
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Probing configurational disorder in math
xmlns="http://www.w3.org/1998/Math/MathML">msub>mi

>ZnGeN/mi>mn>2/mn>/msub>/math> using cluster-
based Monte Carlo

Jacob J. Cordell, Jie Pan, Adele C. Tamboli, Garritt J. Tucker, and Stephan Lany
Phys. Rev. Materials 5, 024604 — Published 16 February 2021

DOI: 10.1103/PhysRevMaterials.5.024604

https://dx.doi.org/10.1103/PhysRevMaterials.5.024604


Probing configurational disorder in ZnGeN2 using cluster-based

Monte Carlo

Jacob J. Cordell,1, 2, ∗ Jie Pan,2 Adele C. Tamboli,2, 3 Garritt J. Tucker,1 and Stephan Lany2, †

1Department of Mechanical Engineering,

Colorado School of Mines, Golden, CO 80401, USA

2Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA

3Physics Department, Colorado School of Mines, Golden, CO 80401, USA

(Dated: January 21, 2021)

1



Abstract

ZnGeN2 is sought as a semiconductor with comparable lattice constant to GaN and tunable band

gap for integration in optoelectronic devices. Configurational disorder on the cation sub-lattice of

ZnGeN2 can strongly modify the electronic structure compared to the ordered material, and both

ordered and disordered forms of ZnGeN2 are candidates for light emitting diodes and other emitters.

The non-isovalent character of the disordered species (Zn2+ and Ge4+) subjects the cation ordering

to strong short-range order effects. To model these effects, we use Monte Carlo (MC) simulations

utilizing a cluster expansion to approximate formation enthalpy. Representative disordered config-

urations in 1024 atom supercells are relaxed in density functional theory calculations. From the

MC structures, we extract a short-range order parameter (the N-cation coordination motif), and

two long-range order parameters (Bragg-Williams and stretching parameters), and examine their

correlations. We perform a thermodynamic integration to determine the mixing entropy and free

energy. ZnGeN2 exhibits a first-order phase transition with pronounced discontinuities in enthalpy

and entropy, as well as in the structural order parameters. We discuss the relationship between

the effective temperature used in the MC simulation and the growth temperatures in experiment

in relation to the crossover from the non-equilibrium to the equilibrium growth regime. This work

expands on current models of site disorder in ZnGeN2 and provides atomic structure models with

a systematic variation of the degree of cation disorder.

I. INTRODUCTION

Site disorder in multinary materials is an area of growing interest for determining prop-

erties across diverse materials fields from metal alloys [1–3] to electronics [4–7]. The ternary

nitrides in particular exhibit a great deal of current interest in the literature. [8–15] Recent

studies have highlighted the importance of disorder at short (nearest neighbor), mid (a few

bond lengths) and long (several periodic units) range in determining electronic properties

in ternary nitride semiconductors, [16, 17, 19, 20, 74] but significant challenges remain in

deconvolving and characterizing site disorder on multiple scales. In this study we quantify

site disorder in ZnGeN2 and contrast correlations and limitations between order parameters
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obtained from theory and experiment. Transitions in short-range order (SRO) and long-

range order (LRO) are rooted in changes in free energy of the system, where we extract the

configurational entropy contribution from Monte Carlo (MC) simulation through integration

of formation enthalpy over the temperature range of the simulation. [21]

Disorder adds a significant entropic contribution to the free energy during synthesis and

can be locked in due to limited kinetics [22–24], impacting electronic properties [25, 26].

ZnGeN2 specifically has displayed cation disorder experimentally and has been explored for

use in light emitters and non-linear optics. [10, 27–29] ZnGeN2 takes a wurtzite-derived

crystal structure with the orthorhombic Pna21 space group number 33 (SG33) in its ground

state ordered form as shown in Figure 1. In contrast to several other wurtzite-like ternary

nitrides, such as ZnSnN2 [30], Zn3MoN4 [31], and Mg2SbN3 [32], cation ordering in ZnGeN2

induces a significant distortion of the ideal wurtzite lattice and the lattice distortion causes

peak splitting in x-ray diffraction (XRD) [10]. The XRD of disordered ZnGeN2 resembles

that of ideal wurtzite, space group P63mc (SG186), with partial Zn/Ge occupancy on the

cation site but diffraction can not provide information on the degree of SRO in a sample. The

similar scattering properties of Zn and Ge [10, 27, 33] further complicate the experimental

analysis of disorder, making a complementary computational study even more valuable.

Previous reports have provided multiple models for disorder in wurtzite-derived Zn-IV-N2

including the work of Quayle et al. into octet rule-conserving disorder based on differential

stacking of known, low energy ordered structures in ZnSnN2 [16] and the investigation by

Skachkov et al. on the direct impact of isolated and paired defects in ZnGeN2 on band struc-

ture [34]. Quayle et al. showed that octet rule-conserving disorder yields XRD signatures

indistinguishable from idealized wurtzite. Skachkov et al. investigated the impact of site

disorder on electronic structure by comparing the band structure of ZnGeN2 with different

quantities and proximities of exchange defects, demonstrating cation antisites as the most

dominant native defects in ZnGeN2. In addition to these works, numerous defect studies

have also looked at potential native and non-native doping effects in ZnGeN2. [11, 35–37]

The present work expands on current models to include the systematic variation of the degree

of disorder via Monte-Carlo simulations. We also differentiate between SRO, in the sense

of N-atom coordination motifs [30], and LRO in the sense of continuous periodicity within

the crystal. The ground state of ZnGeN2 consists exclusively of local octet rule-conserving

motifs (N Zn2Ge2); disorder introduces octet rule-breaking motifs, illustrated in Figure 1.
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FIG. 1. (a) Octet rule-conserving (left) and breaking (right) motifs in wurtzite-derived ZnGeN2.

Orthorhombic primitive cells of (b) Pna21 (SG33), 16 atoms and (c) Pmc21 (SG26), 8 atoms are

outlined for ZnGeN2

Disordered distributions of different atom types on an underlying lattice or sub-lattice are

often modeled using the method of Special Quasirandom Structures (SQS) [38]. In the case

of a fully randomized configuration, statistics provide the pair (or higher order) correlation

functions, and the SQS is then constructed as a small supercell of the underlying lattice with

an atomic decoration that optimally approximates the ideal random correlation functions.

The random approximation is often well justified for disorder between isovalent ions with lit-

tle or moderate size mismatch, for example in common III-V and II-VI semiconductor alloys.

[38] However, it breaks down in the case of aliovalent mixing [26, 30, 39, 40] or when highly

size mismatched atoms are involved as in the case of quaternary Ga1–xInxP1–yNy alloys. [41]

In these cases, electrostatic interactions or attractive forces due to mutually compensating
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strain fields cause strong SRO effects at realistic temperatures, and the random mixing

model describes only the hypothetical limit at infinite temperature.

For systems in which assumptions of complete randomness do not apply, MC-based strate-

gies have been used to obtain configurations that are neither fully ordered nor completely

random [26, 41–43]. The MC approach determines the balance between configurational

enthalpy and entropy via statistical sampling. For computational efficiency, the enthalpy

evaluation is usually performed with a model Hamiltonian fitted to approximate first prin-

ciples energies, e.g., obtained from Density Functional Theory (DFT). In ZnSnN2, the local

bonding environment in a good approximation predicts the configurational total energy, al-

lowing the use of a very simple Motif Hamiltonian. [30] In ZnGeN2, however, we find that

different structures consisting only of the ideal N Zn2Ge2 motifs (Figure 1) exhibit consid-

erably different energies, hinting towards much stronger LRO effects. The cluster expansion

approach [44–46] provides an efficient energy functional for the Zn/Ge decoration of the

cation sub-lattice and captures contributions from both SRO and LRO. The present work

employs a cluster expansion-based MC approach implementing the Clusters Approach to

Statistical Mechanics (CASM) provided by Puchala et al. and Thomas et al. [47, 48] and

implemented previously in studies of disorder in multinary semiconductors [49] and alloys

[50].

II. METHODOLOGY

The method detailed below follows four steps to obtain structures with varying degree

of cation order. The first three of these steps follow the workflow of the CASM software.

[47, 48] (1) First principles calculations were carried out on an energetically representative set

of ZnGeN2 configurations to relax structure and obtain total energy. (2) A cluster expansion

was fitted to these structures and validated through comparison to test configurations to

obtain a Hamiltonian for approximating formation enthalpy of a generic ion configuration of

the material of interest. (3) MC simulations were performed at selected temperatures using

the cluster expansion to compare energy of ion configurations. (4) Supercells at temperatures

of interest were relaxed in lattice vectors and atomic positions through DFT calculations to

obtain structural order parameters and prepare these configurations for electronic structure

calculations.
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Our objective is to generate atomic structure models describing ZnGeN2 in a disordered

state as it is often experimentally observed. [10, 28] Thin film synthesis techniques such

as sputtering or pulsed laser deposition often create materials in non-equilibrium states

with energies higher than the expected ground state. The metastability manifests itself in

uncrystallized amorphous structures [51, 52], disorder in ternary or multinary compounds

[53–55], or even materials grown with positive formation enthalpy [56] (thermochemically

metastable). Fundamentally, the metastability results from kinetic limitations inhibiting

the equilibration on different length scales, ranging from a few angstroms (crystallization)

to several nanometers (atomic ordering) to the meso- and micro-scale (phase separation).

We investigate relationships among structure, order and energy in ZnGeN2 by comparing

the experimentally obtainable stretching parameter and Bragg LRO parameter [57–59] to

the fraction of short-range motifs and configurational formation enthalpy as a function of

effective temperature. Mapping the bonding environment (motif composition) of cells, as

a function of effective temperature, formation enthalpy and order parameter, we expand

the comparison of order metrics from previous work [17] to address implications for the

tunability of order and order parameter-dependent properties of ZnGeN2.

To connect our MC simulations to non-equilibrium synthesis, we employ the concept of

an effective temperature Teff , allowing us to systematically vary the degree of atomic site

disorder [60]. Whereas in equilibrium, thermal energy creates disorder, in non-equilibrium

growth, disorder results from the randomness of atomic distributions and the inhibition of the

thermodynamic driving forces towards ordered structures with lower enthalpy. The effective

temperature corresponds to the thermodynamic temperature that would result in the same

degree of disorder as in the non-equilibrium system. The strong kinetic limitation at low

deposition temperature Tdep causes a high degree of disorder (high Teff), which gradually

reduces as the increasing Tdep allows a partial equilibration. Consequently, Teff decreases

with increasing Tdep until equilibration on the respective length scale completes, at which

point the two temperatures converge [60]. The non-monotonic dependence of Teff on Tdep

will be further discussed under Relationship between Teff and Tdep in the context of both the

computational results of the present work and available experimental data.
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III. FITTING THE CLUSTER EXPANSION

In ZnSnN2, the energy differences between cation arrangements were well described by

the local motif Hamiltonian to an accuracy of 15 meV per cation (meV/cat) [30]. It was also

observed that different LRO structures containing only ideal N Zn2Sn2 motifs are essentially

energetically degenerate. These findings highlight the dominant role of SRO in ZnSnN2.

However, in ZnGeN2, the prevalence of energetic contributions beyond nearest neighbor ions

makes the motif Hamiltonian insufficient for approximating formation enthalpy. The two

ideal motif (N Zn2Ge2) structures realized in small unit cells of 8 and 16 atoms, i.e., the

Pmc21 (SG26) and the Pna21 (SG33) structures [16], have an energy difference of ∆E26−33

= 43 meV/cat (compared to 1 meV/cat in the case of ZnSnN2 [61]). This additional energy

contribution in ZnGeN2 likely relates to the difference in ionic radii (Zn2+ = 74 pm, Ge +
4 =

53 pm, Sn4+ = 69 pm) [62], and motivated the use of a cluster expansion instead of the

simpler motif Hamiltonian in the present study of ZnGeN2.

The cluster expansion has the form,

H =
∑
α

mαJα〈
∏
i∈β

σi〉 (1)

where H is enthalpy of formation and m and J are the multiplicity (number of occurrences)

and energy parameter (contribution from each cluster), respectively, of a given cluster α. σ

is the configuration of occupation variables, σi on a lattice site of a given subset, where β is

the set of clusters symmetrically equivalent to α and i is the index of the atoms in a cluster,

β. [63]

To generate a training set for the CE from DFT calculations, all atomic structures of

ZnGeN2 were created by first generating supercells of a primitive ideal wurtzite cell with

nitrogen as the anion and a generic cation site, where the wurtzite cell dimensions were

normalized to the volume per atom of the ZnGeN2 ground state (SG33). The total energies of

the training and test set structures were calculated with DFT including relaxation of atomic

positions and cell parameters, as described below in Details for DFT Calculations . We

use the formation enthalpies ∆H, obtained by subtracting the elemental reference energies.

[64, 65] For the SG33 ground state, we obtain ∆H=-704 meV/cat. In the following, all

energies are given on a per cation basis, the natural energy scale for Zn/Ge disorder on the

cation sub-lattice where nitrogen is a spectator atom.
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Supercell sizes between 8 and 32 atoms were used for cluster expansion fitting, and cells

between 128 and 128,000 atoms were generated for MC simulations. The distributions of Zn

and Ge atoms in a 1:1 ratio on the cation site were generated by exhaustive enumeration for

the smaller 8 and 16 atom cells, thereby including the ordered SG33 and SG26 structures.

In larger cells, the cation species (e.g., Zn2+ or Ge4+) were randomly assigned. In addition

to random seed structures, supercells of the SG33 structure as a fully ordered starting point

for the MC simulations were created. For training and testing, we used a total of four 8-

atom structures, 85 16-atom, and 96 32-atom structures split into three overlapping sets.

These cells were partitioned such that training sets contained ∼80 structures including all 8-

atom structures, both ordered structures (8-atom SG26 and 16-atom SG33) and a remaining

mixture of 60% 16-atom and 30% 32-atom structures. Each training set has a corresponding

test set comprised of the ∼100 remaining structures (16- and 32-atom).

The cluster expansion chosen for this work was determined via comparison of cross vali-

dation (CV) score and root mean square error using the CASM framework. [47, 48] CASM

automates the process of comparing different expansions given a basis set and outputs a

hall of fame, which lists expansions in the order of increasing CV score beginning with the

lowest CV score. The different possible basis sets are classified by the cluster sizes (num-

ber of atoms) and the respective cutoff distance for atoms in the cluster. Four basis sets

were tested as listed in the left column of Table I. We use shorthand to indicate different

cluster expansion schemes. In this shorthand, each letter denotes an interaction quantified

by number of atoms followed by the cutoff distance in angstroms for that interaction. p

denotes pairs (two atoms), t, triplets (three atoms), the first q, quadruplets and a second

q, if present, denotes quintuplets, e.g., p10t4 indicates a basis set with pairs up to 10 �A and

triplets up to 4 �A.

A genetic algorithm was used to iterate over expansions to sample many combinations

of interactions within the infinite possible set constrained by the cutoff distance and ion

quantities of the basis set and a linear regression was applied to refine this search in each

space. This process was repeated using three different training sets of structures to provide

comparison between potential expansions. The genetic algorithm used the “LeaveOneOut”

scheme to include a subset of the structures in the training set and then calculate CV score

and Root Mean Square Error (RMSE) using the full training set.

The best candidate cluster expansions were chosen from CASM’s hall of fame and com-

8



TABLE I. Comparison of cluster expansion (CE) and DFT enthalpy values with respect to basis

set. CE-DFT indicates the difference in enthalpy of the SG33 structure as calculated by CE and

DFT. SG26-SG33 provides the difference in enthalpy of SG26 and SG33 as calculated by CE; DFT

calculations result in an enthalpy difference of 43 meV/cat between SG26 and SG33. All data are

shown for the same training set of structures.

Basis Set CE-DFT SG26-SG33 CV score RMSE

(meV/cat) (meV/cat) (meV/cat) (meV/cat)

p10t6q6 0.68 41 13 10

p10t4 1.02 48 21 19

p10t4q4 0.80 49 21 19

p10t4q4q4 2.32 47 21 19

pared via their ability to predict the enthalpy of formation from DFT for two ordered

structures (SG33 and SG26) and more importantly, the difference in energy of these two

ordered structures. Table I shows these enthalpy difference values per cation for the best

cluster expansion from all fitting sets as determined by CV score for each basis set.

It is desirable to bias the cluster expansion such that low energy structures, which occur

more frequently in the MC sampling, are more accurately described than less probable,

high energy structures. Therefore, we employed a weighting algorithm based on the DFT

reference energy. As described by Equation 2, each training set structure receives a weight

w, following an exponential distribution of the form

w = A ∗ exp(−∆E

kT
) +B (2)

where ∆E is the DFT energy difference between this structure and the SG33 ground state.

Here, the kT parameter, corresponding to a fictitious temperature, is set to 100 meV/cat

and defines the energy resolution for the weighting scheme. The remaining parameters are

chosen as A = 1.0 and B = 0.4. The CV score was then evaluated using the K-fold scheme

implemented in the scikit-learn library. [66]

Enthalpies predicted by cluster expansion are plotted against the DFT-calculated ener-

gies in Figure 2 as a function of cell size and inclusion in the training/test set for the cluster

expansion used in this work. The cluster expansion chosen (shown in Figure 2) was compa-
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rable to other fits based on twelve unique basis sets and three sets of DFT-relaxed training

structures. Figure 2 includes all available calculated energies (both within and outside of

the given training set) for fitting set 1. The weighting scheme provided in Equation 2 gives

the plots of Eclex versus EDFT in Figure 2 their shape with lower energy structures generally

closer to the line of ideality than higher energy structures.
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FIG. 2. Energies calculated via cluster expansion compared to those from DFT for basis set p10t4

and fitting set 1 (of 3) colored to show (a) distribution of supercell sizes and (b) test versus train

data.

Table II shows the mean absolute error (MAE) for these three separate cluster expansions

using basis set p10t4. From Table I, the obvious choice of basis set appears to be p10t6q6,

however, cluster expansions using this basis set identify an incorrect structure as the ground

state. This qualitative error could indicate an overfitting issue, against which smaller basis
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TABLE II. Mean average error for cluster expansions based on three separate fitting sets for basis

set p10t4

Fit Set 1 2 3

low energy MAE (meV/cat) 8.9 10.5 10.9

total MAE (meV/cat) 18.0 17.6 15.7

sets are generally more robust. Additionally, the similar performance among the remaining

basis sets indicates that adding quadruplets or larger clusters has limited benefits. Table II

also shows the MAE for structures only considering those from -705 to -500 meV/cat, the

lowest energy structures in the set. This energy range includes the lower third of possible

configuration energies. Error in this low energy range is more significant for choosing a

cluster expansion than at higher energies because the expansion must correctly identify the

ground state and choose low energy configurations over high energy ones to be of value in

MC.

Variations of cluster expansions were calculated and compared using MAE and RMSE.

From this analysis, a cluster expansion with pairs up to 10 �A and triplets up to 4 �A (basis

set p10t4 from Table I) was chosen with MAE and RMSE per atom of 7.9 meV and 13 meV,

respectively. We use the cluster expansion with the p10t4 basis set for the remainder of this

work. Based on CV score and RMSE within a fitting set (Table I for fitting set 1) as well as

MAE (Table II) and RMSE within a test set, basis set p10t4 closely matches larger, more

inclusive basis sets p10t4q4 and p10t4q4q4. The cluster expansion using basis set p10t4

and fitting set 1 also correctly identifies relative energies of low energy configurations in test

supercells in contrast to p10t6q6.

Given the cluster expansion described above, a MC simulation progresses with acceptance

criteria based on formation enthalpy, where cations are swapped on their lattice sites, but

configurations are not relaxed. However, to properly interpret results, the simulation must

be size converged; too small of a supercell leads to poor convergence at high temperatures

while too large cells yield unfeasibly long equilibration periods. We tested convergence

for supercells between 128 and 16,000 atoms in size with 1,024 atom-cells showing the best

results at a range of temperatures from 100 K to 5,000 K. For choosing a cell size and testing

whether or not a structure converges at a given Teff , cells were considered to be converged
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once seeds of both random and ordered starting configurations met in formation enthalpy.

For MC simulations used in this work, convergence was then separately determined once the

formation enthalpy of a supercell changed by less than 1 meV following 10 swaps. Given

this convergence criterion, MC simulations were run from random seed configurations over

a wider temperature range from 1,000,000 K to 100,000 K in 10,000 K intervals, 100,000 K

to 10,000 K in 1,000 K intervals, 10,000 K to 5,000 K in 100 K intervals and 5,000 K to 100

K in 10 K intervals. For the cell size of 1,024 atoms (4x4x4 supercell of the ground state

unit cell), we achieve convergence of the formation enthalpies for Teff=2000 K and higher

as a function of number of MC passes where a pass is defined as a number of cation swaps

equal to the number of cations in the system (see Appendix: Monte Carlo Convergence for

further detail on how size-converged supercells were chosen for this study).

IV. THERMODYNAMICS FROM MONTE CARLO SIMULATIONS

MC simulation has been used previously in a vast number of fields, such as to identify

phase transitions in antiferromagnets, where free energy and entropy were obtained through

numerical integration. [21, 67] We employ this method to find configurational order transi-

tions in ZnGeN2 where these transitions play a role in electronic structure and properties.

In this type of MC study, the Metropolis algorithm [68, 69] samples the distribution of

disordered configurations in relation to their formation enthalpies at a given effective tem-

perature. According to the Metropolis method, the importance sampling of configurations

X of an N -particle system is generated with probability P ∝ 1
Z
exp(−H(X)

kBT
) for temperature

T and formation enthalpy H(X), where Z is the partition function and kB the Boltzmann

constant. Here, H(X) is calculated using the cluster expansion described in the previous

section.

For a random atomic distribution, the configurational entropy is given by statistics,

Srnd(T =∞) = −kB[xln(x) + (1− x)ln(1− x)] (3)

where x and 1 − x are the compositions of the respective species, i.e., x = 0.5 as we

consider only stoichiometric ZnGeN2. In contrast, for a non-random, SRO distribution,

the partition function Z, the temperature-dependent entropies and free energies are non-

trivial. In MC calculations, the free energy minimization is often implicit, and the entropy
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is not directly determined. However, the absolute free energy and entropy are obtained

through thermodynamic integration [21] starting either from zero or infinite temperature

where the entropy is known, i.e., η = 0 or as given by Equation 3, respectively. We choose

the high temperature limit as the starting point, which is often more practical, and use the

enthalpies of the random MC seed structures for the infinite temperature limit. Equations

5-9 are adapted from reference [21] to illustrate the thermodynamic integration based on

the data obtained from the CE-MC simulations.

We will consider G = H − TS for disordered ZnGeN2 with only configurational entropy

(no vibrational effects). We start from the differential,

d

(
1

T

)
= − 1

T 2
dT (4)

and the Gibbs-Helmholtz equation,(
∂[G/T ]

∂T

)
P

= − 1

T 2
H (5)

Now, considering the integral of G/T from infinite T to a finite lower integration temperature

Ti at constant pressure, by definition of the integral we find,

[G/T ](T = Ti)− [G/T ](T =∞) =

∫ Ti

∞

(
∂[G/T ]

∂T

)
P

dT (6)

Using the Gibbs-Helmholtz equation,

G(Ti)

Ti
+ S(T =∞) =

∫ Ti

∞
− 1

T 2
H(T )dT (7)

and converting the integration variable to 1/T while multiplying by Ti yields

G(Ti) = Ti

(
−S(T =∞) +

∫ 1
Ti

0

H

(
1

T

)
d

(
1

T

))
(8)

To calculate the free energy ∆GMC(T ) from Equation 8, we use the enthalpy of formation

∆Hf (T ) for H(T ), since the difference is a constant (sum of elemental reference energies)

within our model for non-equilibrium disorder. The configurational entropy ∆SMC(T ) is

obtained from

∆GMC(T ) = ∆HMC(T )− T∆SMC(T ) (9)

As we identify the MC temperature with the effective temperature in non-equilibrium

synthesis, we emphasize again that the temperature dependence of the free energy contains
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only configurational degrees of freedom, and excludes vibrational and ideal gas contributions,

which are associated with the much lower actual temperature. Therefore, ∆GMC(T ) does

not represent the free energy of formation in the thermochemical sense. The experimentally

observed ordering temperature around 1,000 K, i.e., the point above which cation ordering

equilibrates, suggests that only effective temperatures above 1,000 K are relevant for the

MC sampling. As mentioned above and discussed in more detail below under Relationship

between Teff and Tdep, Teff is inversely correlated with deposition temperature Tdep, for Tdep

below the equilibration point. The mapping between Teff and Tdep is obtained in principle by

comparison between measured and calculated order parameters [60], or perhaps via kinetic

Monte Carlo calculations which, however, surpass the scope of the current work.

Using effective temperature and formation enthalpies from MC, we followed Equation 8

to obtain the change in configurational free energy, where Equation 3 gives the configura-

tional entropy at infinite temperature; i.e., for x = 0.5, ∆SMC = 5.97 ·10−5eV K−1. We used

random seed configurations as a proxy for Teff = ∞ for which we found ∆H = −440 ± 20

meV/cat, i.e., about 260 meV/cat above the ordered ground state. The formation enthalpy

of these random seeds correspond well to sample configurations equilibrated above 400,000

K which were found to exhibit ∆H = −440 ± 10 meV/cat. Following Equation 8, integra-

tion over inverse temperature was carried out using the python package scipy’s numerical

trapezoidal rule solver [70]. The lowest inverse temperature sampled was 10−6K−1. Figure

3(a) shows ∆Hf obtained from the MC simulations alongside ∆GMC and ∆SMC obtained

from the integration. Minor discontinuities in ∆G and ∆S occur at 10,000 K and 5,000 K

(1/T = 1 · 10−4 and 2 · 10−4K−1, respectively). These discontinuities are artifacts of using

multiple discrete temperature ranges for the MC integration, where discontinuities of < 2

meV/cat in the underlying ∆H are amplified.

Clearly seen in Fig. 3(a) is a step in ∆Hf at 2,500 K (4·10−4K−1) and a corresponding step

in ∆SMC , indicating latent heat associated with a first-order phase transition. In order to il-

lustrate the phase transition behavior, we compare in Figure 3 the numerical MC free energy

with the model free energy of a random Zn/Ge distribution ∆Grnd(T ) = ∆Hrnd − T∆Srnd

(cf. Equation 3), and with the ordered phase ∆Gord(T ) = ∆Hord(0), which is independent

of temperature. From this analysis, we see that the ordered/random transition would be

expected around 5,000 K. The partially SRO structures obtained in the MC simulation re-

duce ∆G by up to 100 meV/cat relative to ordered or fully random structures and cut the
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GeN2 as a function of the reciprocal effective temperature. (b) Free energies from MC calculations

compared to those of ordered and fully random structures. The gray bars highlight the first-order

transition.

transition temperature approximately in half. These effects illustrate strong non-random

influence in disordered ZnGeN2. At higher temperatures, ∆GMC approaches ∆Grnd con-

tinuously without further discontinuities, indicating a higher order transition from SRO to

random distributions.
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V. SHORT-RANGE ORDER-DISORDER TRANSITION

The term “order parameter” has been used in many materials contexts historically with

diverse meanings such as describing critical temperature in superconductors [71, 72] and

organization of Ising spin domains [73]. Here we use order parameter to mean a metric for

quantifying configurational cation disorder in ZnGeN2 both theoretically and experimen-

tally and relate these order parameters to the phase transitions described in the preceding

section. Order parameters can depend largely on nearest neighbor environment (SRO) or

look at overall periodicity in a material (LRO) calculated with respect to the ground state

configuration as a reference. In this work we use a motif fraction to indicate the fraction of

nitrogen in a supercell with a given coordination environment such as two Zn and two Ge,

demonstrated in Figure 1; this specific motif (N Zn2Ge2) conserves the octet rule locally

and is energetically favorable compared to the octet rule-breaking motifs.
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FIG. 4. Motif fractions as a function of effective temperature. Solid dots show data from constant-

temperature MC equilibration; continuous lines show a simulated anneal. Black crosses (×) indi-

cate concentration of motif fractions given a fully random distribution.

Because each N has tetrahedral coordination, the proportion of each motif (plotted in

Figure 4) provides information on the bonding environment and SRO in the system. As

mentioned in the Introduction, the differently charged cations, Zn2+ and Ge4+, lead to non-

random SRO even in the disordered phase. The black crosses (×) in Figure 4 correspond to

the concentration of each type of motif in a fully random distribution, 1/16 for N Zn0Ge4

and N Zn4Ge0, 4/16 for N Zn1Ge3 and N Zn3Ge1 and 6/16 for N Zn2Ge2.

Figure 4 uses data from MC for both simulations at constant temperature (dots) and
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simulated annealing (lines) with temperature steps of 10 K. The Appendix: Monte Carlo

Convergence includes further description of both of these types of MC including pass con-

vergence criteria at each temperature and the Supporting Material includes the supercells

equilibrated at discrete temperatures (dots, Figure 4) in POSCAR format. From MC sim-

ulation, we identified a transition from ordered to disordered material between 2,520 K and

2,530 K. The steep onset of the transition, vertical to within the 10 K temperature steps of

the simulation, corresponds to the first-order transition in Figure 3 and creates a step in ac-

cessible SRO parameters. This transition specifically designates a change from configurations

of exclusively octet rule-conserving motifs to a mix of motif fractions. Even at temperatures

above this transition, however, collective fractions of 4:0 motifs (Zn4Ge0 + Zn0Ge4) are

below 0.07 at 5,000 K, considerably lower than the value of 0.125 for a fully random system.

The transition in SRO likely affects electronic properties as explored in the related ZnSnN2

[30] and ZnSnN2 ZnO [74] systems. However, we leave the investigation of order-electronic

property relationships to future studies.

VI. LONG-RANGE ORDER PARAMETER, η

In simulation, the Bragg and Williams LRO parameter S or η measures the fraction of

ions on their defined sites for a given ordered configuration [57, 58]. Here we use η to avoid

confusion with entropy, S. The LRO parameter is defined as

η = rα + rβ − 1 (10)

where rα is the fraction of site α occupied by atom α. Experimentally, η is determined

from diffraction [59] where Rietveld refinement is used to obtain average site occupancies

[75, 76]. Given the relationship shown in Equation 10, site occupancies are then used to

extract the LRO parameter. However, obtaining XRD data suitable for Rietveld refinement

in ZnGeN2 is complicated by the small difference in scattering magnitude between Zn and

Ge. In contrast to experimental analysis, it is possible in computational studies to know the

exact quantity and position of ions of interest, making comparison of a given configuration

and a reference structure trivial in principle, but other challenges arise. The ordered ground

state can be realized in different symmetry equivalent orientations within the MC supercell,

necessitating calculation of an order parameter based on all possible symmetrically equiva-
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lent representations of the ground state. In order to calculate η for a supercell by comparing

it to a reference, all possible sets of cation positions which correspond to the ordered struc-

ture of interest must also be compared, i.e., symmetry operations must be applied to find

the symmetrically equivalent configurations. It is then appropriate to use the highest order

parameter obtained through these calculations as the ‘true’ value of η, as the highest value

most accurately reflects the extent of site ordering in the system.

There are twelve possible arrangements of cations on a wurtzite lattice that yield the

orthorhombic ground state structure in ZnGeN2. The multiplicity of arrangements was

determined by taking all possible combinations of 4 Zn and 4 Ge on 8 cation sites (( 8
4 ) =

70 combinations) and quantifying the motif fractions in each of these possibilities. The

calculation of motif fractions in the conventional ground state unit cell of ZnGeN2 yielded

6 structures with exclusively N Zn2Ge2, of which DFT calculations showed four had the

ground state energy (the remaining two were SG26 instead of SG33). This number does

not reflect possible external symmetry operations, of which three unique rotations were

found. These external operations were applied to the permutations of octet rule-conserving

reference configurations to obtain twelve unique references.

Figure 5(a) shows η for stoichiometric ZnGeN2 as a function of Teff with a color scale

indicating ∆Hf of each supercell as calculated from DFT (see Details for DFT Calculations).

The sharp drop in η seen in Figure 5(a) results from the order-disorder phase transition and

coincides with the discontinuity in the short range order parameter discussed above. Even

above 5,000 K, however, the system maintains a finite degree of LRO (η > 0), slowly

decreasing between 5,000 K and 1,000,000 K. At that temperature - the highest Teff sampled

- it fluctuates around η = 0.05 ± 0.02, a small nonzero value likely representing finite size

effects in the 1,024 atom cell. Due to the sharp phase transition, our MC structures, which

have been equilibrated at each temperature, do not exhibit intermediate values of either the

short- or long-range order parameter, e.g., in the interval 0.3 < η < 0.9.

We will now examine the correlation between SRO and LRO parameters. As shown

in Figure 5(b), small quantities of antisites correspond to small decreases in the fraction of

N Zn2Ge2 motifs in a near-linear fashion, implying a correlated loss of SRO and LRO as the

system approaches the phase transition. At temperatures just above the phase transition,

both order parameters are strongly reduced, but deviate significantly from the fully random

system, with N Zn2Ge2 fractions up to 0.6 and η up to 0.2. As they approach the random
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FIG. 5. Long-range order parameter (η) of supercells as a function of (a) Teff with dashed line as

a guide to the eye and (b) SRO parameter (motif fraction). The red cross (×) corresponds to a

statistically random configuration. Stretching parameter obtained from DFT supercell calculations

as a function of (c) the LRO parameter η and (d) motif fraction of N Zn2Ge2. Dashed lines show

the stretching parameter of fully ordered (α = 1.018) and fully disordered (α ≡ 1) structures. The

color scale indicates enthalpy ∆Hf of the individual configurations calculated from DFT.

limit (N Zn2Ge2 fraction of 0.375 and η = 0 as marked by × in Figure 5(b)) with increas-

ing effective temperature, the correlation becomes less defined, likely representing, again,

residual finite size effects. An experimental determination of these order parameters in the

disordered phase would be interesting to quantify the effective temperatures and their vari-
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ation with non-equilibrium growth parameters. However, given the experimental difficulties

mentioned above, a measurement with the required resolution in the order parameters will

be quite challenging.

Above, we discussed two transitions, an abrupt order-disorder transition around Teff=2,500

K and a gradual higher-order transition from SRO to random. In similar systems such as

ZnSnN2, a third transition is also observed from a fully ordered system to a disordered

system that preserves the octet rule as described in Ref. [16]. In the ZnGeN2 configurations

generated through MC, octet rule-conserving disorder is notably absent. The lack of this

phase in ZnGeN2 despite its presence in the structurally similar ZnSnN2 is a result of the

more pronounced energy contribution of LRO in ZnGeN2. This difference is also visible in

the larger formation enthalpy difference between the two octet rule-observing unit cells, i.e.,

43 meV/cat (see Fitting the Cluster Expansion) in ZnGeN2, compared to just 1 meV/cat

[61] in ZnSnN2. An important implication is that in ZnGeN2, the loss of LRO and SRO are

correlated, whereas in ZnSnN2, SRO can persist in the presence of long-range disorder.

VII. STRETCHING PARAMETER

The LRO parameter η has not been measured and reported for ZnGeN2 to date. However,

a separate LRO parameter, the stretching parameter, which can be determined from Bragg

angles without Rietveld refinement, has been measured for ZnGeN2 in Refs. [10, 77–79].

The stretching parameter measures lattice distortion of a structure mapped onto a specific

crystallographic system such as a c/a ratio in a chalcopyrite-derived system, which in turn

provides information on the ordering in the zinc-blende system [80, 81]. In the present

wurtzite derived system, the orthorhombic primitive cell accommodates the cation ordering

of the ZnGeN2 ground state within the framework of the wurtzite lattice. The ordering

breaks the symmetry of the wurtzite lattice, and atomic relaxation distorts the ratio of

the orthorhombic lattice parameters a and b away from those of the ideal wurtzite lattice.

On the other hand, in the disordered system, which strictly speaking has no symmetry, the

average lattice recovers the ideal a/b ratio of wurtzite as probed by diffraction measurements.

In experimental characterization, the stretching parameter is also one of the most readily

accessible order parameters to obtain, coming directly from a Pawley refinement [82] of

a diffraction experiment. Ref. [10] defines a stretching parameter for wurtzite-derived,
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orthorhombic systems based on the orthorhombic lattice parameters a and b and measures

the stretching parameter for ZnGeN2 grown at temperatures around the order/disorder

transition. We use the stretching parameter from Ref. [10] here:

α =

√
3a

2b
(11)

where a and b are the orthorhombic lattice parameters of the system and
√

3
2

is the factor

needed to map an orthorhombic system onto a hexagonal one given ideal hexagonal sym-

metry. ZnGeN2 realizes this hexagonal structure for the fully disordered system, sometimes

visualized as 1:1 shared occupancy of Zn and Ge on cation sites (η = 0). This disordered

state therefore corresponds to α = 1. For clarity, we use the convention cor = chx and

aor > bor for or orthorhombic and hx hexagonal lattice parameters. Our calculated value

of the stretching parameter for the ZnGeN2 ground state structure is α = 1.018, compared

to measured values of 1.015 < α < 1.025 [10, 77–79]. Calculated stretching parameters

are taken by fully relaxing (lattice vectors and atomic positions) the 1,024 atom supercells

from MC in DFT. This relaxation also results in a small but noticeable difference in vol-

ume between ordered and disordered cells where structures at Teff =5,000K are up to 0.9%

larger in volume than those at Teff =2,000K. The volume change scales roughly linearly with

decreasing fraction of N Zn2Ge2.

Figure 5 (c) and (d) show the relationship between α and η and N Zn2Ge2, respectively,

with ∆Hf provided by the color scale. Partially ordered systems for which 0 < S < 1

fall somewhere in between the values of ordered and disordered stretching parameters. The

uncertainty in stretching parameter (±0.003) shown in Figure 5(c,d) is attributed to the

lack of a unique unit cell and orientation for disordered structures, an inherent limitation

of the stretching parameter. This uncertainty reflects the potential change in stretching

parameter due to rotating a cell to another possible reference orientation. Within this

range, all supercells fall between the ordered α = 1.018 and disordered α ≡ 1 with the

characteristic gap coinciding with the unsampled order/disorder transition in Figure 4(a).

Comparing the merits of α to those of η and motif fraction, α is more straightforward

to measure experimentally, but provides less detailed information on ordering. All three

parameters identify the sharp order-disorder transition in ZnGeN2. The motif fraction and

η deviate slightly from the ideal structure before the transition, indicating that defect-like

antisite formation precedes the phase transition. As discussed above, a certain sensitivity of
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these parameters to the degree of disorder (Teff) exists also above the transition temperature.

In contrast, α provides only a binary analysis of order, without systematic variation among

the structures below or above the transition (see Figure 5(c,d)). Therefore, the stretching

parameter α, is useful in characterizing order versus disorder in a relevant material but, at

least within our set of MC structures, it does not provide the resolution to determine the

degree of ordering within a sample.

VIII. RELATIONSHIP BETWEEN Teff AND Tdep

The effective temperature model relies on a mapping of non-equilibrium atomic configu-

rations onto a pseudo-thermodynamic free energy minimum, thereby implicitly assuming a

Boltzmann distribution of microstates. Strictly speaking, there is no guarantee for such a

distribution under non-equilibrium situations. However, according to the Bell-Evans-Polanyi

principle [83, 84], higher energy states also have faster decay rates, so that an approximate

Boltzmann-like distribution can result from partial equilibration. It is important to note,

however, that a single Teff describes at best one equilibration mechanism over a certain

length-scale, here, cation ordering involving short-range atomic diffusion on the order of a

few nanometers.

Experimentally, the cation ordering of the SG33 ground state of ZnGeN2 is not observed

for typical growth temperatures up to 900 K for thin films grown by sputtering [28] or

800 K by molecular beam epitaxy [29], but it has been observed in growth and annealing

experiments at higher temperatures. Specifically, the analysis of the stretching parameter

after vapor-liquid-solid growth and from literature data in Ref. [10] demonstrated that the

cation ordering occurs within an interval between 1,050 K and 1,200 K. This transition is

evidently a non-equilibrium effect and not a thermodynamic transition, because the material

is disordered below and ordered above the transition temperature. On the other hand, in

the MC simulations, the order-disorder phase transition occurs in a very narrow interval

of effective temperatures, 2,520 K < Teff < 2,530 K. Considering the above described non-

monotonic scaling between Teff and the growth temperature Tdep, with an inverse relationship

in the non-equilibrium regime below the transition, we can associate Teff = 2,525 K with the

deposition temperature Tdep = 1,100 K at which (on average between different experiments)

ordering is observed [10].
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Figure 6 schematically illustrates the relationship between Teff and Tdep, with a non-

equilibrium transition from disorder to order with increasing Tdep at 1,100 K, and a hypo-

thetical thermodynamic transition from order to disorder at Tdep = Teff = 2,525 K. Within

our model, the Zn/Ge cations are randomly distributed in the low-temperature limit of Tdep,

corresponding to Teff > 400,000 K from the Monte-Carlo simulations as discussed above. The

difference Teff - Tdep, accounting for non-equilibrium effects, is gradually reduced with in-

creasing Tdep as atomic diffusion allows for partial equilibration of the cation configuration.

At the non-equilibrium transition temperature (Tdep = 1,100 K in Figure 6), the ordered

phase occurs, but the equilibration of the cation distribution is not necessarily complete.

For example, the concentration of antisite-defects in the ordered phase (cf. Figure 5(a,b))

is likely to exceed its thermodynamic value since Teff remains larger than Tdep until Tdep

significantly exceeds the transition temperature (cf. Figure 6).

FIG. 6. Schematic illustration of the dependence of Teff (measuring the degree of disorder) on the

growth or deposition temperature Tdep. Experimentally, the transition proceeds from disorder to

order at Tdep ≈ 1,100 K [10] and in Monte-Carlo simulations from order to disorder at Teff=2,525

K. Vertical lines indicate the non-equilibrium (ne) and the hypothetical thermodynamic (th) order-

disorder transition.

We emphasize again that the effective temperature concept applies only to free energy

contributions from configurational disorder in the cation arrangement. On the other hand,

the actual temperature governs lattice vibrations and ideal-gas contributions to the chem-

ical potentials, which determine the phase stability relative to melting and decomposition
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into the metals and molecular N2. The decomposition is primarily driven by the ideal gas

contribution to the N chemical potential, offsetting the heat of formation from the elements.

Our calculated formation enthalpy of ∆Hf = -0.70 eV/cat lies between that of InN (-0.30

eV/cat) and GaN (-1.63 eV/cat) [85], which is consistent with the observation that the

decomposition of ZnGeN2 becomes difficult to avoid above 1,200 K [10]. These thermody-

namic properties preclude the observation of the thermodynamic order-disorder transition

in ZnGeN2 (Tdep = 2,525 K in Figure 6).

While we did not observe intermediate values of the stretching parameter alpha in our

simulation, the experimental data from [10] does show intermediate values, although only

within a window less than 100 K wide, thereby seemingly indicating a more gradual transi-

tion. It should be noted that in non-equilibrium synthesis, such intermediate structures could

occur, due to two reasons: first, the mapping of the non-equilibrium statistics of realized

configurations onto an effective temperature model may not be perfect and the transition

may occur less abruptly as a function of process parameters through kinetic trapping. Sec-

ond, in polycrystalline films, not all grains may undergo the phase transition simultaneously,

leading to an averaging of the order parameter between ordered and disordered grains. These

caveats should be considered when formulating expectations for experimental results based

on the present simulations. Additional insights could be gained from measurement of the

evolution of the LRO parameter η or the SRO parameter around the experimental ordering

temperature, although this would be a challenging experiment as mentioned previously.

Our effective temperature model is a first step toward the mapping between experimental

non-equilibrium process parameters and a statistical, computational model of disorder. In

ZnGeN2, this mapping is currently based on three data points, i.e., the random disorder

at Teff = 400, 000 K, the order-disorder transition at Teff = 2, 525 K, and the experi-

mental ordering temperature around Tdep = 1, 100 K depending on the synthesis method.

The resulting relationship between Teff and Tdep, as shown in Figure 6, is therefore rather

schematic, or perhaps semi-quantitative. Nevertheless, we obtain explicit atomic structure

models that can be associated with different experimental situations. These structures will

allow property predictions for disordered materials and hopefully enable the deliberate de-

sign of the materials properties utilizing the disorder degree of freedom.
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IX. DETAILS FOR DFT CALCULATIONS

For each cluster expansion training set we used DFT with the generalized gradient approx-

imation (GGA), Perdew-Burke-Ernzerhof (PBE) [86] type to relax structures and calculate

formation energies. For the training of the cluster expansion, ZnGeN2 unit and super-

cells were relaxed using a high density k mesh with roughly 3000 k-points per reciprocal

atom. Kresse-Joubert projector augmented wave datasets (VASP version 4.6 pseudopoten-

tials) were used for these calculations (i.e., Ge d, N s and Zn). [87] N s is a soft type of

pseudopotential that allows calculation with lower energy cutoff, which is beneficial for the

feasibility of the large supercells used in this work. Extensive testing has shown that in most

compounds, the N s pseudopotential is fully suitable, unless bond distances are unusually

short as in the case of molecular N2 where even the standard N pseudopotential introduces

significant errors and a hard (N h) pseudopotential is needed. [? ] A total energy difference

below 10−5 eV per supercell and total force tolerance of 0.02 eV �A−1
on each atom served

as convergence criteria for ionic relaxation. An energy cutoff of 380 eV was used along with

a Coulomb potential, U − J = 6 eV, applied to the Zn-d orbital following the Dudarev

approach [88]. Formation enthalpy was calculated using fitted elemental-phase reference

energy (FERE) [64] chemical potentials of -0.50 eV for Zn, -4.14 eV for Ge and -8.51 eV for

N. [18, 65]

A set of supercells was selected at specific effective temperatures from the MC simulation

to relax with DFT. These supercells contained 1,024 atoms and DFT calculations followed

the details above except that the gamma-point-only version of VASP was used along with

a 1x1x1 k-mesh. These relaxed supercells were used for comparing formation enthalpies

and stretching parameters described under Long-Range order Parameter and Stretching

Parameter . The unrelaxed POSCAR files for these calculations and used in the calculation

of motif fractions and η can be found in the Supporting Material.

X. CONCLUSIONS

We presented a Monte Carlo study of cation disorder in ZnGeN2 employing a cluster ex-

pansion for the total energy expression. The effective temperature used in the MC statistics

connects to the deposition or growth temperature in experiment in a non-monotonic fashion
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with an inverse relationship in the non-equilibrium regime and converging above the tem-

perature where cation order equilibrates thermodynamically (above 1,100 K in experiments

for ZnGeN2). The first-order order-disorder phase transition at Teff ≈ 2,500 K lies in the

non-equilibrium regime. We extracted SRO and LRO parameters from the MC-sampled

configurations and examined their correlation. All order parameters drop simultaneously

and sharply at the first-order transition. Significant non-randomness persists in both SRO

and LRO parameters above the transition, and complete randomness is approached only at

very high effective temperatures in excess of 100,000 K.

While the SRO and LRO are closely intertwined, they have different merits and behaviors.

While experimentally most straightforward and accessible, the stretching parameter α is

conceptually somewhat limited because it relies on a mapping of the underlying wurtzite

lattice onto an orthorhombic symmetry. This mapping is unambiguous only in the ordered

ground state or the fully random limit, but not necessarily so in intermediate non-random

disordered configurations. In our calculations, the stretching parameter offers only binary

information, assuming either the value of the orthorhombic ordered ground state below the

transition or unity (wurtzite-like) above the transition, without any meaningful resolution

for intermediate configurations. The LRO (Bragg-Williams) parameter η and the SRO

parameter (ideal N motif fraction) are correlated, exhibiting a small but significant reduction

towards the transition, resulting from formation of ZnGe and GeZn antisite defects in an

otherwise largely ordered matrix. Despite the large drop at the transition, they still deviate

considerably from the random limit, which is only gradually approached with increasing

Teff . While these effects are clearly observable in the simulation, they are nevertheless

rather subtle.

Given experimental limitations such as limited sample quantities in thin films and the

small scattering contrast between Zn and Ge, a direct experimental comparison will be

challenging. Therefore, a particularly valuable conclusion of our work is the absence of octet

rule-conserving disorder, which is a known feature of the related ZnSnN2 nitride. In ZnGeN2,

in contrast, absence of LRO necessitates short-range disorder, which must be expected to

affect the electronic structure, e.g., in the form of a band gap reduction. The present study

provides a set of ZnGeN2 supercell structures with systematic variation of the degree of

disorder. These structures are available in the supplemental material and facilitate the

prediction of the properties of ZnGeN2 as a function of disorder.
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APPENDIX: MONTE CARLO CONVERGENCE

Convergence tests for the MC simulation were run for effective temperatures of 5,000 K,

3,000 K, 2,000 K, 1,000 K, 500 K, 300 K, 200 K and 100 K. Although the number of swaps in

a pass increases linearly with cell size, the statistics of swapping cations to reach a converged

state (reach a stable enthalpy as a function of passes) cause the number of passes needed

to converge to grow exponentially with cell size. Too small of a supercell will never clearly

equilibrate at high temperature due to the drastic enthalpy change associated with a single

cation swap. Likewise, too large of a supercell prevents the structure from equilibrating at

low temperatures due to the large number of swaps needed to reach a low energy state and

the low probability of these swaps occurring.

Supercells of 128, 1,024, and 16,000 atoms were generated from the 16 atom primitive cell

such that the ordered ground state could be accommodated. Figure 7 shows a comparison

of ∆Hf versus number of passes for the three cell sizes at the three different temperatures

of 1,000, 2,000, and 3,000 K. Passes were averaged over five, three and one run for 128,

1,024 and 16,000 atom supercells, respectively. Figure 7 shows convergence from random

seeds with initial formation enthalpies of roughly -440 meV/cat. In the 1,024 cell, MC fully

equilibrates for 2000 K and higher. In Figure 7(a), only the 128 atom cell reaches the ground

state (700 meV/cat) at 1,000 K. In 7(b), the 1,024 atom cell also reaches the ground state at

2,000 K, but a finite number of antisite defects occur and in 7(c), the temperature (3,000K)

is above the phase transition; at 3,000 K both 1,024 and 16,000 atom cells converge, but

128 atom cells exhibit moderate (∼25 meV/cat) finite size artifacts.

Figure 7(d) shows the equilibration period for MC simulations starting from ordered and

random seed configurations consisting of 1,024 atoms at 3,000 K. For equilibration to be

complete, the energies of structures initiated from the random and ordered seed configura-

tions must converge. Apart from equilibrations shown in Figure 7, some seeds were cooled

from 1,000,000 K to 100,000 K in 10,000 K intervals, 100,000 K to 10,000 K in 1,000 K inter-

vals, 10,000 K to 5,000 K in 100 K intervals and 5,000 K to 100 K in 10 K intervals with each

temperature set point equilibrated according to separate energy convergence criteria enabled

within CASM. For these simulations with variable temperature (used in Figures 3 and 4),

configurations are assumed to be converged once the change in formation enthalpy remained

below 1 meV after 10 swaps. This method of testing convergence resulted in hundreds of
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FIG. 7. Supercell size effects on convergence of formation enthalpy at (a) 1,000 K, (b) 2,000 K

and (c) 3,000 K, comparing sizes of 16,000 (long dashed purple), 1,024 (short dashed green), and

128 (solid orange) atoms. (d) Convergent behavior of formation enthalpy during equilibration at

3,000 K for a 1,024 atom simulation cell from random (dashed green) and ordered (solid blue) seed

configurations.

thousands of passes at high temperature where configurations change rapidly in formation

enthalpy and less than 1,000 passes at low temperature where cation swaps are less likely to

occur. Selected supercells were relaxed and analyzed on a basis of SRO and LRO as well as

effective temperature to compare a proxy for processing conditions to the resultant degree

of order within a fully crystalline system.
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