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The thermoelectric properties of conductors with low electron density can be altered significantly
by an applied magnetic field. For example, recent work has shown that Dirac/Weyl semimetals
with a single pocket of carriers can exhibit a large enhancement of thermopower when subjected to
a sufficiently large field that the system reaches the extreme quantum limit, in which only a single
Landau level is occupied. Here we study the magnetothermoelectric properties of compensated
semimetals, for which pockets of electron- and hole-type carriers coexist at the Fermi level. We
show that, when the compensation is nearly complete, such systems exhibit a huge enhancement
of thermopower starting at a much smaller magnetic field, such that ωcτ > 1, and the stringent
conditions associated with the extreme quantum limit are not necessary. We discuss our results in
light of recent measurements on the compensated Weyl semimetal tantalum phosphide, in which
an enormous magnetothermoelectric effect was observed. We also calculate the Nernst coefficient
of compensated semimetals, and show that it exhibits a maximum value with increasing magnetic
field that is much larger than in the single band case. In the dissipationless limit, where the Hall
angle is large, the thermoelectric response can be described in terms of quantum Hall edge states,
and we use this description to generalize previous results to the multi-band case.

I. INTRODUCTION

The thermoelectric effect is the generation of an electri-
cal voltage difference ∆V from a temperature difference
∆T applied across a material. The thermoelectric effect
has been an important topic in physics for over a hundred
years, since it allows one to convert waste heat into useful
electrical power [1, 2]. The magnitude of the thermoelec-
tric effect is quantified by the thermopower, or Seebeck
coefficient, which can be defined as Sxx = −∆V/(∆T ),
where both ∆V and ∆T are both measured along the
same direction x and in conditions where no current is
flowing. Alternatively, one can define the thermopower
(via an Onsager relation [3]) in terms of the heat current
JQx produced by a given electrical current Jex in situations
where the temperature T is uniform. Specifically,

Sxx =
1

T

JQx
Jex

. (1)

Throughout this paper we generally describe the ther-
mopower in terms of this latter definition.

In a single-band conductor at low temperature, the
Seebeck coefficient is typically of order (kB/e)×kBT/εF ,
where kB is Boltzmann’s constant, −e is the electron
charge, and εF is the Fermi energy (defined relative to
the bottom of the band). Heuristically, one can think
that this small factor kBT/εF arises because all elec-
trons in the Fermi sea participate in carrying electric
current, while only a small fraction of thermally-excited
electrons having energies within ∼ kBT of the Fermi en-
ergy carry heat. For this reason, large Seebeck coeffi-
cient typically arises only in systems with small Fermi
energy, such as doped semiconductors. Unfortunately,
low-energy states in semiconductors are prone to local-
ization, which presents a problem for efforts to achieve

effective thermoelectrics.1 The recently-discovered three-
dimensional Dirac and Weyl semimetals (see, e.g., Refs.
[6] and [7] for reviews) therefore offer significant promise
as thermoelectrics (see, e.g., Refs. [8–11] and Ref. [12] for
a review), since they offer the combination of low Fermi
energy, high electrical mobility [13, 14], and a gapless
electron spectrum that precludes the possibility of local-
ization [15–17].

A recent series of papers has shown that the ther-
mopower of a Dirac/Weyl semimetal grows sharply when
it is subjected to a sufficiently strong magnetic field that
the system reaches the extreme quantum limit (EQL), in
which only one Landau level is occupie [18–20]. Achiev-
ing the EQL typically requires a relatively large magnetic
field, of order 10 T× (ne [1017 cm−3])2/3, where ne is the
three-dimensional concentration of electrons. A variety
of experiments, however, have demonstrated a large en-
hancement of thermopower beginning at much smaller
magnetic field. For example, a recent experiment in the
Weyl semimetal tantalum phosphide (TaP) exhibits an
enhancement of Sxx by more than two orders of magni-
tude, starting at a magnetic field of ≈ 0.1 T, even though
the carrier concentration is of order 1019 cm−3 [21]. An
older experiment in elemental bismuth (a conventional
semimetal) demonstrated a similarly huge enhancement
of thermopower beginning at low fields [22]. In both cases
the thermopower reaches values in excess of 1000µV/K
at cryogenic temperatures, much larger than the naive
scale kB/e ≈ 86µV/K. Even more surprisingly, these
experiments are in almost-completely-compensated sys-
tems, for which pockets of electron- (e−) and hole- (h+)

1 Insulators and lightly-doped semiconductors may in fact have
relatively large thermopower, proportional to the activation en-
ergy divided by kBT [4, 5]. But the exponentially small electrical
conductivity in the insulating state typically precludes them from
providing efficient power conversion.
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FIG. 1. An illustration of the band structure of a compen-
sated Dirac/Weyl semimetal. The band structure has two
valleys, which we refer to as the electron valley (blue) and
the hole valley (red), with their respective Dirac points offset
in energy such that the chemical potential µ is in the conduc-
tion band of the electron valley and the valence band of the
hole valley. Shaded areas represent occupied states.

type carriers coexist at the Fermi level (as illustrated in
Fig. 1) and the corresponding concentrations ne and nh of
electrons and holes are nearly equal in magnitude. Typi-
cally, in such systems the electron and hole contributions
nearly cancel in thermopower (unless the two bands have
very different mobility [23]), bringing the value of Sxx to
a small value that is proportional to (ne−nh)/(ne+nh).
These experimental results suggest that there is a mech-
anism for enhancement of the thermopower by magnetic
field that is specific to compensated semimetals and does
not require the extreme quantum limit. Throughout this
paper we neglect the effects of phonon drag, which gen-
erally serve to increase the thermopower [24–26].

In this paper, we elucidate this mechanism by calculat-
ing the Seebeck and Nernst coefficients of compensated
semimetals in a magnetic field. The key idea is that,
when the field is large enough that ωcτ � 1, where ωc is
the cyclotron frequency and τ is the transport scattering
time, both electrons and holes can contribute additively

to the heat current JQx via their motion through the ~E× ~B
drift. On the other hand, the longitudinal conductivity
σxx is strongly reduced by the magnetic field, so that
the electric current Jex is reduced for a given electric field
strength. In this way there is a sharp increase in Sxx =
JQx /(TJ

e
x) once the field is large enough that ωcτ � 1,

even though such fields correspond to small Hall angle
and are well below the EQL. Indeed, this enhancement
mechanism relies on achieving simultaneously large ωcτ
and small Hall angle θH = arctan (σxy/σxx) (where σxy is
the Hall conducitivity). This set of conditions is generally
not possible in single band systems. When both condi-

tions are present, however, the thermopower grows as B2,
where B is the magnetic field strength. This B2 enhance-
ment of thermopower is generic for all semimetals with
nearly-complete compensation, |ne − nh| � ne + nh. In
this paper calculate the form of Sxx(B) explicitly for both
Dirac/Weyl semimetals and for conventional semimetals
with parabolic band dispersion.

The Nernst coefficient Sxy, which describes the off-
diagonal thermoelectric response [27–29], is also strongly
enhanced by the magnetic field. As we show below, in
the regime of ωcτ � 1 and σxy � σxx mentioned above,
Sxy grows linearly with B and achieves a maximum value
proportional to (ne + nh)/|ne − nh|.

The reminder of this paper is organized as follows.
Sec. II gives a semiquantitative derivation of our main
result, which is the B2 enhancement of thermopower.
Sec. III outlines our calculation method using two com-
plementary approaches: a semiclassical description based
on the Boltzmann equation that is valid outside the EQL,
and a calculation based on quantum Hall edge states that
is valid for all ωcτ � 1. Sec. IV and Sec.V present quanti-
tative results for the Seebeck and Nernst coefficients for
compensated Weyl semimetals and compensated semi-
conductors, respectively. In each of these sections we
consider the full range of magnetic field regimes, from
arbitrarily small values to deep in the extreme quantum
limit. We conclude in Sec. VI with a summary and dis-
cussion.

II. SEMI-QUANTITATIVE DISCUSSION

Before giving an exact derivation of the thermopower
as a function of B, we first present a semiquantitative
derivation of the main result in this paper, namely the
large enhancement of Sxx by magnetic field at ωcτ > 1.
This section includes both a general discussion of dif-
ferent regimes of magnetic field and a conceptual, semi-
quantitative derivation of Sxx in each regime outside the
EQL.

A. Regimes of Magnetic Field

In usual conductors with a single band and large Fermi
energy εF , the two relevant magnetic field regimes for de-
scribing transport are ωcτ � 1 and ωcτ � 1. Here ωc is
the cyclotron frequency of electrons at the Fermi energy,
which in Dirac/Weyl semimetals increases with Fermi en-
ergy. We define the field scale B1 such that at ωcτ = 1 at
B = B1, which means that B1 = m/(eτ) in the usual case
of parabolic bands with mass m and B1 = εF /(eτv

2
F ) in

the case of Dirac/Weyl semimetals with Fermi velocity
vF . For simplicity, we assume throughout this paper that
τ is equal for both electron and hole bands.

In single-band systems B1 is also the magnetic field
scale at which σxy becomes comparable to σxx, so that
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B � B1 corresponds to large Hall angle θH . In nearly-
compensated bands, however, the Hall conductivity re-
mains small at B1 due to near-cancellation of electron
and hole contributions, so that arctan θH(B = B1) ≈
(ne−nh)/(ne+nh). The field scale associated with large
Hall angle, σxy � σxx, is therefore significantly larger
than B1. We denote the field at which σxy = σxx by
BH ∼ B1×ne/(∆n), so that large Hall angle corresponds
to B � BH . Here ∆n = ne − nh denotes the difference
between electron and hole concentrations. Throughout
this paper we focus on the case where ∆n� ne, so that
(∆n)/ne is a small parameter.

Whenever the magnetic field is low enough that the
Landau level spacing h̄ωc is much smaller than the Fermi
energy εF , one can describe thermoelectric transport in
terms of a quasiclassical picture in which the Landau
quantization of electron states is relatively unimportant.
In the opposite limit of h̄ωc � εF , however, nearly all
electrons reside in the lowest Landau level of transverse
motion, and transport must be described in terms of Lan-
dau levels. This extreme quantum limit constitutes a dif-

ferent field scale BEQL, which equals 2π4/3n
2/3
e h̄/(eg2/3)

for Weyl semimetal and 21/3π4/3n
2/3
e h̄/(eg2/3) for semi-

conductor, such that at B > BEQL all electrons reside
in the lowest Landau level at zero temperature. We
use g to represent the band degeneracy (including spin
degeneracy); for instance, in Dirac/Weyl semimetals, g
represents the number of Dirac nodes multiplied by the
spin degeneracy. Throughout this paper we assume that

BEQL � BH , which corresponds to ne/(∆n)� n
1/3
e τvF

for compensated semimetals and ne/(∆n) � h̄n
2/3
e τ/m

for parabolic bands, so that Landau quantization effects
are relatively unimportant at all but the highest field
scales. In Sec. VI we comment briefly on the case where
the compensation is so complete that BEQL � BH .

B. Mechanism for Large Enhancement of
Thermopower

In order to elucidate the mechanism for large field en-
hancement of the thermopower, we now give a semiquan-
titative derivation of the Seebeck coefficient Sxx in the
three semiclassical regimes of magnetic field B � B1,
B1 � B � BH , and B � BH . Discussion of the extreme
quantum limit is deferred until the subsequent sections.
As mentioned in Sec. I, the Seebeck coefficient can be un-
derstood by considering situations in which the temper-
ature is spatially uniform while an electric current flows
along the x direction, so that Sxx is described by Eq. (2).

For the sake of comparison, we begin by considering
the usual case of a single band of carriers with con-
centration ne (which, for concreteness, we take to be
electron-type). As mentioned in the Introduction, in
such cases the thermopower at low magnetic field is of
order Sxx ∼ (kB/e) × kBT/εF , where εF is the Fermi
energy. One can derive this expression in a semiquanti-

tative way by noting that the thermal energy density U
at temperature T is of order U ∼ k2BT 2ν, where ν is the
density of states and is typically of order ν ∼ ne/εF . The
heat current density JQx ∼ Uvd, where vd is the carrier
drift velocity in an applied electric field. Meanwhile, the
electric current density Jex ∼ −enevd. Combining these
expressions gives a thermopower

Sxx ∼ −
kB
e

kBT

εF
. (2)

A magnetic field B � BEQL does not strongly change
this result, since the heat current carried by electrons in
a single band at low temperature is always proportional
to T 2 times the electric current, and the field produces
only weak modulations of the density of states.

In a strongly-compensated system, however, the situa-
tion is very different. In the absence of a magnetic field,
electrons and holes move in opposite directions under an
applied electric field, and therefore they carry heat in op-
posite directions even as they carry current in the same
direction [see Fig. 2(a)]. That is, the drift velocity vd is
opposite for electrons and holes, so that the electric cur-
rent is Jex ∼ −e (ne + nh) vd. The heat current, on the
other hand, is small in magnitude: JQx ∼ k2BT

2∆n/εF .
The resulting Seebeck coefficient

Sxx ∼ −
kB
e

kBT

εF

∆n

ne
, B � B1 (3)

is therefore suppressed by a factor (∆n)/ne relative to
the single-band case. This result remains valid for all
B � B1, for which ωcτ � 1.

Now consider the regime of magnetic field B1 � B �
BH . At such fields the Hall conductivity remains small,
σxy � σxx, so that the electric current flows nearly paral-
lel to the applied electric field. The longitudinal conduc-
tivity σxx, however, declines in this regime as 1/B2. In
particular, if we define the electrical mobility µe, then the
Drude formula gives σxx = e(ne + nh)µe/[1 + (µeB)2] ∼
ene/(µeB

2). (For Dirac/Weyl semimetals, the electric
mobility µe = eτεF /v

2
F , while for the semiconductor

case µe = eτ/m.) Thus, if the electric field has a com-
ponent Ex in the x direction, then the electric current
Jex ∼ eneEx/µeB

2. The corresponding heat current can
be found by considering that when the electric current
flows along the x direction, there is a y component of
electric field Ey = −σxyEx/σxx ∼ −µeBEx∆n/ne. This

y component implies that the ~E × ~B drift velocity has a
component in the x direction, which has the same sign for
both electrons and holes [see Fig. 2(b)]. Multiplying the
magnitude of this x component by the internal energy
density gives a heat current JQx ∼ −k2BT 2µeEx∆n/εF .
Combining these two results, the Seebeck coefficient is

Sxx ∼ −
kB
e

kBT

εF

∆n

ne
µ2
eB

2, B1 � B � BH . (4)

This relation, Sxx ∝ [(∆n)/ne]B
2, is generic for compen-

sated semimetals, regardless of the details of the band
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FIG. 2. An illustration of the semiclassical motion of elec-
trons and holes in different regimes of magnetic field. (a) At
B � B1, the magnetic field is negligible and electrons (blue)
and holes (red) have opposite drift velocity under the applied
electric field, leading to a near-cancellation in the heat cur-
rent and a small thermopower. (b) When B1 � B � BH ,
the Hall angle θH remains small, but the heat current is dom-
inated by the x component of the ~E × ~B drift, which allows
electron and hole carriers to contribute additively. The star
symbols denote impurity scattering events, which limit the
electric current. (c) When B � BH , the Hall angle θH is

nearly 90◦ and the ~E× ~B drift velocity is nearly aligned with
the current direction x, so that it determines both the heat
current and electric current.

dispersion, and is one of the primary results of this pa-
per.

When the magnetic field is further increased to the
point that B � BH , the Hall angle approaches 90 de-

grees, and the ~E× ~B drift velocity becomes nearly aligned
with the current direction x [see Fig. 2(c)]. In this limit,
the flow of current is nearly perpendicular to the electric
field direction, and therefore it can be described as a dis-
sipationless process, so that the Seebeck coefficient is de-
scribed by the simple relation discussed in Refs. [18, 30]:
Sxx = (total entropy)/(net charge). Since, as discussed
above, the entropy is of order k2BTne/εF , the Seebeck
coefficient is

Sxx ∼ −
kB
e

kBT

εF

ne
∆n

, B � BH (5)

FIG. 3. A schematic plot (in double-logarithmic scale) sum-
marizing the three regimes of magnetic field for the See-
beck coefficient in nearly compensated semimetals outside the
EQL.

Note that this “saturation” value of the Seebeck coeffi-
cient represents a large enhancement over the value as-
sociated with a single-band system [Eq. (2)], by a factor
ne/(∆n).

These three regimes are summarized in Fig. 3.
It should be emphasized that our arguments in this sec-

tion have focused on the semiclassical regime B � BEQL,
in which many Landau levels are occupied. When B �
BEQL this semiclassical description fails, and it should be
replaced by a calculation in terms of quantum Hall-like
edge states; we discuss such a calculation in Sec. III B.

One can also ask about the Nernst coefficient Sxy,
which is the off-diagonal component of the thermoelec-
tric tensor [defined as Sxy = (∆V )y/(∆T )x, or Sxy =
JQy /(TJ

e
x)]. Similar semiquantitative arguments give

Sxy ∼
kB
e

kBTµeB

εF
, B � BH , (6)

Sxy ∼
kB
e

kBTn
2
e

(∆n)2µeBεF
, B � BH , (7)

So that Sxy achieves a large maximum value proportional
to ne/(∆n) at B ∼ BH .

III. ANALYTICAL DESCRIPTION

A. Semi-classical Theory

At low temperature, kBT � εF , the thermoelectric
tensor Ŝ can be calculated by the Mott formula [3],

Ŝ = −π
2

3

kB
e
kBT σ̂

−1 dσ̂

dε

∣∣∣∣
εF

. (8)

Thus, the Seebeck and Nernst coefficients are completely
defined by the relationship between the conductivity ten-
sor σ̂ and the energy ε at zero temperature. In the semi-
classical regime B � BEQL, this relationship can be ob-
tained from the Boltzmann equation, which we briefly
recapitulate here.
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For the case with both electrons and holes, the total
conductivity is [3]

σ̂ = σ̂e + σ̂h, (9)

where σ̂e and σ̂h are the electron and hole conductivity
tensors, respectively, given by

σ̂e,h (ε) = e2τ(ε)

∫
dk

4π3
δ (ε− ε(k))ve,h (k) v̄e,h (k) ,

(10)
with

v̄ (k) =

∫ 0

−∞

dt

τ(ε)
et/τ(ε) v (k (t)) (11)

and v(k) denoting the group velocity v(k) = ∇kε(k).
The time evolution of the momentum is given by the
semiclassical equation of motion

h̄k̇ = ∓ev (k)×B. (12)

The dependence of the scattering time τ on the quasi-
particle energy ε depends in general on the scattering
mechanism, and can have a variety of different functional
forms. For the sake of our discussion in this paper, we
assume that τ is a constant and independent of ε. If one
includes an energy dependence for τ , then certain numer-
ical prefactors are modified in formulas containing τ , but
our primary results are unchanged.

With these assumptions, one can derive the conductiv-
ity tensors as

σ̂e (ε) =
1

3

e2νe (ε) v2e (ε) τ

1 + ω2
cτ

2

(
1 ωcτ
−ωcτ 1

)
, (13)

σ̂h (ε) =
1

3

e2νh (ε) v2h (ε) τ

1 + ω2
cτ

2

(
1 −ωcτ
ωcτ 1

)
. (14)

Together with the Mott formula [Eq. (8)], Eqs. (13) and
(14) completely define the Seebeck and Nernst coeffi-
cients at temperatures T � εF /kB .

B. Dissipationless Limit

When the magnetic field is large enough that σxy �
σxx, one can describe the thermopower in the dissipation-
less limit, in which τ is effectively set to infinity. In this
description, all electrical and thermal current is carried
by quantum Hall-like edge states [31, 32]. For nearly
compensated systems, the dissipationless limit requires
B � BH , but it encompasses both the limit where many
Landau levels are occupied and the extreme quantum
limit B � BEQL.

The flow of electrical and thermal current are described
by the coupled transport equations [3],(

Je

JQ

)
=

(
σ̂ −α̂
α̂T −κ̂

)(
E
∇T

)
. (15)

where κ̂ is the thermal conductivity tensor and the tensor
α̂ is related to the thermoelectric tensor Ŝ by Ŝ = σ̂−1α̂.
(Here we have written the transport coefficients in terms
of intensive quantities, rather than in terms of extensive
differences in voltage and temperature, as in the Intro-
duction.) The Seebeck coefficient is its diagonal term,
which one can write as

Sxx =
σxxαxx + σxyαxy

σ2
xx + σ2

xy

. (16)

In dissipationless limit (τ →∞), one has σxy � σxx and
αxyσxy � αxxσxx, so that the Seebeck coefficient is given
simply by

Sxx =
αxy
σxx

. (17)

Both σxy and αxy are well-defined in the limit τ →∞.
In compensated systems, σxy and αxy are given by the

sum of contributions from both electron valley and hole
valleys. The contribution from each valley can be calcu-
lated independently. For concreteness, in the remainder
of this section we concentration on the electron valley,
briefly repeating the derivation for the single-band case
as presented in Ref. [19]. The hole valley is completely
analogous.

We start by considering a Hall brick with length Lx,
Ly and Lz respectively. The magnetic field is assumed to
be along the z direction and the electric field is assumed
to be along the x direction. The Landau gauge is chosen,

with vector potential ~A = (0, Bx, 0). It is safe to assume
that each Landau level is constant in energy in the bulk
along the x direction and increases sharply at the edge
of the Hall brick. The contribution of the electron valley
to the electric current along y direction is

Iy = − e

Ly

∑
states

vynF (ε− µ) . (18)

where nF is the Fermi-Dirac distribution and µ is the
chemical potential. Given that the electric field is small,
the Fermi-Dirac distribution can be expanded to first or-
der in the potential difference ∆Vx along the x direction.
The nth Landau level εn(ky, kz) in the bulk is almost
flat (independent of ky) and gives little contribution to
the current. Only the contribution of edge states ky =

±Lx/2l2B needs to be included, where lB =
√
h̄/(eB) is

the magnetic length. The corresponding electric current

Iy =
e2Lz∆Vx

2πh̄

∫ ∞
−∞

dkz
2π
×

[∑
εn>0

NnnF [εn(kz)− µ]

−
∑
εn<0

Nn (1− nF [εn(kz)− µ])

]
, (19)

where Nn is the degeneracy of the nth Landau level at
a given momentum kz. For a given ne, the chemical
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potential µ is fixed by the condition∫ ∞
0

dε
eB

2πh̄

∑
kz,n

Nn δ(ε− εn(kz))nF [ε− µ]

+

∫ 0

∞
dε

eB

2πh̄

∑
kz,n

Nnδ (ε− εn(kz)) (1− nF [ε− µ]) = ne.

(20)

The resulting Hall conductivity of the electron valley

σexy = −ene
B
. (21)

The heat current in the electron valley is obtained in
a similar way,

IQy =− e

h̄

∆Vxl
2
B

LxLy

∑
kz,ky,n

Nnky [εn(ky, kz)− µ]

× ∂εn (ky, kz)

∂ky

∂

∂ε
nF [εn (ky, kz)− µ] . (22)

The thermoelectric Hall conductivity is defined by

αexy =
IQy

T∆VxLy
(23)

=
e

2πh̄Lz

∑
n,kz

Nns

(
εn(kz)− µ

kBT

)
.

The function s(x) represents the average entropy per elec-
tron for a given quantum state,

s (x) = −kB [nF (x) lnnF (x) + (1− nF (x)) ln (1− nF (x))] .
(24)

The reader is referred to Ref. [19] for a more detailed
presentation.

As mentioned before, the discussion containing
Eqs. (18)–(24) focused on the electron valley. But this
calculation can be repeated to get the corresponding con-
tributions σhxy and αhxy for the hole valley. The total
Seebeck coefficient is given by

Sxx =
αexy + αhxy
σexy + σhxy

. (25)

IV. COMPENSATED DIRAC/WEYL
SEMI-METAL

We now present results for the Seebeck and Nernst co-
efficients for compensated Dirac/Weyl semimetals, using
the two complementary calculations outlined in the pre-
vious subsections. As mentioned above, in Dirac/Weyl
semimetals the cyclotron frequency ωc = eBv2F /ε de-
pends on the energy ε relative to the Dirac point.
Since the Mott formula is defined in terms of the zero-
temperature conductivity, we need only consider the cy-
clotron frequency at the Fermi energy ε = εF . In the
remainder of this section we use ωc to denote this value.

FIG. 4. The Seebeck coefficient in a nearly-compensated
Dirac/Weyl semimetal as a function of B, plotted in dimen-
sionless units and in double-logarithmic scale. The magnetic
field B � BEQL everywhere in this plot. The scattering time

and degree of compensation are such that τ = 8000v−1
F n

−1/3
e

and ∆n = 0.01ne. The band degeneracy g = 12. Each regime
of magnetic field is labeled by the corresponding asymptotic
equation that describes it (dashed lines). Compare the three
regimes derived semiquantitatively in Sec. II.

Plugging Eqs. (13) and (14) into the Mott formula,
Eq. (8), gives for the Seebeck coefficient

Sxx ≈−
π4/3g1/3

37/3
kB
e

kBT∆n

h̄vFn
4/3
e

, B � B1, (26)

Sxx ≈−
g

6

kB
e

kBT∆ne2B2τ2vF

n2eh̄
3 , B1 � B � BH ,

(27)

Sxx ≈−
2π4/3g1/3

31/3
kB
e

kBTn
2/3
e

h̄vF∆n
, BH � B � BEQL,

(28)

where the band degeneracy g is equal to the number of
Dirac nodes. Notice that these three regimes are equiva-
lent to the ones discussed Sec. II.

In Fig. 3 we plot the Seebeck coefficient obtained using
the Mott formula, together with the asymptotic expres-
sions of Eqs. (26)–(28). We use dimensionless units for
the values of B and Sxx such that the curve Sxx(B) is
parameterized by only three dimensionless constants: the

degeneracy g, the scattering time τ in units of 1/(vFn
1/3
e )

(which is of the order of the Fermi time), and the relative
compensation ∆n/ne.

When the magnetic field is sufficiently large that
σxy � σxx, which encompasses both the regime of
Eq. (28) and B � BEQL, the current flow becomes
nearly dissipationless, and one can calculate the thermo-
electric tensor using the picture of dissipationless edge
states (Sec. III B). The Landau levels in the bulk of a
Dirac/Weyl semimetal are given by [33]

εn (kz) = vF sign(n)

√
h̄2k2z + 2eh̄B |n|, (29)
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where n is the Landau level index and h̄kz is the momen-
tum in the field direction. Inserting this spectrum into
Eqs. (23) and (25) gives for the Seebeck coefficient

Sxx ≈−
2π4/3g1/3

31/3
kB
e

kBTn
2/3
e

∆nvF h̄
, BH � B � BEQL,

(30)

Sxx ≈−
g

3

kB
e

kBTeB

h̄2vF∆n
, B � BEQL. (31)

Notice that Eq. (30) agrees exactly with the semiclas-
sical result in Eq. (28). Eq. (31) indicates a linear-in-B
enhancement of thermopower in the EQL, as first derived
in Ref. [18]. Note, however, that the value of Sxx in the
EQL is enhanced relative to the single-band case by a
large factor ∼ ne/(∆n).

In Fig. 5, the red curve shows the Seebeck coefficient
calculated via quantum Hall edge states, and the blue
curve shows the semiclassical calculation. The two results
match in the regime of magnetic field BH � B � BEQL.

FIG. 5. The Seebeck coefficient of a nearly-completely-
compensated Dirac/Weyl semimetal as a function of magnetic
field, showing both the semiclassical (blue) and dissipationless
limit (red) calculations. The material parameters are taken
to be the same as in Fig. 4. The two asymptotic results ap-
plicable to the dissipationless limit are shown as dashed lines.

The Mott formula also allows us to calculate the Nernst
coefficient Sxy in the semiclassical limit. This calculation
gives:

Sxy ≈
4π2/3g2/3

35/3
kB
e

kBTeBτ

h̄2n
2/3
e

, B � B1, (32)

Sxy ≈
π2/3g2/3

32/3
kB
e

kBTeBτ

h̄2n
2/3
e

, B1 � B � BH , (33)

Sxy ≈ 4π2 kB
e

kBTn
2
e

(∆n)2eBv2F τ
, B � BH . (34)

These formulas imply that Sxy grows linearly with
magnetic field at B � BH , achieving a maximum value
Sxy ∼ (kB/e) × (kBT/εF ) × ne/(∆n) at B ∼ BH , and
then declines again as 1/B when B � BH . These behav-
iors are shown in Fig. 6. At magnetic fields B � BEQL,

FIG. 6. The Nernst coefficient Sxy of a nearly-completely-
compensated Dirac/Weyl semimetal as a function of magnetic
field. The material parameters are taken to be the same as in
Figs. 4 and 5. The Nernst coefficient achieves a peak value of
order Sxy ∼ (kB/e)(kBT/εF ) × ne/(∆n) when B ∼ BH .

the value of the Nernst coefficient depends on the details
of the relevant scattering processes, and it is not well-
defined in the dissipationless limit. We therefore leave
analysis of Sxy in the EQL to a later work.

The results in this section can be compared to a recent
experimental work [21], which demonstrates an enormous
enhancement of Seebeck and Nernst coefficients as a func-
tion of magnetic field in the compensated Weyl semimetal
TaP. TaP has twelve pairs of Weyl nodes, four of which
are at energies below the chemical potential (electron-
type) and eight of which are above (hole-type). In order
to make a rough, but quantitative comparison to the ex-
periment, we use the parameters reported in Ref. [21] for
the electron density, ne = 2.4× 1019 cm−3, hole density,
nh = 2.35 × 1019 cm−3, and transport scattering time
τ = 9.76× 10−12 s. Since our results depend only weakly
on the band degeneracy, we use g = 12 for both electron-
and hole-type pockets. For the Fermi velocity, we use ge-
ometric of the three orthogonal Fermi velocities reported
in Ref. [34]. The resulting calculation is compared to ex-
perimental data in Fig. 7, using data corresponding to
T = 50 K. There are no fitting parameters in the calcu-
lation.

As can be seen in Fig. 7, our calculation captures both
the order of magnitude of the experimental result and
the qualitative trend of strongly increasing Sxx and Sxy.
However, the agreement is not very strong, particularly
at small magnetic field. This deviation may arise in part

from the nonlinearity of the dispersion relation ε(~k) in
TaP, for which the dispersion is only “Weyl-like” at en-
ergies very close to the Weyl points. A more accurate
calculation that is specific to TaP is beyond the scope of
this paper.
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FIG. 7. A comparison between the Seebeck (a) and Nernst (b)
coefficients calculated in this work (blue lines) and the values
reported in Ref. [21] for the compensated Weyl semimetal
TaP (brown points). The material parameters used for the
calculation are taken from Refs. [21] and [34], and there are
no fitting parameters. The data corresponds to a temperature
T = 50K. The lack of quantitative agreement, particularly
at small magnetic field, may arise in part from nonlinearity
of the dispersion relation in TaP.

V. COMPENSATED SEMICONDUCTOR

So far we have focused primarily on compensated
Dirac/Weyl semimetals, but the general mechanism for
field enhancement of thermopower outlined in Sec. II is
generic to any compensated system. In order to demon-
strate this generality, in this section we consider the case
of a compensated semiconductor. As an example, we ex-
amine the simple situation in which two parabolic bands
with identical effective massm, one electron-type and one
hole-type, intersect the chemical potential with nearly
identical Fermi energy. In this case the cyclotron fre-
quency ωc = eB/m is a constant that does not depend
on energy.

Using the Mott formula, Eq. (8), we calculate the See-
beck coefficient in each of the three semiclassical field

regimes as

Sxx ≈−
π2/3g2/3

2× 35/3
kB
e

kBTm∆n

h̄2n
5/3
e

, B � B1, (35)

Sxx ≈−
π2/3g2/3

2× 32/3
kB
e

kBT∆ne2τ2B2

mh̄2n
5/3
e

, B1 � B � BH ,

(36)

Sxx ≈−
2π2/3g2/3

32/3
kB
e

kBTmn
1/3
e

h̄2∆n
, BH � B � BEQL.

(37)

Here g is the degeneracy of each band (including spin).
These results are equivalent to the three regimes outlined
in Sec. II. A full semiclassical calculation is presented in
Fig. 8, along with the relevant asymptotic expressions.
The units of our calculation are such that the curve
Sxx(B) depends only on three dimensionless material pa-
rameters: the degeneracy g, the transport scattering time

τ in units of m/(h̄n
2/3
e ), and the degree of compensation

(∆n)/ne. These three semiclassical regimes are plotted
in Fig. 8.

FIG. 8. The Seebeck coefficient Sxx for a nearly-completely-
compensated semiconductor as a function of magnetic field,
plotted in double-logarithmic scale. The material parameters

used for this calculation are g = 2, τ = 1600m/(h̄n
2/3
e ), and

∆n = 0.01ne. The range of field values in this plot correspond
to B < BEQL, at which the semiclassical description is valid.
Compare the three regimes described in Sec. II.

In the dissipationless limit B � BH , the Seebeck co-
efficient can be described in terms of quantum Hall edge
states, as outlined in Sec. III B. The Landau levels for
Shrödinger particles satisfy

εn (kz) =
h̄2k2z
2m

+ h̄ωc

(
n+

1

2

)
, (38)

where n is the Landau level index and h̄kz is the mo-
mentum in the magnetic field direction. Using Eqs. (17),
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(21), and (23), one can derive the Seebeck coefficient as

Sxx ≈−
2π2/3g2/3

32/3
kB
e

kBTmn
1/3
e

h̄2∆n
,BH � B � BEQL,

(39)

Sxx ≈−
2g2

3π2

kB
e

e2kBTmB
2

h̄2ne∆n
, BEQL � B � BT ,

(40)

Sxx ≈− 2
kB
e

ne
∆n

ln (B/BT ) , B � BT . (41)

Here we have defined a new field scale BT =√
2πh̄2ne/(ge

√
mkBT ), such that at B � BT the Fermi

energy (relative to the bottom of the conduction band)
becomes smaller than kBT .

Equation (39) is identical to the semiclassical result in
Eq. (37), and corresponds to the limit where many Lan-
dau levels are occupied. Once the EQL is reached, and
only a single Landau level is occupied, the Fermi energy
(relative to the minimum energy h̄ωc/2 of the conduction
band) begins to fall with increased field as 1/B2, which is
a consequence of the strongly enhanced density of states
in the lowest Landau level [19, 35]. The B2 enhancement
of the thermopower at BEQL � B � BT reflects this
falling Fermi energy, and the associated rise of the frac-
tion of thermally-excited electrons. However, when the
Fermi energy falls so far that it becomes much smaller
than kBT , the chemical potential falls into the band gap
and the electron energies are well-described by a classi-
cal Boltzmann distribution. The electron entropy, which
determines the thermopower in the dissipationless limit,
is therefore given by an analogue of the Sackur-Tetrode
equation for the entropy of an ideal gas, leading to the
logarithmic dependence in Eq. (41) [19]. This logarithmic
regime B � BT does not exist in the Dirac/Weyl case,
because there is no band gap and therefore no regime in
which the electrons obey classical, Boltzmann statistics.

In Fig. 9 we plot the Seebeck coefficient as a function
of magnetic field across the full range of different regimes
of magnetic field. In addition to the three semiclassical
regimes given by Eqs. (35)-(37), the three regimes corre-
sponding to the dissipationless limit, Eqs. (39)-(41), can
also be seen. The semiclassical (blue curve) and dissipa-
tionless (red curve) calculations coincide in the interval
BH � B � BEQL.

The Nernst coefficient can also be derived from the
Mott formula in the semiclassical regime. This derivation
gives

Sxy ≈
π2/3g2/3

32/3
kB
e

kBTeτB

h̄2n
2/3
e

, B � BH , (42)

Sxy ≈
4π2/3g2/3

32/3
kB
e

kBTm
2n

4/3
e

eh̄2τB(∆n)2
, B � BH . (43)

As in the Dirac/Weyl case, the value of Sxy grows linearly
with B at B � BH and achieves a maximum of order
Sxy ∼ (kB/e) × (kBT/εF ) × ne/(∆n) at B ∼ BH . This
behavior is shown in Fig. 10.

FIG. 9. The Seebeck coefficient Sxx for a nearly-completely-
compensated semiconductor as a function of magnetic field
B, including all regimes of B. The material parameters are
the same as in Fig. 8. The temperature is chosen such that

T = 0.1h̄2n
2/3
e /(mkB); in the units of our plot this choice

affects only the largest field regime B � BT . The blue curve
represents the semiclassical result calculated by Mott formula.
The red curve corresponds to the dissipationless limit. The
onset of the EQL is marked by a vertical dashed line, and
dashed lines labeled by equations describe different regimes
in the dissipationless limit.

FIG. 10. A plot of the Nernst coefficient Sxy for an almost-
completely-compensated semiconductor. The material pa-
rameters are the same as in Figs. 8 and 9.

VI. CONCLUSION

In this paper we have presented a generic result for
strong magnetic field enhancement of the thermopower
in compensated conductors. The large magnitude of
thermopower in these systems is somewhat surprising,
since in the absence of magnetic field compensated sys-
tems have very small thermopower, owing to the near-
cancellation of the electron and hole contributions. In a
magnetic field, however, electrons and holes have a com-

ponent of their ~E × ~B drift motion that allows them to
contribute additively to the heat current (see Sec. II),
and this large heat current drives the thermopower up.
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We emphasize that at sufficiently large magnetic field
the thermopower is enhanced not just above their small
zero-field value, but well above the value Sxx ∼ (kB/e)×
(kBT/εF ) associated with single-band conductors. This
field enhancement begins as soon as the magnetic field
becomes large enough that ωcτ � 1, and it does not re-
quire the much more stringent conditions associated with
large Hall angle or the extreme quantum limit, which are
necessary in order to see magnetic field enhancement of
thermopower in the single band case [18, 19].

Our primary result, which is the ∼ B2 enhancement of
thermopower beginning at B > B1, requires the simul-
taneous existence of two strong inequalities. The first

is ωcτ � 1, which enables strong ~E × ~B drift of car-
riers that enhances the heat current JQx . The second
condition is σxy � σxx, which implies that the elec-
trical resistance ρxx grows quadratically with magnetic
field and therefore the electrical current Jex is reduced
for a given applied voltage. These two conditions cannot
be achieved simultaneously in single-band systems, and
arise only because of the existence of a small parameter
(∆n)/ne. While our analysis has focused on the simpli-
fied case where both electron and hole bands have the
same mobility, the generic material requirement for the
existence of a regime Sxx ∝ B2 is

∆n�
(
µene + µhnh

) min{µe, µh}
µeµh

, (44)

where µe and µh are the electron and hole mobilities,
respectively.

We have also calculated the behavior of the ther-
mopower within the EQL, using a picture based on quan-
tum Hall edge states. We find that Sxx behaves similarly
to the results derived in Refs. [18, 19], except that it is
enhanced by an overall factor ne/(∆n) that is very large
when the degree of compensation is nearly complete.

The Nernst coefficient also exhibits an enhancement
with increasing magnetic field, growing linearly with B
and attaining a large maximum value Sxy ∝ ne/(∆n) at
sufficiently large fields that σxy is comparable to σxx.

We have not attempted to make a careful quantitative
description of any particular experiment in this paper,
but our results provide a potential explanation for the
huge magnetothermoelectric effect observed in Ref. [21]
in the compensated Weyl semimetal TaP. A calculation
using no free parameters provides an estimate for Sxx
and Sxy that is consistent both in trend and in order of
magnitude with their results (Fig. 7). Our results may
also provide an explanation for older experimental results

on elemental bismuth [22], although a careful analysis
remains to be done.

Throughout this paper we have assumed that the
EQL is achieved only at relatively large magnetic fields
BEQL � BH , so that the Hall angle is large through-
out the EQL. In closing, let us briefly comment on the
opposite case of BEQL � BH , for which ∆n is so small
that σxy is still small compared to σxx at the onset of
the EQL. In this case the EQL does not coincide with
the “dissipationless limit”, and the thermopower in the
regime BEQL � B � BH must depend on the transport
scattering rate. Describing current flow in this regime
is difficult, since one cannot use the naive Boltzmann
description (which is invalid inside the EQL) nor the de-
scription based on quantum Hall edge states (which does
not account for scattering). If one nonetheless uses a
naive Drude-like expression for the conductivity tensor
in the regime BEQL � B � BH , together with the ex-
pression for αxy in the EQL [20], one arrives at a result

Sxx ∼ (kB/e) × (e3kBTvF τ
2∆n)B3/(h̄4n

8/3
e ). This re-

sult smoothly matches the semiclassical one [Eq. (27)] at
B ∼ BEQL, as well as the expression for large Hall angle
within the EQL [Eq. (31)] at B ∼ BH , so we suspect that
it is broadly correct. A more careful analysis remains to
be done, however, in order to understand this regime.

Finally, let us comment on the constraints imposed by
Onsager symmetry on the field-dependence of the See-
beck and Nernst coefficients. These symmetries demand
that the value of the Seebeck coefficient is independent
of the sign of the magnetic field (whether it points in the
+z or −z direction), while the Nernst coefficient changes
sign when B is flipped. These dependencies are appar-
ent in our semi-classical calculations [Eqs. (26)-(28) and
Eqs. (35)-(37) for Sxx and Eqs. (32)-(34) and Eqs. (42)-
(43) for Sxy]. In the dissipationless limit, however, one
should be careful to note that the sign of the heat current
IQy carried by edge states depends on the field direction.
Our Eq. (22) assumes that B points in the +z direction;
when the magnetic field is flipped, the sign of Eq. (22) is
inverted. Inserting this sign correctly gives the invariance
of Sxx with field direction.
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