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Abstract 
Magnetotransport and ferromagnetism in thin films of Co2Si nanoclusters are investigated 

experimentally and theoretically. The nanoclusters are fabricated by an inert-gas condensation-

type cluster-deposition method and have an average size of 11.3 nm. Unlike the bulk Co2Si that 

exhibits a very weak net magnetic moment only below 10 K, the nanoclusters exhibit room-

temperature ferromagnetism with a substantial saturation magnetization. Key features of the 

system are its closeness to the Stoner transition, magnetic moments induced by spin polarization 

starting from surface atoms, and nonuniaxial anisotropy associated with the orthorhombic crystal 

structure of Co2Si. A method is introduced to determine the effective anisotropy using the 

experimental magnetization data of this complex system and its relationship with the two lowest-

order nonuniaxial anisotropy constants. On decreasing temperature from 300 K, the nanoclusters 

show electron-transport properties unusual for a ferromagnetic metal, including an increase of 

Hall resistivity and a non-monotonic change of negative magnetoresistance with a peak at around 

100 K. The underlying physics is explained on the basis of the large polarization of surface spins 

and variation in the degree of their misalignments due to temperature-dependent effective 

anisotropy. 
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I. Introduction 

Spin-transport properties such as magnetoresistance (MR) and anomalous Hall effect (AHE) 

in nanostructures have attracted much attention in the context of spintronic devices [1-8]. This 

includes particulate materials made from magnetic nanoparticles and clusters. Nanoclusters and 

small nanoparticles exhibit a strong size-dependent modification in electronic structure due to 

quantum confinement and surface effects and often show entirely different magnetic properties 

as compared to corresponding bulk materials [9-11]. Thus nanoscale effects are expected to play 

a crucial role in the electron-transport properties of these structures. Our focus is on nanocluster 

films of Co2Si, which is scientifically and technologically an interesting material.  

Cobalt-silicon alloys form a rich class of intermetallic compounds with a wide range of 

electronic and magnetic properties suitable for thermoelectric, nanoelectronics, and spintronics 

applications [12-18]. Some of these alloys form skyrmionic spin structures associated with 

Dzyaloshinskii–Moriya interactions and exhibit emerging characteristics like "new-fermion" 

topological quantum chirality [15, 17, 18]. Co2Si is particularly a promising material for 

interconnects, gates, and source electrodes in integrated devices, and nanoelectronics 

applications [13, 19, 20]. An interesting aspect is that bulk Co2Si has a very small magnetization 

of only 41 emu/cm3 at about 4 K in a field of 70 kOe, corresponding to 0.07 µB per Co atom [21, 

22]. Co2Si nanowires having diameters between 30 and 80 nm are weakly magnetic but only at 

temperatures below 50 K [20]. Recently, we have achieved room-temperature ferromagnetism in 

Co2Si nanoclusters having sizes in the range 10 nm, accompanied by an enhancement of the 

magnetization by two orders of magnitude as compared to the bulk alloy [22].  

Co2Si nanoclusters exhibit three important features. First, the cluster size is smaller than or 

comparable to the bulk mean-free path, so that scattering at the clusters' surfaces and contact 
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points become an important consideration for electron transport. Second, the magnetism in the 

bulk Co2Si is close to a border between the exchange-enhanced Pauli paramagnetism and very 

weak itinerant ferromagnetism [22], nearly satisfying the Stoner criterion [23, 24] and therefore 

close to ferromagnetism. Existing magnetic moments, associated for example with impurities 

and surface atoms in this class of systems, easily spin-polarize the material, and the size 1/κ of 

the spin-polarized regions diverges at the Stoner transition, where κ is the inverse decay length.  

In the case of Co2Si nanoclusters, this mechanism leads to strongly spin-polarized surface atoms 

(shell) with relatively weak magnetic interior atoms (core) and subsequently makes the clusters 

ferromagnetic [22]. Finally, the inversion-symmetric crystal structure of Co2Si is orthorhombic 

(point group D2h, space group Pmna) [25], so that two anisotropy constant K1 and K1' are 

necessary for the description of the magnetocrystalline anisotropy.  

This study presents the magnetic and electron-transport properties of Co2Si nanocluster 

films, where we expect interesting temperature-dependent effects. Since orthorhombic crystals 

tend to have substantial magnetocrystalline anisotropies, thermally activated magnetization 

changes involving whole clusters is not very likely to occur at room temperature. They are much 

easier to realize in shells, where much smaller switching volumes can be realized. In this paper, 

Section II is devoted to a basic analysis of magnetization effects in weakly ferromagnetic 

nanostructures, and Section III describes the sample preparation and measurement methods. In 

Section IV, we present the experimental results and analyze the magnetotransport behavior in 

terms of the orthorhombic anisotropy.  
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II. Theoretical Background on Weak Ferromagnetism 

 The focus of this section is on how thermal effects, field-induced changes of the magnetic 

moment, and micromagnetic contributions affect the field-dependent magnetization, M(H)  

curves. If the clusters were made from strong ferromagnetic elemental Co, then the high-field 

contributions due to spin rotation and moment change yield only a small high-field susceptibility 

χo and can be separated easily from the micromagnetic contributions. In materials close to the 

Stoner criterion, such as Co2Si, different contributions are more convoluted and a great care is 

necessary in the interpretation of M(H).  

 Strongly exchange-enhanced Pauli paramagnets and very weak itinerant ferromagnets 

(VWIFs) are close to but on different sides of the Stoner criterion I (EF) = 1. To streamline the 

notation, we will refer to these two limits as Bloch magnetism, because the wave functions are 

almost Bloch-like. The free energy per unit volume of an isotropic Bloch magnet is given by the 

Landau expansion [24, 26] 

 

F = ½ a M2 + ¼ b M4 + c (∇M)2 + Ea(M) – µo µB H M    (1) 

 

where M is the local magnetization measured in μB per atom, Ea is the anisotropy energy, and a, 

b, and c are phenomenological coefficients. The free energy in Eq. (1) leads to a complicated 

nonlinear differential equation without a known solution. However, the a and b terms normally 

dominate the anisotropy energy, so that we will ignore Ea in this section and treat it 

perturbatively in Section IVA. The coefficient, exchange-enhanced Pauli susceptibility,  χ ~ 

1/κ2, which has been dealt in Ref. 22, yields a zero-field magnetization M that is aligned in 
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relatively small fields and enhances M = |M| in strong fields. However, an applied field also spin-

polarizes the interior of the cluster, and to determine this effect, we need to estimate a and b. 

 Paramagnetic and ferromagnetic phases have a > 0 and a < 0 respectively, so one can write 

that a ~ Tc – T, which was Landau's original reasoning. The zero-temperature limit is fairly well 

described by a = 1/ࣞ – I and b = 1/ࣞ [27]. Near the Stoner transition, the Landau and zero-

temperature terms can be added in a rough quantum-mechanical approximation [28] and one 

obtains 

 

a = kB T + 1/ࣞ – I         (2) 

 

Since a = 0 at the Curie point, this equation yields Tc = (I – 1/ࣞ) for VWIFs. By keeping the a 

and H terms only in Eq. (1) and then minimizing F, one can show that Eq. (2) reproduces a 

Curie-Weiss law with θ = I – 1/ࣞ for perfectly homogenous Bloch magnets. 

 It is important to note that the predictions from Eqs. (1-2) differ from predictions based on 

the Brillouin function. In the high-field limit, Eq. (2) yields saturation in fields of the order of 

µoµBࣞ (several 100 T), whereas the Brillouin function predicts a much more rapid saturation at 

low temperatures. The reason is that the latter describes spin rotations under the competing 

influences of thermal disorder (at most several 100 K) and Zeeman interaction. In the Bloch 

limit, the field changes the magnitude of the spin moment per atom and competes against 

electron energies of the order of 1/ࣞ (about 10,000 K in temperature units). 

 Applied to Co2Si nanoclusters, Eq. (1) yields the following scenario. Surfaces spin-polarize 

the interior of the clusters as observed in Ref. 22, but the random crystalline orientation of the 

clusters, described by the anisotropy term, means that some field is necessary to align the 
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magnetization. On top of this micromagnetic magnetization change, commonly known as the 

"approach to saturation", there is also an influence from the temperature-dependent 

susceptibilities of surface atoms and of the adjacent interior atoms, the former being of a 

Brillouin-type and the latter being of the Bloch type. Finally, very high fields create a Bloch-type 

magnetic moment everywhere in the clusters.  

In a diamagnet or ordinary Pauli paramagnet, the high-field magnetization change is a very 

small correction, which can be described by a magnetization contribution χoH. In the present 

system, the centers of the particles are in the Bloch regime and therefore yield a fairly strong 

nonlinear contribution to M (H). In terms of Eq. (1), we ignore the gradient and anisotropy terms, 

which are very small in the interior of the particles. Minimizing F with respect to M then yields 

the cubic equation 

 

µo µB H  =  a M + b M3         (3) 

 

This equation is equivalent to Eq. (9) in Wohlfarth's analysis [29]. For example, putting H = 0 

yield the spontaneous magnetization Ms = ඥ|ܽ|/ܾ for a < 0 and Ms = 0 for a > 0. 

 Equation (3) is also well-known in statistical mechanics [26] , where it yields the res-

pective mean-field critical exponents γ = 1 and δ = 1/3 for the susceptibility dM/dH and the 

critical isotherm M(H), both valid near the critical point T = Tc (or a = 0), H = 0, and M = 0. Our 

case is different, because a is small but nonzero, whereas both H and M are fairly high. We can, 

however, solve Eq. (3) by series expansion, starting from high values of H and treating a as a 

small correction. The lowest-order term is independent of a and yields, in the units of Eq. (1), 
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M = (µoµBH /b)1/3 ~ H1/3        (4) 

 

Unlike the formally identical critical isotherm, the equation cannot be used for very small fields. 

Note that the H1/3 term is clearly identifiable in high-field experiments [29, 30]. At very high 

fields (several 100 T), the applicability of Eq. (1) breaks down, but in the intermediate field 

range of interest in the present context, it is quite accurate. A key feature of the Eq. (4) is that 

M(H) has a negative curvature d2M/dH2, compared to the zero curvature of M = χo H. As we will 

discuss in Section IVA, this curvature is visible in careful fitting and allows us to separate the 

“approach to saturation” contribution proportional to – 1/H2, which also has a negative curvature.  

  

III. Sample Preparation and Experimental Methods 

The Co2Si nanoclusters were fabricated using an inert-gas condensation-type cluster-

deposition method [22]. In brief, the Co2Si nanoclusters were produced in a cluster-formation 

chamber by sputtering a Co-Si composite target using a mixture of argon (Ar) and helium (He) 

gases and extracted as a collimated beam towards a deposition chamber, where they are 

deposited on substrates kept at room temperature. A schematic of the cluster-deposition process 

is also shown in Supplemental Material S1 [31]. The substrates are single-crystalline Si (001) 

with a 100 nm thick thermal oxide. The cluster size can be generally controlled by adjusting dc 

magnetron sputtering power and gas flow rates. In the case of Co2Si nanocluster samples, the Ar 

flow rates were mostly varied from 200 – 750 SCCM (standard cubic centimeter per min) to 

decrease the average cluster size [22]. The Co2Si nanoclusters investigated in this study were 

prepared using a dc magnetron sputtering power of 200 W, while maintaining the flow rates of 

Ar and He as 400 and 100 SCCM, respectively. The base pressure in the cluster-formation 



8 
 

chamber is about 1 × 10-7 Torr. First, this chamber was purged with Ar and He and subsequently 

evacuated to the base pressure (1 × 10-7 Torr) for several times and then kept at a continuous 

flow of Ar and He at the working pressure of about 0.8 Torr for about 2 hours prior to sputtering 

- in order to have oxygen free growth environment.  

The nanoclusters were deposited for an extended time to form dense films on Au electrode-

coated substrates for electron-transport measurements. For magnetic measurements, the 

nanocluster films were deposited on bare substrates. Compared to wet-chemical methods, the 

cluster-deposition method has an advantage that nanoclusters can be deposited as dense films 

directly on any substrate and electrodes without affecting the size, shape, and structure of the 

clusters. Nanocluster films produced by cluster deposition are isotropic irrespective of their 

shapes, because their crystallographic axes are randomly oriented [16, 22]. The present 

nanoclusters are also isotropic, as evidenced by the relative intensities of the Rietveld-analyzed 

x-ray diffraction peaks (Supplement S2 [31]). In fact, anisotropic (textured) ensembles are highly 

desired in permanent magnetism but nontrivial to achieve, for example by applying a magnetic 

field prior to deposition [16, 22].  

Figure 1 illustrates the steps involved in the fabrication of the sample for transport 

measurements. First, a 5 nm-thick titanium (Ti) film was deposited on Si substrate, followed by 

the deposition of a 25 nm-thick gold (Au) film using a dc magnetron sputtering through mask A 

[Fig 1(a)]. Second, mask A was removed, and the substrate was aligned with mask B and loaded 

in the cluster-deposition system. A Co2Si nanocluster film of about 270 nm thickness, 5 mm 

length, and 0.5 mm width was then deposited through mask B using the cluster-deposition 

process, and this step was immediately followed by the deposition of a 10 nm-thick SiO2 cap 

layer using a radio-frequency sputtering gun employed in the deposition chamber [Fig. 1(b)]. 
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The purpose of the cap layer is to prevent possible oxidation upon exposure to air. Removal of 

mask B yields the final device structure for the transport measurements, as schematically shown 

in Fig. 1(c).  

 

 
 

FIG. 1 Schematics of sample fabrication steps for electron-transport measurements using bar-
shaped shadow masks: (a) Deposition of a 5 nm-thick Ti film on a single-crystalline Si 
(001) substrate followed by a 25 nm-thick Au film through mask A. (b) A 270-nm thick 
Co2Si nanocluster film followed by a 10 nm-thick SiO2 cap layer deposition through 
mask B. (c) Final device structure. 

 

Longitudinal resistivity (ρxx), magnetoresistance (MR), and Hall resistivity data (ρxy) were 

measured as a function of temperature and magnetic field using a Quantum Design Physical 

Property Measurement System (PPMS). Magnetic properties were measured using a Quantum 

Design MPMS superconducting quantum-interference device (SQUID). X-ray diffraction and 

transmission-electron microscopy show that Co2Si nanoclusters form an orthorhombic structure 

of prototype Co2Si and space group Pnma (Supplemental Material S2 [31]). The Co2Si 
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nanoclusters investigated in this study have an average size d ≈ 11.3 nm with a standard 

deviation of σ/d ≈ 0.19  as shown in Supplemental Material S2 [31]. 

IV. Results and Discussion 

This paper mainly deals with the nanoscale magnetic structure of the ensemble of clusters as 

schematically shown in Fig. 2, and how this structure affects the electron-transport properties of 

the system. In this section, we first consider the magnetic properties, and then discuss the 

magneto-transport properties, which are strongly dependent on the magnetic properties.  

 

FIG. 2 Co2Si nanoclusters: Schematic of a deposited thin film. The magnetization (arrows) 
is largely confined to a surface layer (green). The simplest conduction path through 
contacts is indicated by the red-dotted line.  

 
As discussed in Sections I and II and illustrated in Fig. 2, the local moments of Co2Si 

clusters are situated predominantly at the surfaces, and those moments spin-polarize the interior 

atoms leading to ferromagnetism, albeit of an inhomogeneous type. The radial distribution of 

magnetic moments in the Co2Si clusters strongly depends on the inverse decay 

length κ  [22]. There is no systematic dependence of κ on the cluster size, although the 

experimental value of 1.3/nm for relatively big clusters is somewhat smaller than the DFT 

prediction of 2.3/nm, obtained for very small clusters [22]. Since κ strongly depends on the local 
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Co concentration, inaccuracies in the composition in the core as well as concentration gradients 

near the surface may explain the difference. On the other hand, the temperature dependence of 

the shell thickness is approximately given by Eq. (2), via κ ~  √ܽ. Assuming that the core is 

'nonmagnetic' (a strongly exchange-enhanced Pauli paramagnet), κ and the decay length 1/κ 

increase and decrease with increasing temperature, respectively. 

 

A. Magnetic Properties 

The field-dependent magnetization measured at 3 K and 300 K for Co2Si nanoclusters 

deposited, Fig. 3(a), is characteristic of ferromagnetic hysteresis. The Si substrate only exhibits a 

very weak diamagnetic background, which was subtracted from the raw data (Supplemental 

Material S3 [31]). The temperature dependence of coercivity Hc is plotted in Fig. 3(b). The 

relatively high coercivity of Hc = 2.3 kOe at 3 K, compared to 0.04 kOe at 300 K, reveals 

significant low-temperature magnetocrystalline anisotropy associated with the non-cubic ortho-

rhombic structure. 
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FIG. 3 Magnetic properties: (a) Field-dependent magnetization curves measured at 300 K and 
3 K, where the inset shows the expanded room-temperature hysteresis loop in the low-
field region and (b) coercivity Hc as a function of temperature.  

 

 

 

FIG. 4 Approach-to-saturation analysis: (a) Fitting of the field-dependent magnetization data 
using Eq. (5) at different temperatures. The open circles and solid lines correspond to 
the experimental data and fittings, respectively. (b) Effective anisotropy constant Keff 
and saturation magnetization Ms as a function of temperature. 

 

In Fig. 4(a), we analyze the field dependence of the magnetization in terms of the approach-

to-saturation expression [32 - 34] 

 

ܯ ൌ ௦ܯ ൬1 െ 4Keff215Ms2H2൰ ൅ χ௢ ܪ ൅  ଵ/ଷ                                             (5)ܪ݌

 

where Keff and Ms are the effective magnetic anisotropy constant and saturation magnetization, 

respectively. Note that the H1/3 asymptotic discussed in Sect. II affects the approach to saturation, 

and in ordered to take this effect into account, the term pH1/3 corresponding to the VWIF of the 

cluster core is added to the original approach-to-saturation expression discussed in Ref. [32,33]. 
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Without the pH1/3 term, the Eq. (3) underestimates the M(H) curvature.  As one can see from 

Sect. II, the parameter p reflects the competition between Zeeman (~ 0.1 eV) and electronic 

interactions (I ≈ 1/ࣞ ~ 1 eV). It depends on the details of the electronic structure (density of 

states) but is of the order of α2/3 Ms = 0.0376 Ms, where α = 1/137 is Somerfield’s fine-structure 

constant. 

Figure 4(a) shows the fitting of experimental magnetization data in the approach to 

saturation region (H = 10 to 70 kOe) using Eq. (5), where Ms, Keff, and p have been used as 

fitting parameters. Note that the χ0H contribution is negligibly small in low fields and at low 

temperatures [33, 35]. Furthermore, in the present system, p also actually involves χ0, 

reproducing the latter in the limit of strong ferromagnetism at high field region. Therefore χ0H 

term is not separately required and excluded during the fitting. At 300 K, the experimental value 

of p is 0.06 Ms and the fitting also yields Keff = 0.7 Merg/cm3 and Ms = 248 emu/cm3. Keff and Ms 

obtained using this analysis at different temperatures are shown in Fig. 4(b). As in other systems 

with lowest-order (second-order) magnetic anisotropy [36], the magnetocrystalline anisotropy 

shows a moderate decrease with increasing temperature. Note that the application of the uniaxial 

expression Eq. 3 to orthorhombic crystals is nontrivial and requires explicit justification (see 

below). 

Equation (5) indicates that the magnetization changes involve both zero-temperature and 

temperature-dependent contributions. Figure 4(a) and the corresponding approach to saturation 

analysis shows that χo is indeed almost constant at each temperature. This makes it possible to 

separate high- and low-field contributions and to analyze the anisotropy energy Ea(M) in Eq. (1) 

with the help of the approach to saturation, Eq. (5). However, Eq. (5) is based on the uniaxial 

energy expression Ea(M) = Keff Vuc sin2θ, where Keff = K1 is the first anisotropy constant and Vuc 
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is the unit-cell volume. Orthorhombic crystals are nonuniaxial and, in lowest order [36], 

described by  

 ா௏ೠ೎ ൌ ଴ܭ ൅ ߠଶ݊݅ݏ ଵܭ ൅ ߠଶ݊݅ݏ ଵᇱܭ ݏ݋ܿ 2߮                                            (6)                         

K1 and K1' as well as the physically unimportant zero-point energy constant Ko can be determined 

using density-functional theory (DFT) by calculating the total energy per unit cell (u.c.) for 

different magnetization directions or angles θ and φ [37,38]. The calculated values of K1 and K1' 

for a Co2Si cluster containing 96 atoms are –3.89 Merg/cm3 (–0.389 MJ/m3) and ܭଵᇱ= –0.66 

Merg/cm3 (–0.066 MJ/m3), respectively (Supplemental Material S4 [31]). The negative values of ܭଵ and ܭଵᇱ indicate that Co2Si has basically easy-plane anisotropy, accompanied by a substantial 

anisotropy in the basal plane.  

 As mentioned above, Eq. (5) was originally derived for uniaxial crystals with easy-axis 

anisotropy (K1 > 0). Its applicability to easy-plane magnets (K1 < 0) is somewhat 

counterintuitive, because one may expect the free magnetization rotation in easy-plane magnets 

to yield a faster approach to saturation. In fact, this is not the case, and Eq. (5) can equally be 

used for easy-plane magnets. Formally, changing the Keff in Eq. (5) from +K1 to –K1 does not 

affect M(H). 

 Orthorhombic anisotropy is a different scenario, because Keff is likely to involve both K1 

and K1'. Since the Co2Si clusters are not aligned crystallographically, the a, b, and c vectors point 

in random directions, constrained by the requirement that they can be orthogonal to each other. 

To obtain M(H), one must perform an average over all crystallite directions, and the underlying 

mathematical problem was solved by Danan and Barbier [34].  From Ref. 34, we obtain 
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௘௙௙ܭ  ൌ  ඥܭଵଶ ൅  ଵᇱଶ       (7)ܭ 3

 

This equation shows that the basal-plane anisotropy K1' yields a disproportionally large con-

tribution to the effective anisotropy, in spite of often being smaller than K1. We also see that the 

signs of K1 and K1' do not matter in the asymptotic approach to saturation. 

Using the ܭଵ and ܭଵᇱ values from the DFT calculations, we obtain Keff = 4.0 Merg/cm3, 

which is in fair agreement with experimental value of Keff = 1.7 Merg/cm3 at 3 K. The difference 

is not surprising, because the experimental clusters (11.3 nm size) are bigger than the DFT 

clusters (1.3 nm) and the magnetocrystalline anisotropy of nanoclusters tends to increase with 

decreasing size [39,40]. One aspect of this dependence is the surface-to-volume ratio but other, 

more difficult to quantify factors such as surface plane indices also matter [41]. 

Note that magnetic anisotropy is key intrinsic property to develop thermal stability in 

nanomagnets. It is also worth to note that the thermal demagnetization only affects isolated or 

very weakly interacting clusters and the blocking temperature of isolated magnetic nanoclusters 

is proportional to KeffV, which describes the whole cluster.  However, as explained in the 

experimental section and illustrated in Fig. 2, our nanoclusters are formed as a densely-packed 

thin film, so that the exchange coupling between the clusters suppresses the superparamagnetic 

fluctuations. This finding is confirmed by the observation of a nonzero room-temperature 

coercivity of about 0.04 kOe [inset of Fig. 3(a)]. 

Magnetic interactions are indeed important, because the clusters touch each other. This 

contact makes the system conductive (Section IVB) —isolated clusters would have an infinite 

resistivity, and the corresponding intercluster exchange interaction suppresses 

superparamagnetism. Note that the primary focus of Eq. (1) is on the local magnetic moment, but 
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this equation can also be used to discuss intercluster interactions, in analogy to Ref. 41. Figure 

16 and Eq. 4.26 in Ref. 41 show that the interparticle exchange is surprisingly strong even if the 

exchange is strongly reduced in the contact region between grains or clusters. Similarly, the 

change in the magnitude of the spin moment per atom is a well-established fact in very weak 

itinerant ferromagnets and strongly exchange-enhanced Pauli paramagnets [23, 27, 29]. This 

change is unrelated to micromagnetic phenomena such as superparamagnetic blocking and 

coercivity, and Eq. (1) describes how it is realized in ensembles of isolated or compressed 

nanoparticles. 

 

B. Electron-Transport Properties 

The temperature dependence of the resistivity ρxx of the Co2Si nanocluster film has been 

measured in zero and 70 kOe magnetic field. The data, shown in Fig. 5(a), reveal the metallic 

nature of the sample, but the resistivity of the nanocluster film, for example at room temperature 

(440 μΩ-cm), is higher than that of nanobelts (213 μΩ-cm), bulk crystal (190 μΩ-cm), and nano-

wires (200 μΩ-cm) [42]. This is not surprising, because the conduction is realized through the 

contact points between the nanoclusters. The change in the slopes of the curves in Fig. 5(a) 

around 150 K may be an electronic effect associated with the peaked density of states near the 

Fermi level [22]. In contrast to strong ferromagnets (such as Co) and ordinary weak 

ferromagnets (such as Fe), the low-temperature behavior of very weak itinerant ferromagnets 

(and of strongly exchanged enhanced Pauli paramagnets) is largely determined by the density of 

states (DOS) at the Fermi level. At elevated temperatures, the behavior of these Bloch-type 

magnets becomes more and more reminiscent of strong ferromagnets [28, 43]. The local DOS at 

the surface, Fig. 3(a) in Ref. 22, indicates strong ferromagnetism (complete 3d spin polarization), 
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whereas the core is of the Bloch type [Fig. 3(b) in Ref. 22]. Therefore, the DOS is very high, 

close to the Stoner transition. Furthermore, the peaks in the DOS are very narrow (about 50 

meV), so that major electron-redistribution effects occur at rather low temperatures and possibly 

results in the slope change around 150 K in Fig. 5(a). 

 

 

FIG. 5  Magnetotransport measurements: (a) Longitudinal resistivity ρxx measured in 
magnetic fields of 0 and 70 kOe. (b) Temperature-dependent magnetoresistance 
(MR) in a field of 70 kOe. (c) Field dependence of magnetoresistance measured at 
different temperatures.  (d)  The ρxx (T) in (a) is subtracted from the minimum value 
to visualize clearly Tmin at which the resistivity starts to increase on decreasing 
temperature. 
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Figure 5(b) shows that the magnetoresistance (MR%), defined as [(ρxx(H) – ρxx 

(0))/ρxx(0)]×100, is negative throughout the temperature range. Negative MR is a general feature 

of ferromagnetic metals, because spin misalignment yields scattering. The applied magnetic field 

suppresses spatial fluctuations of the spin direction and thereby reduces the resistance [44]. As a 

function of temperature, the MR shows a non-monotonic change of magnetoresistance and its 

magnitude exhibits a maximum near 100 K, Fig. 5(b). The same behavior is also seen in the 

field-dependent MR data measured at different temperatures, Fig. 5c. There is also a small 

resistivity upturn below 15 K, as shown in Figs. 5(a) and (d).The resistance-minimum is often 

observed in some strong ferromagnets due to Kondo effect [45-47]. The original Kondo effect 

involves interactions between localized and delocalized electrons, but a minimum can also be 

caused by Mott-Hubbard and (one-electron) Anderson localizations [48, 49]. 
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FIG. 6 Magnetoresistance in compacted Co2Si nanoclusters (schematic): (a) relatively high 
resistance due to spin misalignment (∇M ≠ 0) and (b) relatively low resistance due to 
spin alignment in a magnetic field or by interatomic exchange (∇M = 0). There are 
many electron trajectories, but only the ones that go through the contact points con-
tribute to the conduction (dashed red lines). 

 

The magnetoresistance of the films is dominated by the local nanoscale magnetic structures 

near the contacts between the clusters. The electron scattering increases with the magnetization 

gradient, which is controlled by Erdmann-Weierstrass (EW) boundary conditions [41, 50 - 52] 

and particularly large near interfaces (see e.g. Sect. 4.5 in Ref. 41). A specific feature of our 

Co2Si system is the involvement of the spin-polarized shell. At low temperatures, the mean-free 

path of the electrons is much larger than the cluster diameter, whereas at room temperature, both 

lengths are comparable. This leads to two main types of scattering events. The first mechanism 

consists in the reflection of electrons at the inner surfaces while the electrons stay inside the 
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cluster. This scattering occurs in random directions, acts as a type of surface-scattering 

mechanism, and thus decreases the conductivity. The second mechanism, schematically 

illustrated in Fig. 6, shows how electrons move through contact points and are therefore 

responsible for the conduction. The MR reflects the spin structure near the contact points: the 

resistance in Fig. 6(a) is higher than that in Fig. 6(b), because the spins are less aligned in (a). 

The spin structure, as affected by thermal disorder and magnetocrystalline anisotropy, is 

explained below. 

The magnetoresistance data, Fig. 5(b-c), show an interesting temperature-dependent non-

monotonic behavior with a maximum magnitude at about 100 K. To understand the maximum in 

MR, we must analyze the spin structure of Fig. 6 as a function of the magnetic field. We have 

shown that the high-field magnetization of the nanoclusters is roughly proportional to H1/3 

whereas the slope χo is almost constant for small-to-medium fields. The magnetoresistance 

maximum in Fig. 5(b) reflects the magnetocrystalline anisotropy, which favors magnetization 

orientation along the randomly oriented local [100] or a axis. The anisotropy competes against 

the ferromagnetic interatomic exchange and the external magnetic field, which both favor 

parallel spin alignment. The anisotropy is highest at low temperatures, where it leads to a 

freezing of the misaligned spins.  On increasing temperature, magnetic anisotropy decreases and 

at about 100 K, both the anisotropy and the coercivity are strongly reduced, Fig. 3(b) and Fig 

4(b). This means that the local magnetization is easily aligned by the external magnetic field, 

leading to an increase in magnetoresistance.  Above about 100 K, the anisotropy further 

decreases and is no longer able to effectively compete. On the other hand, the mean free path 

becomes comparable to or smaller than the cluster size at room temperature. Therefore, 
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scattering contribution becomes more dominant on increasing temperature towards 300 K and 

this leads to a decrease in the magnetoresistance.  

 We also have investigated the anomalous Hall effect in the Co2Si nanocluster film. In 

general, there are surprisingly only a few reports on AHE of nanoclusters or particles [6]. This is 

possibly due to the difficulties in sample preparation using nanoparticles for Hall measurements. 

As discussed in Section III, the cluster-deposition method uniquely make it possible to deposit a 

dense film of nanoclusters on a Hall bar. The field-dependent Hall resistivity data ρxy measured 

at 10 K is shown in Fig. 7a (black curve). The Hall resistivity, ρxy = R0B+ 4πMRs, is composed of 

ordinary term ρOH = R0B and anomalous term ρAH = 4πMRs. R0 and Rs are the ordinary and 

anomalous Hall coefficients, respectively. B = B0 + 4πM (1-N) is the flux density or magnetic-

field induction, where B0 = H in G (cgs) or μ0 H in T (SI) is the applied (external) magnetic field. 

Note that the demagnetization factor N = 1 for thin films in a perpendicular magnetic field [1, 53-

55], and therefore the Hall resistivity for Co2Si nanocluster film is considered as ρxy = R0H+ 

4πMRs or R0B0+ 4πMRs. 
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FIG. 7 Temperature and field dependence of the Hall effect: (a) Anomalous Hall effect at 10 

K as a function of external magnetic field (B0 = H in G (cgs) or μ0 H in T (SI)). The 
figure shows the field dependence of the Hall resistivity (black curve), ordinary Hall 
effect (green line), and AHE contribution (open circle) in μΩ-cm.  Field-dependent 
magnetization data in emu/cm3 is also given for comparison (red curve). (b) Field-
dependent ρxy measured at different temperatures.  

 
 

Note that the magnetization data of the Co2Si nanocluster film [Fig. 4(a)] clearly show the 

approach to saturation above B0 = 20 kG (H = 20 kOe), and this leads to the anomalous term as 

constant (4πMsRs) in the high field region. Therefore, the linear fitting to the ρxy data in the high-

field region (20 - 70 kOe), shown in the Supplemental Material S5, yields Ro (slope) and ρAHE = 

4πMsRs (intercept to the y-axis) [31, 56,57].  R0 and Rs are subsequently obtained using this 

analysis at 10 K as -0.37 × 10-5 and 9.37 × 10-5 µΩcm/G, respectively.  The sign of Ro often 

reflects the type of the charge careers [53, 58], and is negative in this study, which indicates 

predominantly electron-like conduction in Co2Si nanoclusters. Note that Ro and Rs have often the 

same sign, but there are exceptions [58, 59]. One example is Ni1-xPtx films [58], a system close to 
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the onset of ferromagnetism and therefore reminiscent of Co2Si. The sign of the anomalous Hall 

effect also depends on the spin direction of the carriers and cannot be simply related to electron- 

and hole-type contributions. By subtracting the ordinary Hall-effect contribution, the Hall 

resistivity due to the anomalous Hall effect (AHE) is obtained, open circle in Fig. 7a, whose 

shape is similar to the M(H) data obtained at 10 K (red curve).   

 

 

FIG. 8 Temperature dependence of ordinary Hall contribution: ordinary Hall coefficient R0 
and effective carrier concentration n 

 
Figure 7b shows the field-dependent ρxy data measured at different temperatures for the 

Co2Si nanocluster film. The linear fitting to the ρxy data in the high-field region at different 

temperatures (Supplemental Material S5 [31]) are also carried out to obtain the temperature-

dependent R0 and ρAHE. The ordinary Hall coefficient (R0) and the effective carrier concentration 

determined using the relation R0= -1/ne (e is the electronic charge) are plotted as a function of 

temperature as shown in Fig. 8. Note that the subtle changes in the density of states are indeed 

reflected in the temperature-dependent evolution of the ordinary Hall effect. The ordinary Hall 
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coefficient (R0) and the effective carrier concentration (n) show a significant temperature-

dependent changes for T ≤  150 K as shown in Fig. 8. This result is consistent with the 

interpretation of the slope change of the resistivity curves around 150 K in Fig. 5a being an 

electronic effect.   

 

FIG. 9 Anomalous Hall contributions: (a) Anomalous Hall resistivity ρAHE = 4πRsMs as a 
function of temperature. (b) Dependence of anomalous Hall conductivities σAHE 
(open black circles) and σ′AHE (open red triangles) as a function of longitudinal 
conductivity σxx. The black- and red-dashed lines are linear fits to the corresponding 
data and shown for guide to eye.  

 
The ρAHE values are plotted as a function of temperature as shown in Fig. 9(a). Normally, 

ρAHE in ferromagnetic metals increases with temperature [1, 60, 61] but Co2Si nanoclusters show 

an opposite trend. First, Rs often depends on ρxx, Rs = ܽρ௫௫ ൅ ܾρ௫௫ଶ [1, 62], and ρxx exhibits only 

some weak temperature dependence, Fig. 5(a). However, the saturation magnetization decreases 

significantly by about 36.2 %, from 390 to 248 emu/cm3, when going from 3 K to 300 K, Fig. 

4(b). Therefore it is likely that the temperature-dependent decrease of magnetization is the cause 

for the decrease in ρAHE = 4πMsRs on increasing temperature. 
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The Hall conductivity σAHE is often scaled with the longitudinal conductivity σxx to 

understand the anomalous Hall effect [1, 63]. The Hall conductivities at different temperatures 

were determined using the corresponding ρAHE and ρxx values [64-67] and plotted as a function 

of σxx as shown in Fig. 9 (b) (open black circles). As mentioned above, the change of Hall 

resistivity at different temperatures are mainly caused by the temperature-dependent saturation 

magnetization and therefore it is also worth to see how the Hall conductivity at constant 

magnetization varies with σxx. For this, we have normalized σAHE by Ms(T)/Ms (10 K), and the 

normalized Hall conductivity σ′AHE (red triangles) is also shown in Fig. 9(b).  

The σAHE and σ′AHE increase with σxx as shown in Fig. 9(b). σxx and σAHE of the nanocluster 

film varies between 2.27 × 103 - 2.61 × 103 and 1.25 – 3.21 Ω-1cm-1, respectively. It is worth to 

note that Onoda et al. have summarized magnetic materials having different ranges of 

longitudinal and Hall resistivities (Fig. 12 in ref. 63). Several materials having σxx in the range 

103 to 104  Ω-1cm-1 have shown Hall conductivities similar to Co2Si nanocluster films and a few 

systems are briefly mentioned below. For example, Cu1-xZnxCr2Se4 alloys with σxx   ≈103 Ω-1cm-1 

exhibit Hall conductivity of about 10 Ω-1cm-1 [63, 68]. Similarly, FePt films with a thickness of 

1.3 nm and σxx ≈ 103 Ω-1cm-1 have shown σAHE ≈  2 Ω-1cm-1 [48]. Note that it is challenging to 

establish a meaningful power-law dependence and scattering mechanism due to the narrow 

conductivity range of the nanocluster samples. However, the conductivity of our system is close 

to the region where the intrinsic mechanism becomes dominant [1, 63].  

V. Conclusions 

We have investigated the temperature-dependent magnetic and spin-electronic properties of 

Co2Si nanocluster films. Our ensembles of nanoclusters exhibit several intriguing features 
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associated with the electronic structure of Co2Si. The magnetotransport in the films is 

characterized by a cluster size smaller than or comparable to the mean free path, an electronic 

structure close to the Stoner criterion, and orthorhombic anisotropy. The anisotropy, which is 

analyzed in terms of a modified law of approach to saturation, yields an unusual temperature 

dependence of the magnetoresistance. The present paper is a prime example on how 

nanostructuring creates a new material with unique combination of electronic, magnetic, and 

transport properties. 
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