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Abstract

Accurate methods and an efficient workflow for computing and documenting dislo-
cation core energies are developed and applied to 1

2 〈111〉 and 〈100〉 dislocations in five
body-centered cubic (BCC) metals W, Ta, V, Mo, and α-Fe represented by 13 model
interatomic potentials. For each dislocation type, dislocation core energies are extracted
for a large number of dislocation characters thoroughly sampling the entire 2-space of
crystallographic line orientations of the BCC lattice. Of particular interest, core energies
of the 1

2 〈111〉{110} dislocations are found to be distinctly asymmetric with respect to
the sign of the character angle, whereas core energies of 〈100〉{110} junction dislocations
exhibit marked cusps for line orientations vicinal to the closed-packed 〈111〉directions.
Our findings furnish substantial new insights for developing accurate models of disloca-
tion core energies employed in mesoscale Dislocation Dynamics simulations of crystal
plasticity.
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1 Introduction

Just like for any other crystal defect, energy of a lattice dislocation is its most basic physical
characteristic bearing on most if not all of the observed dislocation behaviors. In particu-
lar, dislocation energy defines configurational driving forces for dislocation microstructure
evolution [1, 2], governs dislocations mobility [3] and decides outcomes of dislocation re-
actions such as formation of dislocation junctions that play a fundamental role in work-
hardening [4–6].

It is possible and useful to partition the dislocation energy into its elastic energy and
core energy components. Sufficiently far away from a dislocation line, its effect on the
surrounding lattice is accurately described by the standard linear elasticity theory in which
the dislocation is viewed as a line source of lattice distortion. On approaching the line
closer, lattice distortions increasingly deviate from the elastic theory predictions. Accuracy
of linear elasticity predictions at intermediate distances can be and has been improved
by considering the dislocation to be a distributed source of elastic fields rather than a
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mathematical line. Either intrinsic to the dislocation itself or induced by its interaction
with other dislocations, momenta of the dislocation source distribution or elastic core fields
can be calibrated to accurately describe lattice distortions at intermediate distances thus
bringing the range of applicability of linear elasticity closer to the dislocation line [7–9].
Whether the standard line source or a distributed source model is assumed, at still shorter
distances lattice discreteness becomes increasingly evident and lattice distortions become
too large for linear elasticity to apply. Dislocation core can be thought of as a tube of
material of radius w coaxial with the dislocation line such that linear elasticity holds outside
the tube but breaks down in its interior.

Subject to restrictions discussed below, energy of a generally shaped dislocation line or of
a group of interacting dislocations can be accurately predicted if the elastic-core partitioning
is known for some standard reference configuration, such as for the simple case of an infinite
straight dislocation. In other words, core energy computed for a straight dislocation should
be transferable to arbitrarily curved dislocations. One necessary condition for such a transfer
to be accurate is that curvature radii of and distances R between dislocation lines are
greater than the core radius1, R � w. Under such conditions, dislocation energy is well
approximated as the integral of the core energy taken along the dislocation lines plus the
energy of elastic lattice distortions integrated over the crystal volume outside dislocation
cores [10]. Accuracy of such an energy transfer is controlled by the ratio w/R and the
transfer becomes asymptotically exact in the limit where energy partitioning is performed
at R → ∞. Condition R � w is obviously violated whenever dislocation line orientation
changes abruptly, such as at a corner formed by dislocation cross-slip or at a junction
node (here R = 0). It would take additional parameters to correctly account for energy
associated with such configurations which are outside the scope of this work. Another
important conditions for the transfer to remain accurate is that a correct version of elasticity
theory is used both for partitioning and for transfer. As a corollary, the often practiced
use of isotropic linear elasticity for computing elastic energy of dislocations in an elastically
anisotropic crystal, constitutes an uncontrolled approximation.

One standard reference configuration often used for computing and partitioning or ex-
traction of dislocation energies is that of a single infinite straight dislocation inserted into
a cylinder made of an otherwise perfect crystal. The dislocation is assumed inserted along
the cylinder axis. The total energy Etot associated with the dislocation is partitioned into
an elastic and a core contribution

Etot = Eel + Ecore (1)

The energy contained in the inner cylinder of radius w centered on the dislocation is the
core energy Ecore(w). Then the elastic energy Eel(w) is equal to the elastic strain energy
induced by the dislocation in the entire crystal volume outside the core. Assuming the
crystal is elastically isotropic, the elastic energy per unit length of a straight dislocation
is [11]:

Eel(w) =
µb2

4π

(
cos2 θ +

sin2 θ

1− ν

)
ln

(
R

w

)
(2)

1We assume that core radius w is sufficiently large to fully subsume contributions of the intermediate-
range elastic core fields into the core energy.

2



where µ and ν are the shear modulus and Poisson ratio of the crystal, θ is the angle between
the dislocation line and its Burgers vector of magnitude b, and R is the outer radius of the
cylinder. It is possible to partition the same total energy differently, e.g. by increasing the
radius of the inner cylinder to rc > w and thus subsuming some of the energy previously
counted as elastic into the core component

Etot = Ecore(rc) +
µb2

4π

(
cos2 θ +

sin2 θ

1− ν

)
ln

(
R

rc

)
(3)

Formally, the above balance equation is invariant with respect to changing core radius from
w to arbitrary rc and simultaneously modifying the core energy as follows

Ecore(rc) = Ecore(w) +
µb2

4π

(
cos2 θ +

sin2 θ

1− ν

)
ln
(rc
w

)
(4)

The above invariance holds irrespective of the magnitude of reference radius rc that can
be chosen to be smaller than the physical spread of the core w or exceed the outer radius
R of the cylinder. Although rc = b is a popular choice, the value of rc is arbitrary. For
as long as the core energy and the elastic energy are both computed or referenced at the
same rc, partitioning is correct and the total energy remains the same. And since it is only
the total energy of a dislocation that constitutes a physically measurable quantity, the core
energy can be documented by reference to arbitrary rc. Full documentation of the core
energy should also include the elastic constants, e.g. µ and ν, used in partitioning. For
transferability, the same elastic constants should be employed in any subsequent use of the
so-extracted core energy data.

Dislocation energies are computed using atomistic models ranging in fidelity from simple
and computationally efficient interatomic potentials [12–14] to sophisticated and costly ab-
initio calculations [8,15]. When extracted using Eq. (3) or another appropriate partitioning
method and referenced at rc = b, dislocation core energies are typically in the range of
several tenths of eV/Å in body-centered cubic (BCC) [12,13] and face-centered cubic (FCC)
[14, 16, 17] metals. Core energy of a dislocation is known to depend on its line orientation
commonly quantified by the angle between its tangent vector and the Burgers vector and
often referred to as dislocation character. A single angle is obviously insufficient since
two parameters are needed to fully define a line orientation in space whereas the familiar
dislocation character angle only specifies the line direction within the crystallographic plane
that contains the Burgers vector. Because there are multiple planes containing the Burgers
vector, the specific plane in which the character angle is defined is often implied but only
rarely stated explicitly. Such traditional use is appropriate in the context of FCC and,
to a lesser extent, in hexagonal (HCP) crystals where dislocations are nearly exclusively
confined to a specific set of planes: {111} planes in FCC and basal, prismatic or pyramidal
planes in HCP. However in crystals with the BCC lattice that are of primary interest in this
work, dislocations can reside and glide in {110}, {112}, {123} and possibly other planes
of the 〈111〉 zone [18] thus making necessary to extend the notion of dislocation character
and to quantify dislocation properties in the full orientation space. One option is to use
Miller index of a crystallographic orientation parallel to the dislocation line. We use such a
description on occasion, but prefer to retain the traditional in-plane dislocation character
and just add another parameter to specify the plane orientation. To be referred to as zonal
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character, plane orientation can be defined by its Miller index or by the dihedral angle
φ it forms with a specific crystallographic plane of the same Burgers vector zone. In the
following we use the convention that the zonal angle φ for the 1

2 [111] dislocation is defined
as the dihedral angle between the reference (1̄10) zonal plane and the plane formed by the
dislocation line vector and its Burgers vector. Likewise, the zonal angle is defined with
respect to the reference (100) plane for the 〈001〉 dislocation. Given that, in principle, a
dislocation can glide (move conservatively) in any plane of its Burgers vector zone, we will
also refer to the same zonal planes as glide planes.

This paper presents an efficient workflow for extracting accurate core energies from
atomistic calculations, carefully documents core energies computed for five BCC metals W,
Ta, V, Mo and α-Fe in a wide range of dislocation orientations in the full orientation 2-space,
and describes how such data can be transferred to predict energies of arbitrary dislocation
configurations. Although our primary focus in this work is on method development, we
report a number of results and observations of potential physical significance that have
not been reported before. Among them is asymmetry of the core energy of the 1

2〈111〉
dislocations with respect to the in-plane character angle and a sharp cusp in the core
energy of 〈001〉 junction dislocations at θ = ±54.74◦ in-plane character angle in the {110}
planes.

The paper is organized as follows. Section 2 describes our methods for computing and
extracting core energies from atomistic calculations in the context of classical isotropic and
anisotropic singular elasticity. Our main findings on dislocation core energies are then pre-
sented and discussed in Section 3 focusing on tungsten as a representative BCC metal.
Section 4 describes how our documented core energies can be subsequently re-used in pre-
dicting dislocation energies within recently developed isotropic and anisotropic non-singular
models of dislocations. Section 5 documents core energies computed for five BCC metals
W, Ta, V, Mo and α-Fe respresented by 13 different interatomic potential models. Finally,
section 6 presents a summary.

2 Methods

Rather than considering a single dislocation as described in the introduction, here we employ
a method in which the dislocation core energy is extracted from the total energy of a
dislocation dipole [13]. To compute the energy, a dislocation dipole is introduced in a 3D-
periodic supercell with repeat vectors c1, c2, and c3. Two dislocations of the dipole are
perfectly straight and parallel to each other and to the supercell vector c3 thus making
the dislocations infinite. Use of 3D periodic boundary conditions ensures that the model
crystal contains no surfaces or any other unwanted interfaces that, if left unaccounted,
can negatively impact accuracy of core energy calculations [1]. At the same time, full
3D periodicity means that, rather than dealing with just one primary dislocation dipole,
the crystal contains an infinite 2D super-lattice of dislocations dipoles, one dipole in each
periodic replica of the supercell.

In this work calculations of core energies are limited to zero temperature, but for non-
zero temperatures the logic remains the same. Once relaxed to its minimum, the energy of
the atomistic model Eatm is broken down into the following four components the last three
of which are then computed separately
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Eatm = 2Ecore(rc) + Eprm(rc) + Eimg +NEcoh (5)

Here, 2Ecore is twice the core energy2, Eprm is the elastic energy of the primary dipole,
Eimg is the interaction energy between the primary dipole and its periodic images, Ecoh is
the per atom energy of a perfect crystal, and N is the number of atoms in the crystal. Of
the four terms on the right hand side, Ecoh is either known in advance or readily computed
whereas image interaction energy Eimg is computed following the accurate and efficient
regularization method developed in [13]. After subtracting Eimg and NEcoh from Eatm, the
remaining two terms is the energy of an isolated (no images) dislocation dipole written as
a sum of its elastic and core components.

To extract the core energy, the elastic energy of a dislocation dipole in an infinite
isotropic elastic solid can be accurately computed as

Eprm
iso (rc) =

µ

2π
(b · ξ)2 ln

(
R

rc

)
+

µ

2π(1− ν)
(b× ξ) · (b× ξ) ln

(
R

rc

)
+

µ

2π(1− ν)

1

R2
[(b× ξ) ·R]2 (6)

where b is the Burgers vector, ξ is a unit (tangent) vector parallel to the dislocations, R
is the shortest vector connecting two dislocations of the dipole and R is the magnitude of
the same vector. As was previously pointed out [15], a common mistake in extracting core
energies from the energy of a dislocation dipole has been rooted in ignoring the fact that,
in general, the elastic energy of a dislocation dipole depends on the dipole orientation with
respect to the host crystal. The latter dependence is correctly accounted for by the last
term in Eq. (6) where unit vector R/R defines the dipole orientation.

A corresponding semi-analytical expression for the dipole energy in a generally anisotropic
solid was previously obtained by integrating Stroh’s solution for the stress fields [13] induced
by two dislocation leading to:

Eprm
aniso(rc) =

3∑
n=1

Re

[
1

2πi
h1(n) ln

(
x+ pny

rc

)]
(7)

where Re [·] is the real part of a complex number, i is the imaginary unit, x and y are the
components of the separation vector R in the plane orthogonal to the dipole, and pn are
the roots of Stroh’s sextic equation. h1(n) is a function that depends on pn, the elastic
constants, and the Burgers vector b of the dipole (see [13] for more details). If desired, the
above expression can be re-written in a frame independent form similar to Eq. (6).

For each dipole, two straight dislocations with opposite Burgers vectors are initially
inserted along supercell vector c3 and separated by R = c2/2. Energy of the resulting
atomistic configuration is then carefully minimized and the lowest achieved energy value

2This implies that structure and energy of two dislocation cores in the dipole are the same which should
hold for BCC crystals owing to the inversion centro-symmetry.
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is taken as Eatm. Sometimes (often in this series of calculations) in the course of energy
minimization one or both dislocations shift from their intended initial positions likely owing
to the elastic interaction between two primary dislocations and their interactions with the
image dislocations. If left undetected or unaccounted, such shifts may cause significant
errors in computing the image interaction term and the primary dipole energy term in
Eq. (5) and may result in unacceptable errors in the extracted core energies. Any such shift
can be detected using one of the methods available in the literature, e.g. the dislocation
extraction algorithm [19]. The resulting corrected separation vector R should be used
instead of c2/2 for computing the elastic energy terms.

Whereas the length of supercell vector c3 is dictated by the lattice period along each
given dislocation line orientation (and the interatomic potential cutoff radius for low-index
orientations), vectors c1 and c2 should be selected to ensure that cores of the primary dipole
dislocations and those of the image dislocation do not overlap. Thus, both vectors should
be long enough to ensure that all dislocations are at least at a distance 2w apart from
each other. In reality, it is not obvious in advance what the physical spread of the core is.
Consequently, for each model potential and each dislocation line orientation the core energy
is computed in this work in four supercells of different dimensions. It was noted in [12]
that, depending on elastic anisotropy, “ideal” aspect ratios may exist for which the image
interaction energy term either vanishes or is greatly reduced. Although possibly useful for
reducing the overall error, we note that such ideal aspect ratios are predicted to exist only for
elastically anisotropic solids. Furthermore, for solids with weak and moderate anisotropy,
the ideal aspect ratios can be unacceptably large. In all calculations reported here, aspect
ratio c2/c1 was kept approximately constant at ∼ 1.5 by selecting supercell vectors c1 and
c2 to be multiples of two shortest mutually orthogonal lattice vectors perpendicular to the
crystallographic orientation of the dislocation line.

Although it is important to keep dislocations well separated, in our experience core
energies extracted from very large supercells are prone to errors unrelated to non-linear
effects in the dislocation core. First, both the elastic energy of the primary dipole and the
image interaction energy term increase logarithmically with increasing supercell dimensions.
Thus, since the core energy is obtained by subtracting two large floating-point numbers for
Eprm and Eimg from another large floating-point number for Eatm, numerical round-off
errors can become intolerable in supercells of very large dimensions. Additionally, standard
methods for non-linear minimization, e.g. conjugate gradient, are known to suffer from ill-
conditioning when trying to minimize the energy of a large atomistic model. Ill-conditioning
may cause energy minimization to terminate prematurely resulting in an unacceptable error
in Eatm thus directly translating into an error in the extracted core energy. Based on our
earlier experiences with dislocation core energy calculations, all atomistic calculation were
performed in supercells with the initial dipole separation vector ‖R‖ ranging from ∼ 50 to
150Å.

We computed Eatm for five BCC metals – tungsten, tantalum, molybdenum, vanadium,
and iron – modeled with 13 interatomic potentials of the embedded atom method (EAM)
type listed in Table 1. Even though most parameters entering the partitioning equation (5)
have been previously reported in the literature, to minimize errors of core energy extraction
we pre-computed the same parameters again. As shown in Table 1, anisotropy ratios A
of three models representing tungsten are all close to 1.0 thus making Eq. (6) appropriate
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Metal Potential b (Å) Ecoh (eV/atom) C11 (GPa) C12 (GPa) C44 (GPa) A
W Zhou et al. [20] 2.7408 -8.759988337077914 521.84 203.85 160.74 1.01
W Olsson [21] 2.7366 -8.900004790205685 531.50 204.47 163.11 1.00
W Juslin et al. [22] 2.7411 -8.899995957111060 520.15 198.62 156.85 0.98
Ta Li et al. [23] 2.8602 -8.089000065284608 248.92 144.27 86.53 1.65
Ta Zhou et al. [24] 2.8601 -8.090001526987180 263.65 157.82 81.16 1.53
V Olsson et al. [21] 2.6240 -5.310000188013802 231.75 119.09 45.96 0.82
V Han et al. [25] 2.6241 -5.300000227940302 226.34 119.09 43.22 0.81

Mo Ackland and Thetford [26] 2.7256 -6.819999932888322 467.43 161.14 108.89 0.71
Mo Zhou et al. [24] 2.7281 -6.809997810402422 456.04 166.22 113.10 0.78
Fe Ackland et al. [27] 2.4825 -4.316000049472621 242.97 144.89 116.08 2.37
Fe Mendelev et al. [28] 2.4728 -4.122435100730854 243.58 144.88 116.02 2.35
Fe Zhou et al. [24] 2.4820 -4.289994344756849 229.60 135.27 116.75 2.48
Fe Chamati et al. [29] 2.4825 -4.280000069342009 241.12 146.65 114.03 2.41

Table 1: List of metals and properties of the potentials used for the extraction of core
energies in this work. To minimize errors in subsequent core energy extraction, all listed
quantities were pre-computed at zero temperature rather than taken from the literature.
The anisotropic ratio A = 2C44/(C11 − C12) is given in the last column.

to use for the same three models. However for uniformity we used the general anisotropic
expression, Eq. (7), to compute the elastic energy terms and to extract dislocation core
energies in all 13 models.

To thoroughly sample the dislocation orientation space we opted to place dislocations
into three zonal planes {110}, {112}, and {123} for the 1

2〈111〉 dislocations and five zonal
planes {100}, {110}, {210}, {310}, and {510} planes for the 〈001〉 junction dislocations.
Accounting for cubic symmetries, for 1

2〈111〉 dislocation it is sufficient to sample angles
−90◦ ≤ θ ≤ 90◦ , 0 ≤ φ ≤ 30◦ from an angular wedge that constitutes 1

12 of the unit sphere
of line vectors (see Fig. 1(b)), e.g. (̄110), (̄321) and (̄211) planes of the [111] zone at zonal
angles φ = {0◦ ,∼ 19◦ , 30◦ }, respectively. Likewise for the 〈001〉 dislocation it is sufficient
to sample angles −90◦ ≤ θ ≤ 90◦ , 0 ≤ φ ≤ 45◦ from an angular wedge that constitutes
1
8 of the unit sphere of line vectors, e.g. planes (̄100), (̄510), (̄310), (̄210) and (̄110) at
zonal angles φ = {0◦ , 11◦ ,∼ 18◦ ,∼ 27◦ ,∼ 45◦ }, respectively. For each zonal plane, dipole
energies were computed for 40 to 80 in-plane dislocation characters spanning the entire
range of line orientation θ ∈ [−90◦ , 90◦ ] thus amounting to hundreds of distinct dislocation
orientations for each of the two dislocation types considered. To assess and minimize the
errors, dislocation core energies were computed for each line orientation in rectangular
periodic supercells of four different sizes. Altogether, counting all dislocation orientations
for both dislocation types, supercell dimensions and 13 interatomic potential models, about
10 thousand individual atomistic calculations were performed each producing a core energy
value. In all cases, reference radius rc = b is used to document the core energies.

3 Results

Except where stated explicitly, core energies presented in this section were computed for
BCC tungsten modelled with the EAM interatomic potential developed by Zhou et al.
[20]. Quantitative differences notwithstanding, key findings reported here for this particular
model are representative of all five metals and all interatomic potentials employed in this
work (see Section 5 for core energy data computed for all 13 interatomic potentials).
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Figure 1: Core energy of a 1
2〈111〉 dislocation in BCC tungsten. (a) Core energies as a

function of zonal plane and character angle θ for rc = 1b. Core energy values are averages
over values computed in supercells of four different sizes (dipole separation distances). Each
error bar is the standard error from the corresponding average. The dashed line is the least
square fit of the edge-screw model (Eq. (8)) to the core energy data computed for all
character angles and all three zonal planes. Inversion symmetry of the BCC lattice limits
the range of distinct dislocation character angles to −90◦ ≤ θ < +90◦ . (b) 3D polar plot
of core energy with the pole aligned along the Burgers vector. A slightly different value of
the reference radius rc = 0.7b was used to sharpen the features of the core energy function
plotted on the unit sphere (φ, θ) of dislocation orientations, where 0 ≤ φ < 360◦ is the
zonal angle, and θ is the character angle folded into 0 ≤ θ < 180◦ . The cutout slice is a
symmetry-irreducible zone 0 ≤ φ < 30◦ containing exactly one plane for each of the {110},
{112} and {123} families of zonal planes.

3.1 1
2
〈111〉 dislocations

Dislocation core energies computed for the 1
2〈111〉 dislocations are shown in Fig. 1(a) as

functions of character angle θ for three zonal (glide) planes. First the energies of prop-
erly oriented dislocation dipoles were computed using methods described in the preceding
section. Then dislocation core energies were extracted using elastic constants reported in
Table 1 and referenced at rc = 1b. Core energy of the screw dislocation orientation presents
itself as a sharp minimum – a cusp – and is the same in all three planes within narrow
error bars: 0.4361 ± 0.0029 eV/Å on the (1̄10) plane, 0.4379 ± 0.0017 eV/Å on the (112̄)
plane, and 0.4347± 0.0034 eV/Å on the (13̄2) plane. Given that by the very definition of a
screw dislocation its Burgers vector b is parallel to the line orientation vector ξ, the cross
product of the two vectors is zero meaning that for a screw no geometric glide (zonal) plane
is defined. That core energies computed for the screw line orientation in supercells of three
different geometries are the same is a good test on the accuracy and consistency of our
computational workflow.

Away from the screw, dependence of the core energy on the in-plane character angle is
different in the (1̄10), (112̄), and (13̄2) planes. The core energy rises monotonically from
the screw to the edge character in the (112̄) and (13̄2) planes reaching their maxima (at
θ = ±90◦ ) of 0.6531 ± 0.0061 eV/Å and 0.6642 ± 0.0065 eV/Å, respectively. Core energy
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is perfectly symmetric with respect to the screw character (θ = 0) in the (112̄) plane. In
contrast, core energy in the (1̄10) plane is neither monotonic nor symmetric reaching a
well defined maximum at θ ≈ +50◦ . Variations of the core energy over in-plane characters
and zonal planes are significant and, if ignored or accounted for incorrectly, would result in
inaccurate predictions for total energies and forces on the dislocations. For example, the
“edge-screw interpolation model” available in the DDD code ParaDiS [30] assumes that the
core energy follows the same dependence on the character angle as the elastic energy in
Eq. (2):

Ecore
e−s (rc) =

µb2

4π

(
cos2 θ +

sin2 θ

1− ν

)
ln

(
rc
r0

)
(8)

where r0 is a free parameter that defines the amplitude of core energy variations between
the edge and the screw characters. This isotropic model can be applied to the Zhou et
al. [20] model of tungsten which is nearly elastically isotropic, with the Lamé constants
of µ = 159.00 GPa and ν = 0.28. By varying r0, the best fit of the screw-edge model
(Eq. (8)) to dislocation core energies computed for all in-plane dislocation characters in all
three planes is obtained at r0 = 0.435b. The resulting best-fit model is shown as the dashed
line in Fig. 1(a) and clearly fails to capture two of the most essential features of the core
energy variations, namely the sharp cusp at θ = 0 and the maximum at θ ≈ 50◦ in the (1̄10)
plane. The same model also predicts the ratio of edge-to-screw core energies to always be
the same and equal to Ecore

e /Ecore
s = 1/(1 − ν) irrespective of rc or r0, which is generally

not the case for core energies computed atomistically. On average, the best fit screw-edge
model deviates from the computed core energies by ∼ 0.032 eV/Å. Discrepancies of such
magnitude translate into spurious stress that has no physical origin but is certain to affect
where and how dislocations move in a DDD simulation. If, instead of using the screw-edge
model core energy variations of the kind reported here are ignored altogether, even greater
spurious forces on dislocations will arise.

In Fig. 1(b) core energies of the 1
2 [111] dislocation computed for the three families of

zonal planes {110}, {112} and {123} are shown on the unit sphere (φ, θ) of all possible line
orientations. Core energies in this figure are referenced at rc = 0.7b to sharpen the features
of energy variations. The cutout slice is a symmetry-irreducible zone for zonal characters
0◦ ≤ φ < 30◦ , bounded by the (1̄10) and (2̄11) zonal planes at 0◦ and 30◦ , respectively,
and containing the (3̄21) plane at φ ≈ 19◦ . In contrast to Fig. 1(a), here the character angle
θ is defined in the range [0◦ , 180◦ ] such that the poles coincide with the screw orientation
(the zonal axis), energy of which is independent of the zonal character. The full surface
is obtained from the 1

12 wedge (the cutout in Fig. 1(b)) by applying appropriate cubic
symmetries.

Precise shapes of core energy variations shown in Fig. 1 are affected by the choice of
reference radius rc. For example, a reduction in rc causes all core energies to decrease,
but the reduction is greater for some dislocation characters than for others. Conversely,
the maximum at θ ≈ 50◦ character in the (1̄10) zonal plane can be made to disappear by
selecting a value of rc greater than b. However two key characteristics that the screw-edge
model fails to capture – specifically, the cusp at θ = 0 and asymmetry in the (1̄10) plane
– are robust. We note by reference to Section 5, that similar qualitative characteristics
are observed in core energy variations in all 13 models of BCC metals employed in this
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Figure 2: (a) Asymmetry of the core energy of a 1
2〈111〉{1̄10} dislocation as a function of

the character angle θ for a core radius rc = 1b. The inset shows variations of the difference
Ecore(θ) − Ecore(−θ) in core energies between positive and negative character angles. (b)
Schematic of the (110) plane in a BCC crystal with lattice parameter a0. The asymmetry
of dislocation lines ξ with positive (+θ) and negative (−θ) character angles with respect to
the Burgers vector, e.g. b = 1

2 [11̄1], directly results from the crystallography of the (110)
plane.

work. Data presented in Fig. 1 draws attention to previously unknown major variations in
the core energy as a function of in-plane and, especially, zonal character. The same data
motivates the need for more accurate descriptions of the core energy variations that can be
transferred to accurate predictions of dislocation behavior in mesoscale simulations.

Among hundreds of dislocation orientations studied in this work, core energy variations
in the {110} zonal planes are most unusual. The same planes are also widely recognized as
most important planes for BCC metal plasticity because this is where dislocations glide in
BCC metals [18]. Fig. 2(a) is a re-plot of the same data for dislocation core energies in the
(1̄10) plane of tungsten as in Fig. 1(a), but now focused on asymmetry with respect to the
sign of the in-plane character angle θ. Core energies computed for θ > 0 are systematically
higher than core energies computed for θ < 0 with the difference reaching its maximum of
0.0856 eV/Å at |θ| ≈ 50◦ . The asymmetry results from the particular crystallography of
the (110) plane in the BCC lattice, Fig. 2(b). The unit motif in the (110) plane is a centered
rectangle with sides a0 and a0

√
2, where a0 is the lattice parameter. As illustrated in the

picture, distortions in relative atom positions in the dislocation core should be different for
two line orientations ξ that form positive (+θ) and negative (−θ) angles with respect to
the Burgers vector aligned with the diagonal of the rectangle, b = 1

2 [11̄1] in Fig. 2(b). Our
convention here is to assign a positive sign to character angles for which the dislocation
line vector ξ deviates from the Burgers vector b towards the second 〈111〉 direction in the
same plane (each {110} plane contains two 〈111〉 directions), that is towards the b′ = 1

2 [11̄1̄]
direction in Fig. 2(b). For a dislocation with a positive character angle, the dislocation line
runs between atom sites that are closer spaced than for a dislocation line with the same but
negative character angle. Among two dislocation characters, core energy of the “positive”
line orientation is thus expected to be higher.

In comparison to the {110} and {112} planes, core energies in the {123} planes are nearly
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Figure 3: Core energy of 〈100〉 binary junctions as functions of the habit plane and character
angle θ in (a) BCC W using the potential of Zhou et al. [20] (b) in BCC Ta using the
potential of Li et al. [23]. Core energies are seen to increase monotonically from edge to
screw characters in all habit planes, expect for the {110} plane that shows a cusp at two
dislocation line orientations dislocation line is aligned with two {111} directions, i.e. for
character angles of θ = ±54.74◦ .

but not exactly symmetric with respect to the character angle sign. The same is likely to
be be the case for nearly all other planes of the 〈111〉 zone with the {112} planes being
the only exception; dislocation core energies in the {112} planes are manifestly symmetric
with respect to θ. This special symmetry arises because only in a {110} zonal plane of
the Burgers vector zone two dislocations with character angles +θ and −θ are “nearly
exact” mirror images of each other with respect to the {110} mirror plane perpendicular to
the zonal {112} plane. Meant by “nearly exact” here is that subsequent centro-symmetry
inversion applied to just one of the two dislocations makes them exact mirror images.

3.2 〈100〉 dislocations

In as-made and in pre-strained specimens of BCC metals, 〈100〉 dislocations are observed
as a sizable minority to the ubiquitous 1

2〈111〉 dislocations. So far, structure and core en-
ergy of 〈100〉 dislocations in BCC metals have received relatively little attention. 〈100〉
dislocations are regarded as products of reactions zipping together two or more 1

2〈111〉 dis-
locations [5], e.g. in a binary reaction 1

2 [11̄1]+ 1
2 [111̄] = [100]. Here we focus on orientations

of 〈100〉 dislocations that can result from such a reaction between two 1
2〈111〉 parent dislo-

cations gliding either on {110} or on {112} planes. It turns out that, depending on mutual
orientation of the glide planes of two 1

2〈111〉 dislocations, their product (junction) 〈100〉
dislocations can form only in five geometric glide planes: {010}, {110}, {210}, {310}, and
{510} planes. Again, the screw 〈100〉 dislocation is an exception since its geometric glide
plane is undefined and it can in principle “glide” in any plane of its Burgers vector zone.

Core energies of 〈100〉 dislocations computed for Zhou et al. [20] interatomic potential
model of tungsten and for Li et al. [23] interatomic potential model for tantalum are shown
in Fig. 3. In all five zonal planes, dependence of the core energy on in-plane character angle
θ is qualitatively different than what was observed for the 1

2〈111〉 dislocations. First, there
is no marked cusp at the screw orientation (θ = 0). In fact, at rc = b core energies of the
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screw orientation is highest in all five zonal planes whereas core energies of edge dislocations
are lowest in all zonal planes save {110}. Although the minima and the maxima can be
inverted by increasing the reference radius, e.g. from rc = b to rc = 10b, the screw character
would still not be a sharp cusp of the kind observed for the 1

2〈111〉 dislocations. Instead,
a sharp cusp in the core energies of the 〈100〉 dislocations appears at θ = ±54.74◦ but
only in the {110} plane. These two character angles correspond to two close-packed 〈111〉
crystallographic orientations in the {110} planes (each {110} plane contains two such 〈111〉
orientations). The same two symmetric cusps in the {110} planes are observed in all 13
interatomic potential models employed in this study, see Section 5. Although exact ap-
pearance of the two cusps can be modified to an extent by varying reference radius rc,
their presence is robust – the cusps will remain cusps irrespective of rc. Among all planes
of the 〈100〉 zone, only {110} planes contain 〈111〉 directions which is likely why no cusps
appear in any of the four remaining planes. Thus, for practical purposes it may generally be
sufficient to break down core energies of 〈100〉 dislocations into two groups of zonal planes
(one group containing {110} planes and the other all remaining planes), and document core
energies for only one plane representative of each group, e.g. for 〈100〉{010} and 〈100〉{110}
dislocations.

Special properties of 〈111〉 line orientations have been previously reported for 1
2〈111〉

dislocations. In addition to the screw dislocation which is obviously aligned with a 〈111〉
direction, one other dislocation character in the {110} plane was found to possess high
Peierls stress in BCC tantalum [31]. The character angle of this second (after screw) special
dislocation is acos(1/3) = 70.53◦which corresponds to the second 〈111〉 direction in the
{110} that is not parallel to the Burgers vector. Sometimes referred to as a M111 dislocation
(for “mixed-111”), our computed core energy data shows no discernible cusps near this line
orientation for any of the 13 models of BCC metals used in our calculations. Nonetheless,
the 〈111〉 direction is clearly a special orientation for 〈100〉 dislocations.

We note that, in all planes of the 〈100〉 Burgers vector zone, a dislocation of character
angle −θ can be obtained from a dislocation of character angle +θ by a 180◦ rotation around
the Burgers vector. Subsequently, core energies of 〈100〉 dislocations are symmetric with
respect to the sign of the in-plane character angle θ in all zonal planes.

4 Dislocation core energy in non-singular elasticity theories

In the preceding two sections we discussed how to use classical continuum elasticity theory
to extract and document dislocation core energies. Classical elasticity solutions for strain,
stress and elastic energy density induced by a dislocation are singular, diverging asymptot-
ically at close distances to the dislocation line. This divergence is a manifestation of the
breakdown of fundamental assumptions of the linear elasticity theory and is conveniently
side stepped by assigning finite core energy to a tube of radius rc – the core – surrounding
the line. Impossible to compute from the linear elasticity theory (in which it is infinite),
such a core energy term is a priori unknown but can be calibrated against a suitable atom-
istic model. Alternative to the classical singular theory, versions of linear elasticity theory
have been proposed in which core singularity is eliminated altogether and elastic energy
integrated over the entire solid (including the dislocation line) becomes finite [10,32]. How-
ever, even if finite, the resulting non-singular elastic energy does not represent the actual
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core energy of a dislocation and still needs to be calibrated against an atomistic model. In
this section we discuss how to use non-singular elasticity theories to partition and document
dislocation core energies.

The logic is similar to the use of the singular theory discussed in Section 2. Given
an atomistically computed total energy of a single dislocation or a dislocation dipole, an
appropriate – isotropic or anisotropic – elasticity solution is used to compute the elastic
energy component of the total energy in exactly the same geometry. Core energy is then
whatever remains after subtracting the resulting elastic energy from the atomistic total
energy. The only difference from the classical singular theory is that the non-singular
elasticity solution for the elastic energy is now integrated over the entire volume containing
the dislocation and no material is excluded. The workflow is most conveniently illustrated
within the analytical non-singular theory developed by Cai et al. [10]. In their treatment the
singularity in the dislocation core is eliminated by replacing the δ-functional distribution
of the dislocation density characteristic of the singular elasticity theory, with a smooth
distribution of the same density. Specifically, the density at each point on the line is now
distributed using a spherically symmetric smoothing function ω̃(r, a), the kernel. The kernel
is normalized so that its volume integral is the same as for the δ-function, a unity.

It turned out possible to retain much of the concise analytical structure of the classical
singular elasticity theory by employing a special kernel such that its double volume integral
with vector R connecting two arbitrary field points becomes

Ra =

∫ ∫
dr′dr′′ω̃(r′, a)ω̃(r′′, a)|R+ r′ + r′′| =

√
R2 + a2 (9)

The same volume integral can be written symbolically as a double convolution Ra =
R ∗ ω̃(a) ∗ ω̃(a) or a single convolution Ra = R ∗ ω(a) where ω(a) = ω̃(a) ∗ ω̃(a) is the
convolution of the smoothing core distribution ω̃(a) with itself. Here a is a parameter
defining the spread or width of the spherically symmetric distribution ω̃(r, a). Whereas
kernel ω̃ can be written in an analytical form only in the Fourier space, real space expression
for ω leading to the elegant replacement R→ Ra =

√
R2 + a2 is [10]:

ω(R, a) =
15

8πa3 [(R/a)2 + 1]7/2
, R = ‖R‖ (10)

The non-singular model based on kernel in Eq. (10) was recently used to extract core
energies of dislocations in various FCC metals and parametrize mesoscale DDD simulations
[16,17].

The same non-singular theory yields the following compact solution for the elastic energy
of a dislocation dipole (see A) which is nearly the same as the corresponding solution of the
classical singular theory (see Eq. (6)):
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Eprm
ns (a) =

µ

2π
(b · ξ)2

[
ln

(
Ra
a

)
+

1

2
− 1

2

a2

R2
a

]
+

µ

2π(1− ν)
(b× ξ) · (b× ξ) ln

(
Ra
a

)
+

µ

2π(1− ν)

1

R2
a

[(b× ξ) ·R]2 (11)

The core energy can be extracted as half of the difference between the energy of the
same dipole computed atomistically and the above solution. Similar to singular theory,
parameter a is to be used here in place of rc as a reference to document core energies
Ecore(a). Alternatively, core energies extracted and documented using the classical isotropic
model at rc can be converted into core energies usable within the non-singular elasticity
and vice versa as follows

Ecore
ns (a) = Ecore

iso (rc) +
µ

4π
(b · ξ)2

[
ln

(
a

rc

)
− 1

2

]
+

µ

4π(1− ν)
(b× ξ) · (b× ξ) ln

(
a

rc

)
+O

(
a2

R2

)
(12)

Fig. 4(a) compares core energies of 1
2〈111〉 dislocations in the {110} zonal plane in

tungsten extracted using the classical singular elasticity described in Section 2 and using the
non-singular isotropic elasticity described above, both with Lamé constants of µ = 159.00
GPa and ν = 0.28. Within the classical elasticity core energies were extracted using Eq. (6)
with rc = b whereas within the non-singular elasticity Eq. (11) with a = b was used for the
purpose. As expected from Eq. (12), core energies extracted using two different methods
differ quantitatively, although for our particular choice rc = a = b two core energies of
the same edge dislocation happen to be nearly exactly the same. The difference between
core energies of the screw and edge dislocations is greater within the non-singular theory.
Furthermore, the maximum seen in the singular theory near 50◦ character angle disappears
and asymmetry with respect to the character angle, while still there, appears to be less
pronounced in the non-singular theory.

In the case of non-singular anisotropic elasticity, no closed-form analytical solution sim-
ilar to the one above is available. However elastic energy of a dislocation dipole can be
computed numerically using a spectral method [33, 34]. First, a kernel g(x) is used to
spread the initially singular Nye’s tensor field αs(x) of two dislocations over a discrete grid
in a periodic supercell

αns(x) = g(x) ∗α(x) (13)

The convolution can be performed first in real space and then transformed to the reciprocal
space or directly in the reciprocal space using fast Fourier transform (FFT). Solution for
the non-singular stress field induced by the dislocation dipole is readily obtained in the
reciprocal k-space by multiplying the non-singular source field and the appropriate Green’s
operator Γ for anisotropic elasticity available in a closed form in the k-space [33,34]:
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Figure 4: Examples of core energies extracted using different treatments of the elastic
energy. (a) Comparison of the core energy in BCC W for the interatomic potential of Zhou
et al. [20], extracted using classical isotropic elasticity (Eq. (6)) for rc = b and non-singular
isotropic elasticity (Eq. (11)) with a = 1b (µ = 159.00 GPa, ν = 0.28). (b) Comparison
of the core energy in BCC Ta using the interatomic potential of Li et al. [23], extracted
using classical anisotropic elasticity for rc = b, anisotropic elasticity with the isotropic non-
singular kernel in Eq. (10) for a = b, and anisotropic elasticity with the cubic non-singular
kernel in Eq. (16) for l = b (C11 = 248.92 GPa, C12 = 144.27 GPa, C44 = 86.53 GPa). (c)
Same as in (b) but for the 〈100〉{110} dislocation.

σns(k) = Γ(k)αns(k) (14)

The total elastic energy induced by the dipole is then computed as the integral of the
resulting stress field solution over the k-space grid of the periodic supercell:

Edipole = Eprm + Eimg =
1

2

∫
V
Sijklσ

ns
ij (k)σns

kl (k)dk (15)

where S is the tensor of elastic compliances. The so-computed elastic energy contains the
primary and the image dipole contributions since the discrete Fourier transform is defined
in 3D periodic boundary conditions and thus naturally accounts for both.

The spectral method can employ any appropriate non-singular kernel, e.g. the cloud-
in-cell kernel used in [34] or the non-singular kernel introduced in [32] with its particularly
simple analytical form for cubic crystals

g(k) =
[
1 + l2k2

]−1
(16)

where l is a length parameter defining the spread of the non-singular Burgers distribution
in real space. The non-singular kernel ω̃(x, a) defined earlier in the context of the isotropic
non-singular theory [10] can be also used for the same purpose. In the k-space this kernel
is simply ω̃(k, a) =

√
ω(k, a), where ω(k, a) is the Fourier transform of the distribution in

Eq. (10). As a test, we verified that the energy of a dislocation dipole computed numerically
for an isotropic solid with kernel ω̃(k, a) using Eq. (15) is equal to the energy of the same
dipole computed using the analytical expression in Eq. (11).

Fig. 4(b) compares core energies of the 1
2〈111〉 dislocations in the {110} zonal plane

computed for the Li et al. [23] model of tantalum and extracted using the classical singular

15



anisotropic elasticity (Eq. (7)) and two anisotropic non-singular models with kernels defined
in Eq. (10) and Eq. (16). With the choice rc = a = l = b, the core energies differ significantly.
In particular, core energies extracted using two non-singular models vary over a significantly
wider range compared to the same core energies extracted using the singular elasticity. At
the same time, core energies extracted using two non-singular models appear to be different
only by a constant. Within the non-singular model with kernel ω̃, the core energies become
negative for a range of dislocation characters near the screw. To avert possible numerical
instabilities caused by negative core energies, a larger value for parameter a is advised. A
similar comparison is given in Fig. 4(c) for the core energies of 〈100〉 dislocation in the
{110} zonal planes for the same model of tantalum. With the same choice for the reference
parameters rc = a = l = b, the core energies differ substantially among the three models
and yet all three show marked cusps at the 〈111〉 line orientation. That the cusp appears
in all three elasticity models suggests the same cusp it is not a property of any particular
elasticity model but reflects a special core structure of the 〈100〉 dislocations aligned along
the close-packed 〈111〉 directions of the BCC lattice.

Three comparisons in Fig. 4 illustrate that, even though reference length parameters
rc, a, and l have different meanings within three different elasticity models and thus the
resulting core energies differ significantly when viewed side by side, any one of the three
can be consistently applied for partitioning and documenting the core energies. Which
particular method should be employed is defined by the intended use of extracted core
energies. For example, if the non-singular cloud-in-cell anisotropic model [34] with grid
spacing d is the intended application, values of the core energies should be calibrated with
respect to the same cloud-in-cell kernel and at the same grid spacing d as intended for
subsequent DDD simulations. It is of course not necessary to repeat atomistic calculations
to extract dislocation core energies each time a different elasticity model or a different
reference length parameter is used. Instead, when both models are analytical a formula
of the kind shown in Eq. (12) can be used to convert core energies from one model to the
other. When one or both models are numerical, conversion energies can be computed and
added when necessary or pre-tabulated in advance for subsequent use.

5 Dislocation core energies for BCC metals W, Ta, V, Mo
and α-Fe

This section reports core energies calculated for all five BCC metals studied in this work,
see Table 1. Core energies were extracted and documented using the classical singular
anisotropic elasticity theory at the reference core radius rc = 1b. The resulting core ener-
gies for the 1

2〈111〉 dislocation are shown Fig. 5 as functions of the character angle θ in the
same zonal planes discussed in Section 3. For clarity and following the results presented
in §3.2, core energies in only two of the five zonal planes are shown in Fig. 6 for the 〈100〉
junction dislocations. We note that despite obvious variations from one model potential
to another, all essential features discussed in Section 3 are observed across all BCC met-
als and interatomic potentials studied here. In particular, asymmetry of the core energy
with respect to the character angle of the 1

2〈111〉 dislocations in the {110} zonal planes is
observed in all models as are the distinct cusps at the θ = ±54.74◦ character of the 〈100〉
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Figure 5: Core energies for the 1
2〈111〉 dislocation extracted for all interatomic potentials

considered in this work, see Table 1. Values of the core energies are plotted for the classical
anisotropic elasticity model with cut-off core treatment at rc = 1b. (a) BCC W, Zhou et
al. [20], (b) BCC W, Olsson [21] (c) BCC W, Juslin et al. [22], (d) BCC Ta, Li et al. [23],
(e) BCC Ta, Zhou et al. [24], (f) BCC V, Olsson et al. [21], (g) BCC V, Han et al. [25], (h)
BCC Mo, Ackland and Thetford [26], (i) BCC Mo, Zhou et al. [24], (j) BCC α-Fe Ackland
et al. [27], (k) BCC α-Fe, Mendelev et al. [28], (l) BCC α-Fe, Zhou et al. [24] and (m) BCC
α-Fe, Chamati et al. [29].
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Figure 6: Core energies for the 〈100〉 dislocation extracted for all interatomic potentials
considered in this work, see Table 1. Values of the core energies are plotted for the classical
anisotropic elasticity model with cut-off core treatment at rc = 1b. (a) BCC W, Zhou et
al. [20], (b) BCC W, Olsson [21] (c) BCC W, Juslin et al. [22], (d) BCC Ta, Li et al. [23],
(e) BCC Ta, Zhou et al. [24], (f) BCC V, Olsson et al. [21], (g) BCC V, Han et al. [25], (h)
BCC Mo, Ackland and Thetford [26], (i) BCC Mo, Zhou et al. [24], (j) BCC α-Fe Ackland
et al. [27], (k) BCC α-Fe, Mendelev et al. [28], (l) BCC α-Fe, Zhou et al. [24] and (m) BCC
α-Fe, Chamati et al. [29].
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dislocations in the {110} zonal planes. These two characteristics appear to universal across
the BCC crystallography class. For some potentials, we also note minor cusps at other line
orientations. These are likely to result from incomplete relaxation of the atomic configura-
tions, possibly due to the presence of metastable states previously reported for some of the
interatomic potentials.

To facilitate wider use of the methods developed here and of the core energies computed
in this study, we assembled a set of python scripts used here to extract the core energies and
compiled all resulting core energies into a database available for downloads. Note also that
our approach here is to compute and document core energies for a large number of avail-
able interatomic potentials which, in addition to testing our methods and computational
workflow, serves to identify results that are robust with respect to potentials we employ
here and to provide a measure of variability in core energy predictions over potentials cur-
rently available. To select a potential for a particular application, we recommend to take
advantage of the extensive potential database available in the OpenKIM project [35], which
includes numerous tools to compute and compare properties across all interatomic poten-
tials available in the repository, and against ab-initio reference calculations. In particular,
the user can compare potentials available in OpenKIM in terms of their performance on
properties deemed relevant for the application of interest, such as elastic constants, general-
ized stacking fault energies and such, for dislocation core predictions. Thus, to further assist
the reader in extracting dislocation core energies for material models and dislocations other
than ones reported here, our methods are being integrated under the OpenKIM framework
into an automated workflow for managing and controlling all the required calculations [36].
With this, the user will be able to select a most appropriate interatomic potential from the
database and directly calculate the corresponding dislocation core energies values following
the methodology presented in our work.

6 Discussion and summary

In this paper we present a set of methods that constitute an accurate and efficient workflow
for computing dislocation core energies. Two essential elements of the work flow are: (1)
atomistic calculations required to obtain an accurate value of the excess energy in the
standard configuration of a dislocation dipole in a 3D-periodic supercell and (2) calculations
of elastic energy terms required to extract a dislocation core energy from the computed
excess atomistic energy. Several forms of the elastic energy terms are given suitable for a
variety of applications to elastically isotropic and anisotropic solids within both singular
and non-singular variants of the linear elasticity theory. Which form to employ is dictated
by the intended application. The isotropic elasticity solutions should be used only for
crystals that are elastically isotropic such as tungsten. For most other crystals, anisotropic
elasticity must be used. In either case, the same elastic constants must be employed both
in extracting the core energies and in their use in subsequent calculations.

For energy partitioning to be accurate, dislocations of the primary dipole and their
periodic images in the standard configuration should be placed at distances R greater than
twice the physical width w of the dislocation core, R� 2w. The same condition should be
satisfied in any subsequent re-use of extracted core energies for computing the total energy
of dislocation configurations other than the standard dipole. Furthermore, transferability
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of extracted core energies to curved dislocation configurations places a similar restriction
on the curvature radius of the dislocation lines, R � 2w. The opposite limit of a high
line curvature, R � 2w, such as at a node of a dislocation junction or at a cross-slip
node, presents an interesting and important target for further study. In such configurations,
further partitioning of the dislocation core energy into its “line” and “node” terms should be
possible following the logic previously applied in partitioning the excess interfacial energy
of a polycrystal into distinct contributions associated with grain boundaries and triple
lines [37]. Here as there, exactly how to partition the core energy among lines and nodes
can be arbitrary for as long as the total excess energy is preserved.

Our primary intention is to use our core energy data to accurately parameterize Discrete
Dislocation Dynamics (DDD) models of BCC metals [30]. In this context, pre-computed
core energies are used to accurately reproduce total excess energies defining forces on line
segments in complex dislocation configurations evolving along the simulation trajectory.
Even if core energies can be documented by reference to an arbitrary value of core radius
rc, care is advised in selecting rc for use in DDD simulations. Although rc can be selected
smaller than even the physical diameter w of the non-linear core, such partitioning can result
in negative core energies for some or all line orientations and, simultaneously, in excessively
large elastic energies which may be prone to numerical instabilities in integrating equations
of motion of dislocation line segments. Sensitivity of DDD simulations to accurate values
of dislocation core energies should be greater whenever the elastic energy associated with
the same dislocations is diminished. Such conditions are in place under high straining
rates where dislocations are generated in high densities and form dense networks in which
dislocations strongly screen (suppress) each other’s strain fields [38]. In the opposite limit
of low straining rates dislocations remain sparse and selecting rc greater than w can be
beneficial. For instance, by setting rc to be a greater fraction of the dislocation spacing,
part of the elastic energy can be subsumed into the core energy while still maintaining an
acceptable level of accuracy in low-rate DDD simulations. Such re-balancing of dislocation
energies from elastic to core reduces demands on spatial resolution of DDD simulations
and can substantially increase their computational efficiency. Whichever reference length
parameter is used, rc, or a or l, its magnitude should be coordinated with the intended
resolution of the DDD model to balance computational efficiency with accuracy.

In this computational study we extracted core energies of 1
2〈111〉 and 〈100〉 dislocations

presenting a dense sample of the entire 2-space of dislocation line orientations. Considered
as functions of line orientation, the resulting core energies exhibit distinct features, namely
cusps and asymmetries, not accounted for in the core energy models presently in use. Core
energies of 1

2〈111〉 dislocations on {110} planes are observed to be asymmetric with respect
to the sign of the dislocation character angle: the asymmetry is traced to the specific
crystallography of the BCC lattice. Core energies of 〈100〉 dislocations on the {110} planes
exhibit similarly distinct cusps for line orientations corresponding to the closed-packed {111}
crystallographic directions, i.e. for character angles of θ = ±54.74◦ . These findings hold
for all five BCC metals and 13 interatomic potential models examined in this study.
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A Non-singular energy of a dislocation dipole

Using the classical theory of elasticity, it can be shown that the elastic interaction energy
between two dislocation loops can be expressed as [1]

W =− µ

4π

∮
C

∮
C′
∇2R (b× b′) · (dx× dx′)

+
µ

8π

∮
C

∮
C′
∇2R (b · dx)(b′ · dx′)

+
µ

4π(1− ν)

∮
C

∮
C′

(b× dx) · T · (b′ × dx′) (17)

where b and b′ are the Burgers vectors of loops C and C ′, respectively, R =
√
R ·R is the

norm of the radius vector R linking the positions on the two loops, whose spatial derivatives
are given by

Tij =
∂2R

∂xi∂xj
= R,ij =

(
δij −

Ri
R

Rj
R

)
/R (18)

∇2R = R,kk =
2

R
(19)

In the non-singular theory [10], the Burgers vector is spread isotropically around the dis-
location line. With this, the non-singular radius vector Ra =

√
R2 + a2 is conveniently

defined, where a is the core width, and the non-singular interaction energy is obtained from
Eq. (17) as

Wns =− µ

4π

∮
C

∮
C′
∇2Ra(b× b′) · (dx× dx′)

+
µ

8π

∮
C

∮
C′
∇2Ra(b · dx)(b′ · dx′)

+
µ

4π(1− ν)

∮
C

∮
C′

(b× dx) · T a · (b′ × dx′) (20)

where

Ta,ij =
∂2Ra
∂xi∂xj

= Ra,ij =

(
δij −

Ri
Ra

Rj
Ra

)
/Ra (21)
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∇2Ra = Ra,kk =
2

Ra
+
a2

R3
a

(22)

When considering a dislocation dipole composed of two infinitely straight, parallel disloca-
tion lines of opposite Burgers vector ±b, it follows from Eq. (20) that the elastic interaction
energy per unit length of the dipole reduces to

Eprm
ns =

µ

2π
(b · ξ)2

[
ln

(
Ra
a

)
+

1

2
− 1

2

a2

R2
a

]
+

µ

2π(1− ν)
(b× ξ) · (b× ξ) ln

(
Ra
a

)
+

µ

2π(1− ν)

1

R2
a

[(b× ξ) ·R]2 (23)

where ξ is the line direction of the dislocations, andR denotes the separation vector between
both lines of the dipole.

When the separation vector is orthogonal to the glide plane of the dislocation (i.e.
R ‖ (b× ξ)), the interaction energy of the dipole in Eq. (23) bcomes:

Eprm
ns (θ) =

µb2

2π

[(
cos2 θ +

sin2 θ

1− ν

)
ln

(
Ra
a

)
+

(
cos2 θ

2
+

sin2 θ

1− ν

)(
1− a2

R2
a

)]
(24)

where θ = cos−1 (b · ξ/‖b‖) is the character angle of the dislocations.
For a screw dislocation dipole (i.e. θ = 0), Eq. (24) reduces to

Eprm, screw
ns =

µb2

2π

[
ln

(
Ra
a

)
+

1

2
− 1

2

a2

R2
a

]
(25)

For an edge dislocation dipole (i.e. b · ξ = 0) with separation vector orthogonal to the
Burgers vector (i.e. θ = π

2 ), Eq. (24) reduces to

Eprm, edge
ns =

µb2

2π(1− ν)

[
ln

(
Ra
a

)
+ 1− a2

R2
a

]
(26)
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