the continuum mechan-
ics result diverges at the dislocation core, while the
PFC result naturally regularizes the core leading to
only finite stresses as discussed in prior work [62, 63].
The comparison is given in Fig. 4 which shows very
good agreement for distances several atomic spacing
away from the dislocation core for a system contain-
ing approximately 45, 000 unit cells.

When κ is finite the height, h, of the film can vary
to reduce the stress in compressed regions. Portions
of a sample simulation are shown in Fig. 5 for the
fields nh, h, hx and hy centered around one of the
two 5/7 dislocation cores. As can be seen in this
figure hx and hy are close to zero above the core
and vary considerably below or near the dislocation
core. This is due to the fact that the strain is tensile
above and compressive below.

For a more detailed comparison Fig. 6 shows the
stress fields for a portion of a system of total size
(70ax × 40ay) for κ = ∞ (i.e., h = 0), the contin-
uum result Eqs. 26 and for κ = κG. Similar to
Fig. 4 there is close agreement between the contin-
uum and simulated results for h = 0 except close

FIG. 5. Portion (13.3ax × 13.3ax) of sample the field
h and it’s gradients around one of the dislocations for a
system contained 2, 800 unit cells. In a), b), c) and d) nh,
h hx and hy are shown for κ = κG. In each figure black
dots are placed at maxima of n and bonds for the 5/7
Stone-Wales defect are drawn in white. In c) and d) the
colour scale is such that red, green and blue correspond
to hx = 0.5, 0 and −0.5 respectively and similarly for hy.

to the dislocation core. The figure also indicates a
large reduction in the stress fields for κ = κG as ex-
pected. A further comparison of σxx(0, y), σyy(0, y)
and σxy(x, 0) is shown in Fig. 7 for this system
size. This figure demonstrates a dramatic reduction
in compressive stress (.i.e., σii < 0) and relatively
little for tensile stress (i.e., σii > 0) as out of plane
deformations cannot reduce tensile stress.

Finally, the total free energy of the of the disloca-
tion pairs was measured as function of system size
for κ = ∞, 4κG and κG as shown in Fig. 8. The
results for the flat sheet (κ =∞) are in close agree-
ment with the continuum prediction, i.e., twice Eq.
27. The figure also shows a large reduction in en-
ergy as κ is decreased from ∞ to 4κG to κG. It is
interesting to note that the results for κ =∞ imply
that the energy of a dislocation pair becomes infinite
as L → ∞. In contrast the pair free energy seems
start to level off or saturate for large system sizes
if buckling is allowed. Empirically such an Fpair for

κ = κG fits the line Fpair = [13.6 − 19.0(ax/L)1/3]
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FIG. 6. Portion (35ax × 35ax) of sample stress fields
around one of the dislocations for a system of size (size
(1024∆x × 1024∆y). In a), b) and c) σxx, σyy and σxy

are shown for a flat (h = 0) layer. In d), e) and f) the
strain fields are shown for the continuum predictions, Eq.
(26) and in g), h) and i) the fields are shown for κ = κG.

FIG. 7. Comparison of simulated stress fields with con-
tinuum mechanics prediction (dashed black line) and
κ =∞ (black line), 4κG (red line) and κG (blue line).

FIG. 8. Free energy of dislocation dipole as a function of
system size. In this figure the points are the numerical
results and the black dashed line is the continuum elas-
ticity result, twice that in Eq. (27). The red and blue
dashed lines are guides to the eye.

eV which gives a pair energy in the limit of infinite
system size of 13.6 eV. This implies that the energy
of a 5/7 dislocation in graphene is approximately
6.8 eV. The change from logarithmic (κ = ∞) to
saturation (finite κ) as a function of system size is
consistent with the continuum calculations of Seung
and Nelson [39] and Chen and Chrzan [59]. In the
latter article molecular dynamics simulations were
also conducted using a REBO potential [64] which
also gave similar behavior. The magnitude of the
5/7 defect dislocation energy is similar to values ob-
tained by Chen and Chrzan [59] (6.17 eV), Yazyev
and Louie [30] using ab initio calculations (7.5 eV)
and from molecular dynamics simulations using a
AIREBO potential [65] from Liu and Yakobson [66]
(5.0 eV).

3. Grain Boundary Energy

In this section the role of out of plane deformation
on symmetric tilt grain boundary energies is exam-
ined in a simulation box of size Lx × Ly. A grain is
set up by rotating the top half of the simulation box
by an angle θ and the bottom half by −θ to create a
symmetric tilt boundary with net difference rotation
angle of 2θ. The system size is chosen to fit perfectly
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in the x direction. Periodic boundary conditions are
used in the x and y directions. To have perfect peri-
odicity in the x-direction for the zig-zag orientation
system size must satisfy the condition

Lzzx = ax
√

3(l + 1/2)2 + (k + 1/2)2, (30)

for a rotation angle of

θzz = arctan

(√
3(l + 1/2)

k + 1/2

)
, (31)

where k and l are integers as illustrate in Fig. 9(a).
Another choice is given for the n,m pairs as also
shown in this 9(b). For the armchair orientation the
system size in the x-direction is given by

Lacx = ax
√

3(k + 1/2)2 + (l + 1/2)2, (32)

for a rotation angle of

θac = arctan

(
(l + 1/2)√
3(k + 1/2)

)
, (33)

where k and l are integers as illustrated in Fig. 9(a).

FIG. 9. Illustration of possible rotations for zig-zag (a)
and armchair (b) orientations.

The grain boundary energy per unit length, γ, is
defined to be

γ = (FGB − Feq)/(2L) (34)

where FGB, Feq and L are the energy of the system
containing a grain boundary, the energy of a perfect
crystal and the length of the boundary, respectively.
It should be noted that the periodic box contains
two grain boundaries which explains the factor of
2 in the denominator. The grain boundary energy
as function of angle is shown in Fig. 10. As can be
seen from this figure out of plane deformations allow
the system to somewhat lower the grain boundary
energies but less than what has been observed in
low temperature MD simulations [27].

FIG. 10. Grain boundary energy for κ =∞ (black) and
κ = κG (blue).

III. MULTIPLE LAYERS

The purpose of this section is to illustrate how
multiple layers can be modeled and parameterized
to match the stacking energies and heights as a func-
tion of stacking position. In absence of experimental
data it is not obvious what the energies and heights
should be matched to, since DFT data depend on
the specific type of DFT model and are done at zero
temperature, while the MD data depend on level of
approximation of the potentials developed. As illus-
trated by Zhou et al. [1] different DFT calculations
can differ by 10% or more in stacking heights and
up to 30% in stacking energy densities. With this
in mind the fitting will be done using a one-mode
approximation for the density field which allows for
analytical results. This fitting will highlight how the
PFC model presented in this section can be fitted
quite close to a given DFT calculation. If an more
accurate fit were deemed important it would be use-
ful to go beyond a one-mode approximation, which
may require numerical work.

To model multiple layers it is assumed that each
individual layer has a free energy of the form given
in Eq. (13) such that the parameters that enter are
determined by the make-up of the ith layer. In ad-
dition to this, a coupling between nearest layers is
added for N layers with densities ni and heights hi
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of the form,

Fc = Fst + F∆h (35)

where Fst and F∆h correspond to energies associated
with stacking and height between layers, which in
the simplest cases can be approximated as,

Fst =
∑

i=1,j>i

∫
d~r Vijδniδnj , (36)

and

F∆h =
∑

i=1,j>i

∫
d~r aij2 (∆hij −∆h0

ij)
2. (37)

where δni = ni − n̄i and n̄i is the average of ni.
Here Vij determines the stacking energy of the lay-
ers, ∆h0

ij is the reference distance between the ith

and jth layers and aij2 controls the energy cost for
deviations from the equilibrium layer spacings. Of
course (as discussed in subsections III B and III C)
the coupling is more complex when an individual
layer is made up of more than one element. In princi-
ple a more complex form could be used, which would
be particularly important if the layers were to be
ripped apart (note in this parabolic approximation
that energy is infinite). This particular form is only
valid for small deviations from the equilibrium posi-
tion.

The work of Zhou et al. [1] will be used to de-
termine the parameters that enter Fc. In this
work the researchers considered four specific meth-
ods that rely on density functional theory (DFT)
and various corrections. These methods are given
the names, DFT-D2, vdW-DF2, MGGA-MS2 and
ACFDT-RPA whose details can be found in Ref.
[1]. The conclusions of this detailed study was
that the computationally expensive ACFDT-RPA
method was deemed the best in reproducing vari-
ous material properties. For this reason the param-
eters that enter Fc will be chosen to best match the
ACFDT-RPA results. To illustrate this approach
graphene/graphene, hBN/hBN and graphene/hBN
bilayers will be consider in the following subsections.

A. Monatomic/monatomic bilayer
(graphene/graphene)

In this subsection the graphene/graphene bilayer
system is considered. Graphene forms a hexagonal

lattice as illustrated in Fig. 1 where nearest neigh-
bour atoms are a distance a apart. In this system
the coupling of the layer can be accounted for by a
stacking free energy of the form,

Fst = V0

∫
d~r δn1δn2, (38)

and a spacing free energy of

F∆h = a2

∫
d~r (∆h−∆h0)2, (39)

where

∆h0 = ∆(1 + αδn1δn2), (40)

where h1 (h2) are heights of the layers, ∆h = h2−h1,
and ∆h0 is the reference distance between the two
layers. In order to parameterize this model, Vg, a2,
∆ and α must be determined. As discussed above
these parameters will be chosen to best match the
prediction of the ACFDT-RPA calculations of Zhou
et al. [1].

To make a connection with the PFC type model
presented in this work, it is useful to consider a
one mode expansion of the PFC model, which for
graphene takes the form,

n1 = n̄1 − φ
∑
kl

[
ei
~Gkl·~r + C.C.

]
;

n2 = n̄2 − φ
∑
kl

[
ei
~Gkl·(~r+~ro+aŷ) + C.C.

]
, (41)

where ~Gkl = k~q1 + l~q2, ~q1 = −(
√

3x̂, ŷ)/2, ~q2 = ŷ
and k and l are the Miller indices and take on inte-
ger values. For φ > 0 Eq. (41) leads to a hexagonal
lattice structure. For ~r0 = 0 the stacking is AB. Set-
ting ~r0 = (0, y0) and increasing y0 takes the system
through various stackings as depicted in Fig. 11.

The energy of separation between the layers is
given in Eq. (39), using Eq. (40) for ∆h0. Inte-
grating over a unit cell and minimizing with respect
to ∆h gives a separation distance (∆heq) of

∆heq = ∆
(

1− α φ
2

√
3

[
2
√

3 cos(y0/2)(1 + cos(y0/2))

+6 sin(y0/2)(1− cos(y0/2))−
√

3
])
, (42)

and matching to Zhou et al. [1] gives ∆ = 3.56 Å
and α = 0.26. ∆ can be converted to dimensionless
units (∆d) by noting that in graphene ax = 2.56
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FIG. 11. Stacking for graphene/graphene bilayer using
the notation of Zhuo et al. [1]

Å, while in the one mode PFC model ax = 4π/
√

3.
This gives ∆d = 10.08. The contribution to the free
energy at h = heq is,

F∆h/A = 4a2∆2φ4α2
(

8 cos(y0/2)
3 − cos(y0/2)

2

−7 cos(y0/2) +
√

3 sin(y0/2)(cos(y0/2)− 1)

+9
)
. (43)

A comparison of Eq. (42) (labeled PFC 1st order in
the figures) with the calculations of Zhou et al. [1] is
shown in Fig. 12. In doing the matching it was not
possible to exactly fit to the ACFDT-RPA calcula-
tions as the PFC model tended to overestimate the
AA and underestimate the SP spacing. Neverthe-
less, considering the deviations of the different DFT
calculations, the fit is quite good. It is possible to
get a better fit by introducing higher order terms in
∆h0 that enter F∆h. For example, if the following
is used

∆h0 = ∆[1 + αδn1δn2 + β(δn1δn2)2], (44)

then matching the ∆h that minimizes the free energy
to the height at AB (hAB ≈ 3.39 Å), SP (hSP ≈ 3.43

Å) and AA (hAB ≈ 3.62) stackings gives,

∆ =
1

18
(hAA + 45hSP − 28hAB) = 3.50; Å

α =
19hAA + 45hSP − 64hAB

12φ2(hAA + 45hSP − 28hAB)
= 0.269;

β =
hAA − hSP + 8hAB

12φ2(hAA + 45hSP − 28hAB)
= −0.187,

using the PFC model parameters for graphene. This
second-order fit is also shown in Fig. 12 and gives
very good agreement with the ACFDT-RPA data.
Also included in this figure is a result obtained from
a numerical calculation in which the AB state is first
relaxed using the PFC 1st order parameters and then
shifted to other stackings and the height is left to
relax. It should be noted that if the density is al-
lowed to relax it will lead the system to fall into the
lower energy AB state, except exactly at the SP or
AA state in which long lived states can exist due to
symmetry. As seen in Fig. 12 the numerical results
are quite close the theoretical ones.

FIG. 12. Equilibrium height as a function of stacking lo-
cation for graphene/graphene bilayer, for the PFC model
and various DFT calculations of Zhou et al. [1]. The
solid purple and dashed cyan lines correspond to PFC
1st (i.e., Eq. (42)) and 2nd (i.e., Eq. (44)) respectively.

To estimate the constant a2, consider the effective
coupling introduced by Zhou et al. [1], i.e.,

Γ = Ae−αh −B
(
d`
h

)4

+ γcoh (45)
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where

α = −
ζ +

√
ζ2 + 64κ0d2

`∆γ

8d`∆γ
;

A =
4∆γeαd`

4− αd`
;

B =
αd`∆γ

4− αd`
, (46)

ζ = [κ0d
2
` − 20∆γ] and ∆γ = γ − γcoh, and d` is the

layer spacing. Expanding around h = d` for the AB
configuration (i.e., γ = γcoh), gives,

Γ ≈ a2(h− d`)2 + a3(h− d`)3 + a4(h− d`)4 + · · ·(47)

where

a2 =
Ae−αd`(αd`)

2 − 20B

d2
`2!

= 0.442
mJ

m2Å2
= 0.276

eV

nm4
;

a3 =
−Ae−αd`(αd`)3 + 120B

d3
`3!

= −0.405
mJ

m2Å3
;

a4 =
Ae−αd`(αd`)

4 − 840B

d4
`4!

= 0.203
mJ

m2Å4
. (48)

A comparison of the fits to the ACFDT-RPA data
is shown in Fig. 13. In addition the coupling is
shown for various stackings in Fig. 14, to order
(h − d`)2. When constructing the potentials Zhou
et al. uses the DFT-D2 calculations instead of the
more accurate ACFDT-RPA for computational effi-
ciency. Since there are no such difficulties with the
PFC model, the ACFDT-RPA data was used to pa-
rameterize a2. To convert to dimensionless units

a2d = a2
6.242× 1018eV

J

(m)2

(1010Å)2

1

6.58eV

(2.56Å)4

(4π/
√

3)4

= 6.51× 10−5 (49)

To obtain an approximate value for V0 Eqs. (41)
are substituted into Eq. (38) and then integrated
over a unit cell and divided by the area of it. The
result is

∆Fst

A
= 2V0φ

2
(

1− cos
(y0

2

))(
2 + cos

(y0

2

)
−
√

3 sin
(y0

2

))
, (50)

where ∆Fst = Fst(y0) − Fst(y0 = 0). The total en-
ergy is then Fc = Fst + F∆h. A value of V0 = 1.29
eV/nm2 resulted in the best match to the ACFDT-
RPA data of Zhou et al. [1] as shown in Fig. 15.

FIG. 13. Comparison of Zhou et al. [1] potential and a
polynomial expansion. We note that this is a fit to the
ACFDT-RPA data and not to the DFT-D2 data that
Zhou et al. fit to in Fig. 8.

FIG. 14. Interaction for various stackings using a
parabolic approximation.

As can be seen in this figure the fitting over (un-
der) estimates the energy of the AA (SP) stacking
but overall provides a reasonable approximation to
the DFT calculations. In dimensionless units V0 is
(V0d),

V0d =
V0

cg

(
ag

ax

)2

(51)
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Quantity Dimensional Dimensionless
V0 1.29 eV/nm2 2.44× 10−4

a2 0.276 eV/nm4 6.51× 10−5

∆ 3.56 Å 10.08
α − 0.26

TABLE I. Summary of model parameters for a
graphene/graphene bilayer.

where cg = 6.58 eV, ag = .256 nm and ax = 4π/
√

3,
which gives

V0d = 2.44× 10−4. (52)

A summary of the fitting parameters is given in Ta-
ble I.

As with the height fitting it is possible to get a
better fit by including higher order terms, for exam-
ple if a stacking free energy of the form

Fst =

∫
d~r[V

(1)
0 δn1δn2 + V

(2)
0 (δn1δn2)2] (53)

is used a better fit can be obtained. Matching to
SP (∆FSP/A ≈ 9.42 mJ/m2) and AA (∆FAA/A ≈
53.21mJ/m2) stacking energies densities gives,

V
(1)
0 =

19∆FAA/A+ 45∆FSP

216φ2
= 219.2 mJ/m

2
;

V
(2)
0 =

∆FAA/A− 9∆FSP

216φ2
= −159.1 mJ/m

2
.(54)

Fits to this second order form are shown in Fig. 15.
As with the height calculations a numerically ob-
tained solution using the PFC 1st order parameters
is also included in this figure. The numerical result
is worse that the analytic one and it is unlikely that
adjusting the parameters would lead to a better fit to
the ACDFT-RPA result. In this instance the PFC
2nd order model would provide more flexibility to
numerical model a given DFT result.

A couple of points are worth mentioning. The fit-
ting done here is different than that of Zhou et al.
[1], in which the parameters that enter Γ in Eq. (45)
depend on the stacking orientation and no other cou-
pling is needed. In this work the stacking energy is
fixed by Fst in a separate contribution to the free en-
ergy. As seen by the fitting of the stacking heights
and energies this works quite well, partly due to the
fact that Fst << Fh which simplifies analytic cal-
culations. Considering the large differences between
the various DFT models an exact fitting to one of

FIG. 15. Free energy difference as a function of stacking
location for a graphene/graphene bilayer.

the models is unlikely going to lead to better quan-
titative predictions.

1. Sample simulations

Four types of simulations were conducted using
the PFC 1st order model using the parameters de-
rived in the one-mode approximation discussed in
the previous section. The first case was to validate
the model by reproducing known results and in lat-
ter three to illustrate how the model can be used
to study complex structures. In the first case the
layers of the bilayer were rotated with respect to
each by an angle θ. This leads to a Moiré patterns
as domain walls and junction form between com-
mensurate regions. The junctions form a triangle
pattern with a periodicity (λ) that is inversely pro-
portional to θ such that λ = ax/(2 sin(θ/2)) in the
absence of coupling between the layers [58, 67]. As
seen in Fig. 16 such a pattern emerges in addition to
the junctions moving out plane, such that, junctions
on the top (bottom) layer bulge up (down). This is
the so-called ”breathing mode” observed and named
by Zhou et al. [1], confirming the methodology pre-
sented in this work. Zhou et al. [1] also observed
other modes, which may be explored in future work.

Simulations of phase boundaries in the zig-zag
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FIG. 16. In a) upper and lower layers have been rotated
by an angle +5.21o and −5.21o respectively and in b)
the angles are +1.87o and −1.87o.

(ZZ) and arm-chair (AC) directions (as depicted in
Fig. 1) were conducted such that the bottom layer
was a perfect crystal and the top layer had an AB
stacking on the sides and a BA stacking in the mid-
dle. This leads to a domain wall at the boundary
between the AB and BA stackings. As seen in ex-
periments and simulations [68] the width of the do-
main wall (referred to as a soliton in reference [68]
in the ZZ direction (∼ 10 nm) was larger than in
the AC direction (∼ 6 nm). Small portions of the
systems are depicted in Fig. 17. The widths (as
determined by width of h2 − h1 at half of the max-
imum) are 9.2 nm and 7.7 nm for the ZZ and AC
directions, respectively. These results are in quali-
tative agreement with Alden et al. [68] although the
width of the AC domain wall is slightly larger. The
larger width leads to a larger energy per unit length
(defined as (Fsol − Feq)/2L, where Fsol is the en-
ergy of the system containing a domain wall in one
layer, L is the length of the domain wall and the
2 is included as there are two domain walls in the
simulation cell) for the ZZ domain wall, 0.17 eV/Å,
as compared to 0.12 eV/Å for the AC case. As ex-
pected these boundaries are quite a bit smaller than
that of a large angle grain boundary (see Fig. 10).

The model developed in this paper can handle
more complex structures that contain dislocations
and grain boundaries, not just small deformations
about a perfect lattice. To examine the influence
of defects in bilayers a perfect unrotated layer was
placed on top of one containing a symmetric tilt
grain boundary (using the same initial condition dis-
cussed in section II B 3). As the grain boundary
forms in the bottom layer out of plane deformation
occur to relieve elastic energy, which in turn causes
the layer above to also deform in sync with the bot-
tom layer. This is illustrated for a symmetric tilt
grain boundary in Fig. 18 at a tilt angle of θ = 3.8o.

FIG. 17. Structure of a domain wall in zig-zag (a) and
b)), and arm-chair (c) and d)) directions. In a) and c)
the sum of the densities (n1 +n2) is depicted while in b)
and d) the difference of the height (h2−h1) is shown. In
a) and b) the system size is 15 nm × 1.9 nm and in c)
and d) 15 nm × 1.7 nm.

The grain boundary itself causes deformations on the
scale of ±2.0 Å which induces similar deformations
in the upper layer, although to a slightly lesser ex-
tent. In addition the deformations in the upper layer
slightly more smeared out. This is expected since de-
formations in a layer increases the elastic energy and
hence the top layer will not buckle to same extent as
the lower layer which contains the grain boundary.
Since the top layer is not rotated and the bottom
is, a Moiré pattern also emerges between the grain
boundaries in both layers as expected, although it is
barely discernible in the figures as deformations due
to the grain boundary are much larger.

To further illustrate how the model presented in
this work can examine very complex structures, a
simulation was conducted to study the influence of a
polycrystalline bottom layer on a perfect top layer.
In this simulations the bottom layer initially con-
tained sixteen grains separated by supercooled liq-
uid. In these simulations Mnh

= 1.0 and Mh = 25.0.
Sample configurations are shown in Fig. 19 at
t = 500, 50 000 and 250 000 time steps. Since the top
layer is not rotated Moiré patterns emerge in the lay-
ers in the breathing mode state previously discussed.
As time evolves grain boundaries form between the
grains and out-of-plane deformation start to increase
to release stress at such boundaries. These deforma-
tions then cause the upper layer to deform in sync
with the bottom layer as was the case of a simple
grain boundary.



15

FIG. 18. Influence of grain boundary on overlayer. In b)
the bottom layer is shown which contains a symmetric
tilt grain boundary at angles 3.8o, while a) shows the top
layer. The color scale corresponds to the the deviations
of the height from its mean of each layer in units of
angstroms.

B. Binary/binary bilayers (hBN/hBN)

In the binary hBN/hBN system there are two dif-
ferent types of stackings and the first is shown in
Fig. 20 in which an AA’ stacking gives rise to a con-
figuration where every A atom has a B atom as a
nearest neighbour in the other layer. In Zhou et al.
[1] this is referred to as a hBN/hBN1 stacking. The
other stacking in shown in Fig. 21 and is referred
to as the hBN/hBN2 stacking. In this instance the
AA stacking leads to A (B) atoms sitting on top of
A (B) atoms.

Using the binary model of Taha et al. [28, 29],
as described in App. D it possible to repeat the
calculations for a hBN bilayer. For this system ∆h0

can be written

∆h0 = ∆
[
1 + αAAδnA1δnA2 + αBBδnB1δnB2

+
αAB

2
(δnA1δnB2 + δnB1δnA2)

]
, (55)

FIG. 19. Influence of grain structure at dimensionless
time t = 500 in a) and b) for the bottom and top layer
respectively. Similarly in c) and d) at time 50 000 and
in e) and f) at 250 000 time steps. The color scale corre-
sponds to the height of each layer in units of angstroms.

where A and B refer to the two binary components, 1
and 2 refer to the different layers and δnx ≡ nx− n̄x,
where n̄x is the average of nx. Integrating F∆h over
a unit cell and minimizing with respect to ∆h gives
for the hBN/hBN1 system,

∆heq = ∆
(

1− 2φ2

√
3

[
∆α
√

3 cos(y0/2)(1 + cos(y0/2))

+3∆αAB sin(y0/2)(1− cos(y0/2))

+∆αφ2
])

(56)

where ∆α ≡ αAA+αBB−2αAB, and ∆αAB ≡ αAA−
αBB. The free energy associated with this term in
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FIG. 20. Stacking for hBN/hBN1.

FIG. 21. Stacking for hBN/hBN2.

the free energy per unit area is

∆F∆h

Aa2
=

8∆2φ4

√
3

((
cos
(y0

2

)
− 1
) 3∑
i=1

fi cos
(y0

2

)i)
,

(57)

where ∆F∆h ≡ F∆h(y0)− F∆h(0),

f0 =
1

2

[√3

4

(
αt(1 + 2∆α) + 11∆α2

)
−9∆α∆αAB sin

y0

2

]
;

f1 = 3∆αAB∆α sin
y0

2
+
√

3
[
αt(1 + ∆α)

+
5

4
∆α2 − 9

4
∆α2

AB

]
;

f2 = 3∆αAB∆α sin
y0

2
+
√

3
[
αt(1 + ∆α)

−1

2
∆α2 − 3

2
∆α2

AB

]
;

f3 =

√
3

2

(
3∆α2

AB −∆α2
)
. (58)

and αt ≡ αAA + αBB + αAB.
In the hBN/hBN2 configuration the minimum

layer spacing is

∆heq = ∆
(

1 + 2φ2
[
∆α+ αt

][
cos(y0/2)(1 + cos(y0/2))

−1/2
])
, (59)

with corresponding free energy

∆F∆h

Aa2
= 2∆2φ4

(
4(∆α2 + 3∆αAB) cos

y0

2

+αt(αt + 2∆α)− 3∆α2 − 12∆α2
AB

)
(

cos
y0

2
+

1

2

)2

. (60)

Matching ∆h for the hBN/hBN1 case at y0 = 0, a
and 2a gives

αAA = 0.12986, αBB = 0.29411, ∆ = 3.44Å.(61)

αAB was then chosen to provide the best match for
the hBN/hBN2 case and is given by

αAB = 0.055. (62)

The fits shown in Fig. 22 are reasonable good. One
could also fit differently e.g. by fitting two points to
the hBN/hBN1 and two points to the hBN/hBN2
stackings.

The same procedure to obtain a2 outlined in the
previous section can be used here using the data
given in Zhou et al. [1] table II for the ACFD-RPA,
i.e., d0 = 3.34 Å, Cnn = 46 GPa, γcoh = 222.7
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FIG. 22. Equilibrium height as a function of stacking
location for a) hBN/hBN1 and b) hBN/HBN2 bilayers.

mJ/m2. This results in the fit shown in Fig. 23
which gives

a2 = 0.689 mJ/(m2Å2) = 0.430 eV/nm
4
, (63)

or in dimensionless units,

a2d = 1.01× 10−4. (64)

FIG. 23. Fitting the height potential to polynomial for
a hBN/hBN bilayer.

The stacking energy for the hBN/hBN bilayer can
be written as

Fst =

∫
d~r
(
VAAδnA1δnA2 + VBBδnB1δnB2

+
1

2
VAB(δnA1δnB2 + δnB1δnA2

)
, (65)

where the parameters VAA, VBB and VAB must
be matched to experiment or theory. Using the
mode expansions described in App. D gives for the
hBN/hBN1 system

∆Fst/A = 2φ2 (1− cos(y0/2)) (cos(y0/2)[∆V + 2] +
√

3∆VAB sin(y0/2)), (66)

where ∆Fst ≡ Fst(y0)− Fst(y0 = 0),

∆V ≡ VAA + VBB − 2VAB;

∆VAB ≡ VAA − VBB. (67)

FIG. 24. Stacking energy for a) hBN/hBN1 and b)
hBN/hBN2, where the line is from Eq. (66) and the
points are from Zhou et al. [1]

In the hBN/hBN2 configuration as shown in Fig.
21, the free energy becomes,

∆Fst/A = φ2(∆V + Vt)
[
2 cos(y0/2 + a)

2
+ 1)

]2
.(68)

where Vt = VAA + VBB + VAB. Fitting to the
points A’B, AB’ for the hBN/hBN1 and AB for the
hBN/hBN2 gives

∆V = VAA + VBB − 2VAB = 1.35 eV/nm2;

∆VAB = VAA − VBB = 0.71 eV/nm2;

Vt + ∆V = 2.6 eV/nm2. (69)

This gives

VAA = 0.997 eV/nm2;

VBB = 0.287 eV/nm2;

VAB = −0.033 eV/nm2.

(70)

In dimensionless units

VIJd =
VIJ

ch

(
ahBN

ax

)2

(71)
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Quantity Dimensional Dimensionless
VAA 0.997 eV/nm2 4.39× 10−4

VBB 0.287 eV/nm2 1.21× 10−4

VAB −0.033 eV/nm2 −1.46× 10−5

a2 0.430 eV/nm4 1.01× 10−4

∆ 3.44 Å 9.11
αAA − 0.130
αBB − 0.294
αAB − 0.055

TABLE II. Summary of model parameters hBN/hBN
bilayer.

where ch = 2.74 eV, ahBN = .251 nm and ax =
4π/
√

3, which gives relative small values as

VAAd = 4.39× 10−4;

VBBd = 1.21× 10−4;

VABd = −0.146× 10−4.

(72)

The fits are shown in Fig. 24 and a summary of the
parameters is given in Table II.

C. Monatomic/binary bilayer (graphene/hBN)

Similar calculations can be performed for a
graphene/hBN system (ignoring the lattice constant
difference). The stacking sequence is shown in Fig.
25. For a graphene/hBN bilayer ∆h can be written
as

∆h0 = ∆(1 + αgAδngδnA + αgBδngδnB). (73)

Integrating over a unit cell and minimizing w.r.t. ∆h
gives

∆heq

∆
= 1− 2φgφh√

3

[√
3αt cos(y0/2)(1 + cos(y0/2))

−3∆α sin(y0/2)(cos(y0/2)− 1)−
√

3αt/2
]
,

(74)

FIG. 25. stacking for graphene/hBN

with energy density

∆F∆h

Aa2
=

32φ2
gφ

2
h∆2

√
3

[√
3(α2

A − αAαB + α2
B) cos3 y0

2

−
√

3

8
(α2

A − 4αAαB + α2
B) cos2 y0

2

−
√

3

8
(7α2

A − 10αAαB + 7α2
B) cos

y0

2

+
3

8

(
α2

A − α2
B

)
sin

y0

2

(
cos

y0

2
− 1
)

+
3
√

3

16
αB(2αA − 3αB)

]
. (75)

Matching this to Zhou et al. [1] gives, gives ∆ = 3.45
Å and αA = 0.0370 and αB = 0.195. This fit is very
good as shown in Fig. 26.

The coefficient a2 can be calculated similar to the
prior cases to obtain

a2 = 0.497 mJ/(m2Å2) = 0.310 eV/nm
4
;

a2d = 7.31× 10−5, (76)

where the fits are shown in Fig. 27.
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FIG. 26. Equilibrium height as a function of stacking
location for graphene/hBN bilayer.

FIG. 27. Fitting height potential to a polynomial for
graphene/hBN bilayer.

For this system a coupling term,

Fst =

∫
d~r (VAδnA + VBδnB) δng (77)

Quantity Dimensional Dimensionless
VA 0.145 eV/nm2 2.64× 10−5

VB 1.135 eV/nm2 2.06× 10−4

a2 0.310 eV/nm4 7.31× 10−5

∆ 3.45 Å 9.78
αA − 0.037
αB − 0.196

TABLE III. Summary of model parameters
graphene/hBN bilayer.

leads to a stacking energy

∆Fst

A
= −2φgφAB

[
VT cos

y0

2

(
1 + cos

y0

2

)
−∆V

√
3 sin

y0

2

(
cos

y0

2
− 1
)

−
(

2VA −
5

2
VB

)]
(78)

where VT = V + A + VB and ∆V = VA − VB. The
best fit shown in Fig. 28 is very good and occurs for

VA = 0.145 eV/nm2;

VB = 1.135 eV/nm2. (79)

To convert to dimensionless form one has to choose
either graphene or hBN parameters for the energy
scale (cg = 6.58 eV/nm2, ch = 2.74 eV/nm2) and

the lattice spacing (ag = 2.56 Å, ah = 2.51 Å). If
graphene parameters are chosen

VAd = 2.64× 10−5;

VBd = 2.06× 10−4. (80)

It should be noted that for this system in dimen-
sionless form the hBN free energy would need to be
multiplied by ch/cg and the (1 +∇2) would need to
be modified in the hBN free energy to account for
the difference in length scales, i.e., it would become
((ag/ah)2 +∇2). A summary of parameters is given
in Table III.

IV. SUMMARY AND CONCLUSIONS

The model phase-field crystal model presented in
Sec. II (i.e., Eqs. (4)-(6)) here provides a relatively
simple method of modeling small out of plane de-
formations (OPDs) in a single atomic layer and nat-
urally incorporates elastic and plastic deformations
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FIG. 28. Stacking energy for graphene/hBN, where the
line is from Eq. (66) and the points are from Zhou et al.
[1]

within the plane. This model was validated in the
small deformation limit, by showing it reduces to
a standard model used for flexible sheets. Sample
simulations of strained sheets were shown to be con-
sistent with analytic expressions derived from con-
tinuum theory for the height of the induced defor-
mations as well as the associated excess free energy
to further valid the model and simulation technique.
The flexibility of the model was illustrated by ap-
plications to dislocation dipoles and grain boundary
energies in graphene. In former case, in the absence
of OPDs, the model was again shown to be consis-
tent with continuum elasticity theory for the strain
fields due to point dislocations. Allowing for OPDs
made a large impact on reducing the energy of the
dislocation pairs and removed the logarithmic diver-
gence of the pair energy with system size, consistent
with expectations of other publications [39, 59]. In
addition the predicted energy of a 5/7 dislocation
was quantitatively consistent with prior DFT calcu-
lations [30, 59, 65, 66]. Simulations of grain bound-
aries also showed how the OPDs lead to a lowering
of the grain boundary energies in a manner quali-
tatively consistent with prior MD simulations [27],
although the decreases were smaller than the low
temperature MD simulations.

In Sec. III the construction of a continuum
model of stacked 2D layers was developed using

an assumption that variations in the distance be-
tween layers did not vary greatly. With a rela-
tively simple coupling it was shown that the model
could be parameterized to match the stacking en-
ergies and heights of prior DFT calculations quite
closely. This was shown in three separate bilayers,
graphene/graphene, hBN/hBN and graphene/hBN.
The approach taken was similar but somewhat dif-
ferent than the approach of Zhou et al. [1] in which
a continuum model is developed in that it contained
a much smaller parameter set and was able to fit to
the DFT model deemed the most accurate. Sam-
ple simulations of twisted bilayers of graphene were
shown to reproduce the breathing mode observed by
Zhou et al. [1], although an extensive study was not
undertaken to see if the model could also reproduce
the twisted mode reported by these researchers (it
should be noted that strain induced similar twisted
modes have been reproduced in other PFC studies
[69, 70]). Additionally a study of domain walls cre-
ated by an AB/BA boundary in one layer are shown
to be consistent with prior research of Alden et al.
[68]. Finally the ability of the model to incorpo-
rate complex microstructures that include disloca-
tion and grain boundaries, was illustrated by exam-
ining the influence of a grain boundary or polycrys-
talline layer on an adjacent undefected layer.

Overall the model proposed here is perhaps the
simplest one for stacks of flexible sheets that incor-
porates OPDs as well as in-plane deformations and
dislocations that can be parameterized by matching
to known results. The simplicity of the model facili-
tates relatively low-overhead numerical calculations,
but limits the applicability to relatively small defor-
mations. In each layer a Monge gauge was assumed
that limits the model to small OPDs and thus can-
not handle multi-valued heights. Similarly, the mul-
tiple layer model assumes that deviations from the
equilibrium distance between two layers are small
such that the stacking interaction potential (Γ) can
approximated by a simple polynomial. This approx-
imation implies that an unphysical infinite energy
would be required to pull the bilayers apart. It
should be possible to implement a more accurate
form (i.e., 45) if needed.

It was shown that by adding more bulk coupling
terms (eg., terms of the form δni1δn

j
2, where i and

j are integers) more complex stacking energies and
heights could be fit quite accurately. However, as
shown in Sec. III A, using the one-mode approxima-
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tion for the density field will not lead to accurate
parameterization for the full model, and thus the
parameters should be chosen numerically. In this
regard it would be extremely useful to develop an
complex amplitude expansion of the model as has
been done for the basic PFC case [50–54] and more
complex systems [55, 63]. In this approach the one-
mode approximation is exact making parameter fit-
ting easier in addition to the fact that the approach
can be used to computationally study even larger
system sizes.
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do Estado de São Paulo - FAPESP (Grant No.
18/19586-9). This work has also been supported in
part by the Academy of Finland though its QTF
Center of Excellence grant no. 312298.

Appendix A: Laplacian and Curvature in the
Monge Gauge

Consider a two-dimensional sheet in the (x, y)
plane embedded in three dimensional space with
height h(x, y). It will be assumed that h is a single-
valued function of (x, y), i.e., a Monge gauge will be
used. This limits the approach to small out of plane
deformations. Transforming from ~r = (x, y, z) coor-
dinates to ~w = (x, y, h(x, y)) is straightforward and
leads to the transformation matrix A (with compo-
nents Aij = ∂wi/∂rj) of the form,

A =

 1 0 hx
0 1 hy
0 0 0

 , (A1)

where hi ≡ ∂ih. From A the metric G (with ele-
ments gij = akiakj) can be constructed, i.e.,

G =

(
1 + h2

x hxhy
hxhy 1 + h2

y

)
. (A2)

The inverse of this metric is then,

G−1 =
1

1 + h2
x + h2

y

(
1 + h2

y −hxhy
−hxhy 1 + h2

x

)
. (A3)

The Laplacian can now be written in terms of the el-
ements of the inverse matrix gij and the determinant
of the Jacobian of the transformation (J =

√
|G| =√

1 + |~∇h|2), i.e.,

∇2
w =

1

J

∑
ij

∂i
(
Jgij∂j

)
. (A4)

This gives

∇2
w =

1

J

[
∂x

(
1 + h2

y

J
∂x

)
+ ∂y

(
1 + h2

x

J
∂y

)
−∂x

(
hxhy
J

∂y

)
− ∂y

(
hxhy
J

∂x

)]
. (A5)

In this limit that gradients in h are small this sim-
plified to lowest order,

∇2
w ≈ ∇2

xy − (h2
x∂

2
x + h2

y∂
2
y + 2hxhy∂x∂y). (A6)

Appendix B: Functional Derivatives

The functional derivative with respect to n of the
free energy described in Eq. (13) is

δF

δn
= ∆Bn+ τn2 + vn3 +

[
1 + ∂2

x

(
1− h2

x

)
+∂2

y

(
1− h2

y

)
− 2∂x∂yhxhy

]
(1 +∇2

w)n,

where the derivatives operate on any function to the
right. Similarly with respect to h gives,

δF

δh
= κC ∗ h+ 2 [∂x (hxnxx + hynxy) +

∂y (hynyy + hxnxy)] (1 +∇2
w)n,

where the ∂x and ∂y operators act on all quantities
to the right and

C ∗ h ≡
∫
d~r ′C(|~r − ~r ′|)h(~r ′). (B1)

Letting L = 1 + ∇2 and H = h2
x∂xx + h2

y∂yy +
2hxhy∂xy gives,

δF

δn
= ∆Bn+ τn2 + vn3 + L2n

−∂2
x(h2

x(1 +∇2
w)n+Hn)

−∂2
y(h2

y(1 +∇2
w)n+Hn)

−2∂x∂yhxhy(1 +∇2
w)n−Hn. (B2)
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Appendix C: Strain Calculations

As discussed in Refs. [60–62] for the original PFC
model, the strain can be calculated from a free en-
ergy functional via the expression,

σnik = ∂j

[
∂f

∂(∂ijn)
∂kn

]
− ∂f

∂(∂ijn)
∂kjn,

where f is the integrand of the free energy func-
tional. For the free energy used in this manuscript,

∂f

∂(∂xxn)
= (1− h2

x)Lhn; (C1)

∂f

∂(∂yyn)
= (1− h2

y)Lhn; (C2)

∂f

∂(∂xyn)
= −2hxhyLhn. (C3)

This gives rise to the following expressions for the
strains:

σnxx =
(
∂x
[
(1− h2

x)Lhn
]
− 2∂y [hxhyLhn]

)
∂xn

−
[
(1− h2

x)Lhn
]
∂xxn+ [2hxhyLhn] ∂xyn;

(C4)

σnyy =
(
∂y
[
(1− h2

y)Lhn
]
− 2∂x [hxhyLhn]

)
∂yn

−
[
(1− h2

y)Lhn
]
∂yyn+ [2hxhyLhn] ∂xyn;

(C5)

σnxy =
(
∂x
[
(1− h2

x)Lhn
]
− 2∂y [hxhyLhn]

)
∂yn

−
[
(1− h2

x)Lh
]
∂xyn+ [2hxhyLhn] ∂yyn;

(C6)

σnyx =
(
∂y
[
(1− h2

y)Lhn
]
− 2∂x [hxhyLhn]

)
∂xn

−
[
(1− h2

y)Lh
]
∂xyn+ [2hxhyLhn] ∂xxn.

(C7)

These calculations lead to strains that vary on short
length scales. To make a comparison with the con-
tinuum model the strains obtain were filtered in
Fourier spaces to obtain smooth strains, σij , i.e., in
Fourier space,

σij(~k) =

∫
d~k e−ak

2

σnij(
~k) (C8)

where a determines the magnitude of smoothing.
Choosing a is a trade-off as too large a value will

FIG. 29. Comparison of simulated stress σxx for different
values of the smoothing parameter a given in Eq. (C8).
The green, red and blue lines correspond to a = 5, 7 and
9 respectively.

smooth out the dislocation core and too small a value
will lead to spurious fluctuations in the bulk regions.
σxx is shown in Fig. 29 for a = 5, 7 and 9. Clearly
at a = 5 there are very evident spurious fluctua-
tions, but by a = 7 they are quite small and gone by
a = 9. However, as can be seen there is significant
reductions near the center of the dislocation core as
a as increased. For comparisons given in this paper
a value of a = 7 was chosen as the best compromise.

Appendix D: Hexagonal Boron Nitride model

The free energy functional can be written [28, 29],

F

ch
=

∫
d~r
[
− εA

2
n2

A +
1

2

(
(∇2 + q2

A)nA

)2 − gA

3
n3

A

+
1

4
n4

A −
εB

2
n2

B +
βB

2

(
(∇2 + q2

B)nB

)2
−gB

3
n3

B +
v

4
n4

B + αABnAnB +
w

2
n2

AnB

+
u

2
nAn

2
B

]
(D1)

with parameters εA = εB = 0.3, qA = qB = 1,
αAB = 0.5, gA = gB = 0.5, w = u = 0.3, βB = v = 1
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and ch = 2.74 eV. The lattice constant in hBN is
ax = 2.51 Å. With these parameters the model is
symmetric (if the average densities are the same)

and the one mode approximation can be written,

nA = n0 + 2φ

(
2 cos

(√
3

2
x

)
cos
(y

2

)
+ cos(y)

)

nB = n0 + 2φ

(
2 cos

(√
3

2
x

)
cos
(y

2
+ 2π/3

)
+ cos(y + 4π/3)) (D2)

where n0 = −0.28. Minimizing the free energy with
respect to φ gives

φ =
(

6g − 12n0 + 3u+
(
3(12g(g + u) + 192n0(g − n0)

+u(3u− 24n0) + 40αAB + 80ε)
)1/2)

/60 (D3)
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scale Model. Simul. 10, 82 (2012).

[37] R. Backofen, A. Voigt, and T. Witkowski, Phys.
Rev. E 81, 025701 (2010).

[38] D. R. Nelson and L. Peliti, Journal de Physique 48,
1085 (1987).

[39] H. S. Seung and D. R. Nelson, Phys. Rev. A 38,
1005 (1988).

[40] J. H. Los, M. I. Katsnelson, O. V. Yazyev, K. V.
Zakharchenko, and A. Fasolino, Phys. Rev. B 80,
121405(R) (2009).

[41] J. Swift and P. C. Hohenberg, Phys. Rev. A 15, 319
(1977).

[42] S. K. Mkhonta, K. R. Elder, and Z.-F. Huang, Phys.
Rev. Lett. 111, 035501 (2013).

[43] S. K. Mkhonta, K. R. Elder, and Z.-F. Huang, Phys.
Rev. Lett. 116, 205502 (2016).

[44] R. Lifshitz and D. M. Petrich, Phys. Rev. Lett. 79,
1261 (1997).

[45] D. J. Ratliff, A. J. Archer, P. Subramanian, and
A. M. Rucklidge, Phys. Rev. Lett. 123, 148004
(2019).

[46] K.-A. Wu, A. Adland, and A. Karma, Phys. Rev.
E 81, 061601 (2010).

[47] M. Greenwood, N. Provatas, and J. Rottler, Phys.
Rev. Lett. 105, 045702 (2010).

[48] M. Greenwood, J. Rottler, and N. Provatas, Phys.
Rev. E 83, 031601 (2011).

[49] V. W. L. Chan, N. Pisutha-Arnond, and K. Thorn-
ton, Phys. Rev. E 91, 053305 (2015).

[50] N. Goldenfeld, B. P. Athreya, and J. A. Dantzig,
Phys. Rev. E 72, 020601 (2005).

[51] N. Goldenfeld, B. P. Athreya, and J. A. Dantzig, J.
Stat. Phys. 125, 1015 (2006).

[52] B. P. Athreya, N. Goldenfeld, and J. A. Dantzig,
Phys. Rev. E 74, 011601 (2006).

[53] B. P. Athreya, N. Goldenfeld, J. A. Dantzig,
M. Greenwood, and N. Provatas, Phys. Rev. E 76,
056706 (2007).

[54] D.-H. Yeon, Z.-F. Huang, K. Elder, and K. Thorn-
ton, Philos. Mag. 90, 237 (2010).

[55] K. R. Elder, Z.-F. Huang, and N. Provatas, Phys.
Rev. E 81, 011602 (2010).

[56] N. Provatas and K. Elder, Phase-field methods in
materials science and engineering (John Wiley &
Sons, 2011).

[57] P. M. Chaikin and T. C. Lubensky, Principles of
condensed matter physics (Cambridge University
Press, 1995).

[58] S. Dai, Y. Xiang, and D. J. Srolovitz, Nano Lett.
16, 5923 (2016).

[59] S. Chen and D. C. Chrzan, Phys. Rev. B 84, 214103
(2011).

[60] A. Skaugen, L. Angheluta, and J. Viñals, Phys.
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