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Sorbonne Université, Université de Paris, F-75005 Paris, France

Structural heterogeneity of amorphous solids present difficult challenges that stymie the predic-
tion of plastic events, which are intimately connected to their mechanical behavior. Based on a
perturbation analysis of the potential energy landscape, we derive the atomic nonaffinity as an indi-
cator with intrinsic orientation, which quantifies the contribution of an individual atom to the total
nonaffine modulus of the system. We find that the atomic nonaffinity can efficiently characterize
the locations of the shear transformation zones, with a predicative capacity comparable to the best
indicators. More importantly, the atomic nonaffinity, combining the sign of third order derivative of
energy with respect to coordinates, reveals an intrinsic softest shear orientation. By analyzing the
angle between this orientation and the shear loading direction, it is possible to predict the protocol-
dependent response of one shear transformation zone. Employing the new method, the distribution
of orientations of shear transformation zones in model two-dimensional amorphous solids can be
measured. The resulting plastic events can possibly be understood from a simple model of indepen-
dent plastic events occurring at variously oriented shear transformation zones. These results shed
light on the characterization and prediction of the mechanical response of amorphous solids.

Understanding how the heterogeneity of amorphous
structures correlates with mechanical response remains
a significant challenge. Various indicators have been
proposed to quantitatively predict where the material
is susceptible to plastic transformation. Some of these
only consider the structural geometry, such as free vol-
ume [1, 2], five-fold symmetry [3, 4], and local devi-
ation from sterically favored structures [5], etc. Oth-
ers of these take the interaction between particles into
consideration, like low-frequency normal modes [6–9],
potential energy [10], local elastic modulus [11], flexi-
bility volume [12], mean square vibrational amplitude
(MSVA) [13], local thermal energy [14, 15], local yield
stress (LYS) [16, 17], and saddle points sampling [18],
etc. Recently, machine learning has also proven to be a
promising statistical tool to build relation between struc-
ture and plastic rearrangements [19–22].

Nevertheless, most of these indicators are inherently
scalar quantities while the deformation mechanism must
have an oriented shear-like character [23]. This is clearly
borne out by the fact that the orientational nature of
shear transformation zones (STZs), the defects purported
to be associated with plastic rearrangement, can be mea-
sured through their high sensitivity to the deformation
protocol. As verified in simulations, under different load-
ing orientations, the same glass may exhibit contrast-
ing mechanical responses during which entirely different
STZs are activated [14, 16–18, 24].

Obtaining the mechanical response along different ori-
entations of one STZ may be accomplished in a number
of ways: by measuring the LYS [16, 17, 25], by calculat-

ing the linear response of local thermal energy with re-
spect to strain (LRLTE) [15], or by sampling low-energy
events [18]. All of these methods require computation-
ally expensive calculations. LYS requires prior calcula-
tions to determine the appropriate probing length scale
and direct computation of response along many orienta-
tions [17]. LRLTE must be recalculated under the speci-
fied mechanical load to compare different orientation [15].
Sampling low-energy events only captures the subset of
events that are inherently viscoplastic, and requires the
harvesting of large numbers of events so as to find the
few lowest-energy events.

In this report, based on a perturbation analysis of
the energy landscape, we derive a parameter-free and
low-cost indicator, termed the atomic nonaffinity. Since
this indicator is derived from a perturbation method,
the atomic nonaffinity can precisely predict the mechan-
ical behavior near the reference state and and becomes
less effective as the system is deformed. We show that
atomic shear nonaffinity, i.e. the shear part of the
atomic nonaffinity, can efficiently predict the locations of
plastic rearrangements during shear deformation of two-
dimensional amorphous solids with an accuracy compa-
rable to the best known indicators. The relevant ori-
entational information of STZs is naturally reflected in
this parameter, and analysis of the atomic shear non-
affinity indicates that the softest shear orientation of the
triggered STZs aligns with the orientation of the applied
shear protocol. Moreover, the distribution of orientations
of activated STZs is calculated, and we show that this dis-
tribution can be understood through a simple model that
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FIG. 1. Analysis of configuration that was sheared
to be close to the triggering of a plastic event. (a)
The spatial distribution of normal mode with lowest eigen-
value. (b) The D2

min field [26] after shear with strain of
∆γ = 6 × 10−5 in the orientation of θL = −π/4. The inset
shows the stress-strain curve. (c) The predicted triggering
strain (line) and triggering strain from simulation (circles) as
a function of shear angle θL. (d) The magnitude of nonaffine
modulus contribution from the lowest mode at different θL.
Blue line represents the range of θL, where the plastic event
can be triggered, while the red line represents the range of θL,
where the plastic event can not be triggered. (e) The spatial

distribution of Ĝ(θL) ·sign(∆γc(θL)) for different orientations.
(f) The atomic shear nonaffinity in different orientations for
the atom that has the maximum magnitude of atomic shear
nonaffinity in (e).

assumes independent STZs with isotropically distributed
soft orientations.

To motivate the relevance of the atomic nonaffinity we
first consider a special state in which a two-dimensional
amorphous system is deformed to be close to the trigger-
ing strain of a plastic event via a protocol of athermal
quasistatic shear. The two-dimensional glassy system,
comprised of 104 particles, was prepared via the same
gradual quench and the same smoothed Lennard-Jones
potential described in Ref. [16, 17]. The spatial distri-
bution of the normal mode with the lowest eigenvalue,
referred to here as the lowest mode (LM), is shown in
Fig. 1(a). A plastic event will be triggered in the re-

gion (Fig. S1 in the supplemental materials (SM)) where
the LM is localized if the system is further sheared in
this direction, denoted as the reference direction θL = 0.
However, if the system is further sheared with similar
small strains or even larger ones in other directions, such
as θL = −π4 or π

4 , the triggering of the same plastic
event is not observed (Fig. 1(b) and Fig. S1 in SM). Ob-
viously, this protocol-dependent mechanical behavior of
amorphous systems cannot be clearly understood solely
with scalar indicators. Here, we introduce the second
and the third derivative of the energy with respect to
the vibrational coordinate (q∗) of the LM, denoted as
λ∗ and η∗ respectively, and the first derivative of stress
of the system with respect to q∗ (denoted as ∂σxx

∂q∗ ,
∂σyy
∂q∗

and
∂τxy
∂q∗ respectively). The triggering strain for different

shear orientations can be derived as (see SM for details
of derivation)

∆γc(θL) =
λ∗2

2η∗V ∂τ(θL)
∂q∗

, (1)

where V is the volume of the system and ∂τ(θL)
∂q∗ is the

first derivative of the shear stress with respect to q∗ at θL,
which is equal to − 1

2 (∂σxx∂q∗ −
∂σyy
∂q∗ ) sin 2θL +

∂τxy
∂q∗ cos 2θL.

A similar form was also obtained from prior analyses of
plastic mode [27]. Moreover, a softest shear orientation
of the LM, θ̃s, associated with the smallest positive trig-
gering strain can be defined as

tan 2θ̃s = −
(

∂σxx
∂q∗ −

∂σyy
∂q∗

2∂τxy
∂q∗

)
,with (2)

∂τ(θs)

∂q∗
· η∗ > 0, and θs ∈ (−π2 ,

π
2 ].

Here we take the symmetry of shear into consideration
and note that shear with orientation of θs is equal to
shear with orientation of θs + π. To verify the validity
of the predictions of Eq. (1) and Eq. (2), further simu-
lations were performed to directly measure ∆γc(θL) and
θ̃s. As shown in Fig. 1(c), the predictions agree well with
the simulation results, which suggests that the analy-
sis of LM is successful for calculating the orientation-
dependent mechanical response of the system close to the
instability. When the system is far from the instability,
we suppose that all the modes, especially the ones with
small eigenvalues, should be taken into consideration.

To develop an indicator that takes all modes into con-
sideration while maintaining the orientational informa-
tion of each mode, we investigate how different modes
contribute to the system modulus. Following Mal-
oney [6, 28], the elastic constants of amorphous solids can
be derived from the second derivative of the total poten-
tial energy with respect to strain in athermal quasistatic
deformation. These can be rewritten in the coordinates
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of eigenbasis as

Cijkl =
1

V

(
∂2U

∂εij∂εkl
+
∑
m

∂2U

∂qm∂εij
· dqm
dεkl

)
, (3)

where U is the potential energy, and qm is the mth coor-

dinate of the eigenbasis of the Hessian matrix ( ∂2U
∂r0i∂r0j

).

The first term (Born term) of Eq. 3, accounts for affine
displacement and is insensitive to the structural stabil-
ity [29] . The second term, containing the contribution
from nonaffine relaxation in each normal mode, termed
the nonaffine modulus (C̃) here, is sensitive to the struc-
tural stability. By expressing the stress as σij = 1

V
∂U
∂εij

and the nonaffine “velocity” in quasistatic deformation as
dqm
dεkl

= − 1
λm

∂σkl
∂qm

[6], where λm is the eigenvalue of mth

normal mode, the nonaffine part, C̃ijkl, can be rewritten
as

C̃ijkl =
∑
m

C̃ijkl,m =
∑
m

− V

λm

∂σij
∂qm

∂σkl
∂qm

, (4)

where C̃ijkl,m is the contribution from the mth normal
mode, which is always negative. In shear protocols, the
shear modulus is the most important elastic constant.
Thus, we focus on the nonaffine shear modulus (G̃) and
the contribution from each mode (G̃m). The G̃m can be
calculated by

G̃m(θL) = − V

λm

(
∂τ(θL)

∂qm

)2

, (5)

which depends on the orientation θL. The nonaffine shear
modulus contribution of the dominant LM, G̃LM, for the
state described in Fig. 1(a)-(c) is shown in Fig. 1(d). The
blue line represents the orientational range, where ∆γc >

0, i.e. ∂τ(θL)
∂q∗ · η∗ > 0 following Eq. 1, and the event can

be triggered. The red line represents the orientational
range, where the event can not be triggered. Moreover, a
softest shear orientation can also be defined by the largest
value of G̃LM in the blue range which is and should be
consistent with the θ̃s derived from Eq. 2.

So far our results have been discussed with respect to
eigenbasis. To develop an indicator expressed in terms
of atomic quantities, we borrow an idea from the lit-
erature regarding the participation fraction [7, 9]. By
expressing the normalized eigenvector in the atomic co-
ordinates as Ψm =

∑
n,α cmnαenα, where enα is a unit

vector corresponding to the displacement of nth atom in
the α(= x or y) direction, and cmnα is the projection of
the mth eigenvector onto enα, the C̃ijkl can be rewritten
as

C̃ijkl =
∑
n

Ĉijkl,n =
∑
n

∑
m,α

− V

λm

∂σij
∂qm

∂σkl
∂qm

c2mnα. (6)

Here Ĉijkl,n is the atomic nonaffinity of the nth atom. As
most local plastic rearrangements are shear-like [26, 30],

the atomic shear nonaffinity (ASN) is the most impor-
tant component when investigating the STZs and can be
written as

Ĝn(θL) =
∑
m,α

− V

λm

(
∂τ(θL)

∂qm

)2

c2mnα. (7)

Obviously, the value of Ĝn depends on the orientation
θL. As a result, the spatial distribution of Ĝn in the pre-
vious case shown in Fig. 1(e) exhibits a clear orientation-
dependent behavior in the region where the plastic event
is located. More negative values of Ĝn mean that the cor-
responding atom is easier to trigger in the orientation θL.
The Ĝn distribution calculated at different orientations
indicates that θL = 0 is the easiest shear direction for the
plastic event when compared with θL = π

4 and π
2 , which

is consistent with the direct loading test in Fig. 1(b) and
Fig. S1 in the SM. Moreover, the atom located in the
core region has the maximum magnitude of atomic shear
nonaffinity, denoted as Ĝc(θL). Fig. 1(f) shows the θL-
dependent Ĝc, which has a similar shape as the G̃LM.
This is attributed to the fact that the LM with smallest
eigenvalue dominates the variation of Ĝc, which can be
inferred from Eq. 7. Thus, we can define the softest shear
orientation for the nth atom as the softest shear orien-
tation of the mode that dominates the variation of Ĝn.
The softest shear orientation of the nth atom is defined
as

θn,s = θ̃i,s, i = argmaxm
∑
α

|G̃m(θ̃m,s)|c2mnα, (8)

and the calculated softest shear orientation of the core
atom (θcs) is shown in Fig. 1(f). The consistency of the
proposed softest shear orientations for one STZ from the
three parameters, i.e. the directly calculated triggering
strain (Fig. 1(c)), nonaffine modulus of the lowest mode
(Fig. 1(d)), and the atomic shear nonaffinity (Fig. 1(f)),
implies that the θs defined from atomic shear nonaffinity
is effective to for characterizing the orientations of STZs.

Now that we have seen the predictive capacity of atomic
shear nonaffinity regarding the protocol-dependent me-
chanical response of a plastic event close to instability we
can ask, ”What if the system is not close to instability?”
and, ”How predictive is this indicator?” Predicting plas-
tic events in an amorphous system by analyzing the local
indicators of initial structure has been extensively stud-
ied in the literature [7–9, 14, 16, 18, 24, 27, 31, 32]. To
compare the reliability of local indicators for predicting
plastic events, one hundred two-dimensional samples pre-
pared with the same thermal history as the previous sam-
ple were employed for local properties calculations. The
athermal quasistatic shear deformation with a strain step
of ∆γxy = 10−5 was then applied to each sample, and
each stress drop in the stress-strain curve was associated
with the resulting atomic rearrangements corresponding
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to one plastic event. Nonaffine rate [6] was calculated
for the configurations just before the stress drops, and
the atom with maximum nonaffine rate was identified as
the core atom, whose index is denoted as IDN for N th

plastic event. To compare the success of different indica-
tors, we transform those indicators to a rank correlation
(RC) value following the analysis performed by Patinet
et al. [16] as

RCΨ(n) = 1− 2CDFΨ(n), (9)

where Ψ is one of the indicators, CDFΨ is the cumu-
lative distribution function for the Ψ of all atoms, and
CDFΨ(n) is the function value in the range of [0, 1] based
on the value of Ψ for nth particle. The spatial distribu-
tion field of the calculated RCĜ with θL = 0 is shown in
Fig. 2(a). The first ten plastic events in shear protocols
with θL = 0 are almost all located at high RCĜ regions,

which implies the highly predictive power of Ĝ. To quan-
titatively compare the predictive power regarding plastic
events for different local indicators, the relationship be-
tween the locations of plastic events and the correspond-
ing values of local indicators is described by the average of
RCΨ(IDN ) over 100 samples. The average RCΨ(IDN ) of
investigated local indicators , such as participation frac-
tion (PF) [7–9] in the lowest 1% of normal modes, the
nonaffine rate (NR) [6], the MSVA [13], the LYS [16] and
the ASN, are shown in Fig. 2(b). The LYS presents the
highest predictive power in the early stage, since non-
linear response to shear is considered. The MSVA, and
ASN shows comparable predictive power, and the other
indicators have lower predictive power than those three.
It is worth noting that the predicative power of the indi-
cators depends on the stability of configurations. In the
SM we show the predictive power of these indicators for
configurations prepared by instantly quenching from high
temperature liquids, systems in which MSVA and ASN
outperform LYS. We also note that the orientational in-
formation in ASN is incomplete and it, as a modulus, has
the same value for θL = 0 and π

2 , while local regions gen-
erally have different mechanical behavior for those two
protocols.

As discussed in Fig. 1, we expect that the plastic events
induced when shearing along direction θL should be lo-
cated at the atoms with |θs − θL| < π

4 , and here we test
this expectation in one of the previous samples. We fo-
cused on the ”soft” atoms in the sample with RCĜ > 0,
and distinguished them by the value of θs. The corre-
lation between the atom with RCĜ > 0 and |θs| < π

4
(|θs| > π

4 ) and the first ten plastic events of θL = 0
(θL = π

2 ) direction is illustrated in Fig. 2(c) (Fig. 2(d)).
The correlation in both Fig. 2(c) and (d) indicate that the
predictive power can potentially be increased by screen-
ing for regions where the intrinsic softest orientation of
Ĝn aligns with the deformation protocol. (Similar results

|𝜽𝒔 | ≤
𝝅

𝟒 𝜽𝒔 >
𝝅

𝟒
𝜽𝐋 = 𝟎 𝜽𝐋=
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FIG. 2. Predicting plastic events by analyzing initial
configurations. (a) The correlation field of atomic shear

nonaffinity Ĝ(θL = 0) and the locations of the first ten plastic
events (black circles) triggered in shear protocols with θL = 0.
(b) Correlation between the indicators including local yield
stress (LYS), mean square vibrational amplitude (MSVA),
atomic shear nonaffinity (ASN), participation fraction (PF),
nonaffine rate (NR) with the locations of plastic events as a
function of the index of the events. Averages are taken over
windows of five events. Error bar at each window represents
the standard deviation of the mean. (c) Orange circles rep-
resent the atoms with RCĜ > 0 and |θs| < π

4
. Black circles

mark the locations of the first ten plastic events with θL = 0.
(d) Green circles represent the atoms with RCĜ > 0 and
|θs| > π

4
. Triangles mark the locations of the first ten plastic

events with θL = π
2

.

about protocols of θL = π
4 and −π4 are shown in SM.)

However, there still exist some number of events that
are not caught by the criterion |θs − θL| < π

4 . This can
be attributed to the rotation of θs during deformation,
since the θs is calculated mainly based on a second-order
perturbation method, and higher order terms and nonlin-
ear interactions between different modes can lead to the
rotation of θs. To obtain the statistics of the rotation of
θs, the softest shear orientations of core particles of all
the plastic events before shear strain 0.12 with θL = 0
in 10 samples are calculated based on the configurations
just before each event or just after the last event (illus-
trated in Fig.3(a)). The distribution of the calculated
θs of those core particles in the configurations just be-
fore triggering are shown in Fig. 3(b) and all θs satisfy
the criterion |θs − θL| < π

4 , which is what we expected
for systems close to instability, as discussed previously.
Moreover, the peak of probability density is located at
θL implying that the region with the intrinsically soft-
est orientation closest to the imposed shear orientation
is easiest to trigger. However, the distribution is broad-
ened as shown in Fig. 3(c) for the calculated θcs based on
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FIG. 3. Ditribution of the softest shear orientations
for plastic regions. (a) A schematic diagram introducing
the notations used in this figure. (b) The distribution of the
softest shear orientations for all the plastic events that are
triggered before shear strain 0.12 in 10 samples. The soft-
est shear orientations are calculated based on the configu-
ration just before each event. Red line follows the function
4
π

cos2(2∆θ). (c) Similar to (b), but the softest shear orienta-
tions for each event are calculated based on the configurations
just after the previous event.

the configurations just after the triggering of the previ-
ous event. In this analysis only approximately 75% of the
plastic events satisfy the criterion. More statistics about
how orientations calculated by our perturbation method
change are presented in SM. Because plastic events tend
to happen at STZs closely aligned with orientation of
the shear protocols, we also show that that the precision
of prediction for different indicators can be improved by
screening for potential STZs with the softest shear orien-
tations in SM.

The distribution of orientations of the triggered plastic
event shown in Fig. 3(b) is regular. It can be understood
by a simple model of independent plastic events with in-
trinsic orientations. In this model, we assume that amor-
phous solids are isotropic and that the shear-orientation-
dependent triggering strain can be derived from Eq. 1
as

γc(θL) =
γc(θs)

cos[2(θs − θL)]
, (10)

where θs is the softest shear orientation of a STZ. If we
assume that the number density for a particular softest
shear direction θs at different triggering strains γc(θs)
(noted as γc,s) follows a power law ρ(γc,s) = Aγαc,s [33–
36], the probability density distribution of orientations
ρ̂(θs − θL) (denoted as ρ̂(∆θ)) will follow (see SM for

details of derivation)

ρ̂(∆θ) = k cosα+1(2∆θ) (11)

The probability density distribution in Fig. 3(b) corre-
sponds to α = 1, as it closely fits a distribution function
4
π cos2(2∆θ) (red line in Fig. 3(b)). These results are
also supported by the probability distribution function
of local yield stress of the samples, in which α ≈ 1.1, as
shown in Ref.[16].

In summary, we have derived a general and parameter-
free indicator, the atomic nonaffinity. It is well-defined
and is easy to apply in systems beyond the 2d Lennard-
Jones system discussed here. The atomic nonaffinity has
a clear physical meaning in that the summation of atomic
nonaffinities corresponds to the total nonaffine modu-
lus of the system. The softest shear orientation of each
region is defined based on the atomic shear nonaffinity
and stems from anisotropy of the shear stress derivative
against the coordinate of the low-frequency mode in dif-
ferent orientations. When combined with the sign of the
third order derivative of energy with respect to coordi-
nates, it reveals the intrinsic orientation of the plastic
rearrangement and directly connects to the anisotropic
mechanical response of local regions, which is important
for understanding aspects of the mechanical behavior of
amorphous solids not directly reflected or defined in other
indicators. As atomic nonaffinity is developed based on
the nonaffine response of atoms upon deformation, it nat-
urally has a good correlation with the plastic events, com-
parable to the best indicators. Mechanical behavior must
be correlated with structure, and we anticipate that this
method will be important for elucidating the structural
origin of the anisotropic mechanical response in specific
systems.
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