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Abstract

We have used highly accurate quantum Monte Carlo methods to determine the chemical structure

and electronic band gaps of monolayer GeSe. Two-dimensional (2D) monolayer GeSe has received

a great deal of attention due to its unique thermoelectric, electronic, and optoelectronic properties

with a wide range of potential applications. Density functional theory (DFT) methods have usually

been applied to obtain optical and structural properties of bulk and 2D GeSe. For the monolayer,

DFT typically yields a larger band gap energy than for bulk GeSe but cannot conclusively determine

if the monolayer has a direct or indirect gap. Moreover, the DFT-optimized lattice parameters and

atomic coordinates for monolayer GeSe depend strongly on the choice of approximation for the

exchange-correlation functional, which makes the ideal structure – and its electronic properties –

unclear. In order to obtain accurate lattice parameters and atomic coordinates for the monolayer,

we use a surrogate Hessian based parallel line search within diffusion Monte Carlo to fully optimize

the GeSe monolayer structure. The DMC-optimized structure is different from those obtained

using DFT, as are calculated band gaps. The potential energy surface has a shallow minimum

at the optimal structure. This, combined with the sensitivity of the electronic structure to strain

suggests that the optical properties of monolayer GeSe are highly tunable by strain.
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I. INTRODUCTION

Group-IV monochalcogenides MX (M = Ge or Sn, X = S or Se) have received a great deal

of attention because of their unique thermoelectric and electronic properties which can be

exploited in wide range of applications, such as photodetection, gas sensing, and as potential

anode materials for lithium-ion batteries.1–3 In particular, germanium selenide (GeSe) is

a two-dimensional (2D) layered p-type semiconductor that has been extensively studied

because of its optical properties; however they are still not yet fully understood. In the past

few decades, bulk GeSe has been shown to have an indirect band gap at room temperature by

various experimental and theoretical studies.4–10 Experimental results have provided indirect

gap measurements in a range of 1.07 eV to 1.29 eV using different experimental methods,

such as electron-energy-loss-spectroscopy11, diffuse reflectance spectroscopy7, and ultraviolet

photoemission spectroscopy12. Very recently, adsorption spectra measurements suggested

the possibility of a direct band gap minimum of 1.3 eV.13 This spread in experimental results

indicates a high sensitivity of measured GeSe optical properties to the particular choice

of optical spectroscopy method used. Theoretical results on GeSe optical gaps have also

shown to be strongly dependent on the relaxed GeSe structure as well as on the particular

theoretical methodology used in the calculations. Several density functional theory (DFT)

studies have been performed to investigate the optical properties of GeSe; however, the

computed band gaps vary strongly with the particular exchange-correlation (XC) potential

used in DFT Kohn-Sham Hamiltonian. For example, the generalized gradient approximation

(GGA) is a well-known XC functional that has been widely applied to study structural and

optical characteristics of various electronic structures. Many GGA optical gaps for bulk GeSe

have been evaluated so far, however, as is typical, GGA tends to underestimate optical gaps

compared to experiment.14 Moreover, even within the same class of XC functional, different

approximate DFTs have yielded significantly different optimized lattice parameters for the

orthorhombic Pnma GeSe structure, with lattice parameters in the ranges of a = 4.21 Å to

4.83 Å, b = 3.78 Å to 3.86 Å, and c = 10.60 Å to 14.69 Å.14,15 This points to an intrinsic

limitation of DFT approximations when applied to optical and structural properties for

GeSe, and motivated us to use a highly accurate numerical approach which allows for full

incorporation of electron correlation and interlayer interaction for layered GeSe.

Detailed experimentally determined structural and optical properties of monolayer GeSe
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have not yet been reported, so these properties have largely been obtained using first-

principle calculations. According to previous DFT studies, monolayer GeSe is expected

to be a direct-gap semiconductor with a larger band gap than bulk GeSe, and its gap can be

tuned using uniaxial or biaxial strains.14 This strain-sensitivity of the optical properties of

monolayer GeSe clearly shows the importance of obtaining an accurate monolayer chemical

structure in order to accurately predict its band gap energy. Strain could be applied either

directly or via a substrate or heterostructure. The DFT-optimized monolayer chemical struc-

ture exhibits a distorted NaCl-type structure, but the exact structural parameters for the

distortion, as well as the equilibrium lattice parameters, are not known for the monolayer:

DFT-GGA calculations have yielded monolayer relaxed lattice parameters of a = 3.99 Å to

4.83 Å and b = 3.78 to 3.97 Å.14,16,17 This huge variation makes it difficult to ascertain the

monolayer chemical structure and also difficult to assess the accuracy of reported DFT band

gaps of 0.8 eV to 1.8 eV14,15, because these values from separate DFT studies were usually

obtained from different structural parameters for the monolayer. Consequently, this range

of DFT results leads us to conclude that an accurate benchmark calculation of the geometry

of pristine monolayer GeSe is needed in order to accurately estimate optical properties and

their qualitative and quantitative changes induced by strains.

Quantum Monte Carlo (QMC) is a highly accurate class of stochastic method which can

describe the ground state properties of many-body electronic structures. Previous QMC

studies have successfully provided accurate structural properties for various functional ma-

terials, including 2D layered systems.18–21 In this study, we used QMC to study structural

and optical properties of bulk and monolayer GeSe. More recently, Wines, Saritas, and

Ataca22 used QMC methods to obtain the lattice constants and band gaps of monolayer

GaSe. Our results are analogous to theirs in that Wines, Saritas, and Ataca showed that

there is a large spread in DFT results for structure and band gaps, and they also showed

that many-body perturbation theories such as the Bethe-Salpeter equation also underes-

timate band gaps compared to results using diffusion Monte Carlo (DMC). In order to

describe accurate distortions in the NaCl-type monolayer structure, we fully optimized the

GeSe monolayer geometry using QMC. Finally, we used DMC to estimate optical gaps of

the optimized monolayer geometry, and observed significantly larger band gap energies than

either DFT band gaps for monolayer GeSe or experimental values for bulk GeSe. We also

verified using multi-determinant expansions of the ground state and excited states that the
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fixed-node approximation from single-determinant trial wavefunctions did not introduce any

appreciable errors in the estimated DMC band gaps.

II. COMPUTATIONAL DETAILS

Our QMC calculations were carried out with the fixed-node diffusion Monte Carlo (DMC)

method23,24 as implemented in the QMCPACK code.25,26 Slater-Jastrow type wavefunctions

were used as trial wavefunctions, consisting of a single Slater determinant and Jastrow cor-

relation functions with up to three-body correlations. Single-particle orbitals in the Slater

determinants were obtained with the DFT Kohn-Sham scheme based on plane-wave ba-

sis sets using the QUANTUM ESPRESSO package.27 The Perdew-Burke-Ernzerhof (PBE)

parameterization28 of GGA was employed as XC functional, and the plane-wave calcula-

tions used a 350 Ry (about 4,762 eV) kinetic energy cut-off for the energy-consistent norm-

conserving Ge and Se pseudopotentials developed by Burkatzki, Fillip and Dolg (BFD).29,30

We used the same pseudopotentials for all DFT and QMC calculations, except for the multi-

determinant expansions (below). Bulk and monolayer GeSe were simulated with Monkhorst-

Pack 8× 8× 8 (bulk) and 8× 8× 1 (monolayer) k-point grids; a 20 Å thick vacuum padding

was added along the z axis (perpendicular to the plane of the monolayer) for the monolayer.

All DMC calculations in this study were done with a 0.005 Ha−1 time step, which was shown

to be a fully converged value in previous DMC studies of various periodic 2D systems.18,20

The one-body finite size effects from the periodic supercell DMC calculations were fully

controlled by applying twist-averaged boundary conditions (TABC).31 (See Appendix A for

details on convergence with respect to k-point grid and TABC.) We additionally reduced

two-body finite-size effect by extrapolating DMC energies estimated at various supercell

sizes to the bulk limit.

In addition, we performed in this study selected configuration-interaction (sCI) calcu-

lations using the Configuration Interaction using a Perturbative Selection made Iteratively

(CIPSI) method32 in order to compare the band gap energy computed with the CIPSI multi-

determinant wavefunction to the single-determinant DMC band gap energy. All CIPSI cal-

culations in this study were performed with a modified version of Quantum Package 233 using

integrals from PySCF34, and used correlation-consistent effective core potentials (ccECPs)

with the double-zeta (DZ) and triple-zeta (TZ) basis sets developed for use with these
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FIG. 1. (a) DMC total energy of bulk GeSe as function of N−1, where N is the total number of

atoms in the supercell. The dotted line indicates a simple linear regression fit. (b) Extrapolated

DMC total energy of GeSe as function of unit cell volume. The dotted line represents a Vinet fit.

ccECPs.35 Each multi-state CIPSI calculation was performed using matching to the renor-

malized second-order perturbative correction to the energy.33 For each DZ and TZ basis,

an initial two-state CIPSI calculation was performed using DFT orbitals obtained with the

B3LYP XC functional36–39 until the size of the variational space reached 105 determinants.

Natural orbitals (NOs) were formed from the resulting multideterminant wave functions

(with equal weights for each state), and a second two-state CIPSI calculation was performed

in the space of these NOs with a larger number of determinants (about 9 × 106). For the

calculations in the TZ basis, this process of forming NOs was repeated after reaching 106

determinants within the first set of NOs, and then a second two-state CISPI calculation with

about 107 determinants. Estimated full-CI energies were obtained via linear extrapolation

of the CIPSI variational energies with respect to the renormalized second-order perturbative

correction to the energy (rPT2) as rPT2→ 0.

III. RESULTS

We first computed the equation of state for bulk GeSe using fixed-node (FN) DMC in

order to assess the structural and optical properties of bulk GeSe, and to verify the DMC

results against available experimental values. Figure 1(a) shows the DMC total energies

for bulk GeSe with respect to the inverse of the number of atoms N per supercell at the

experimental lattice parameters a = 4.38, b = 3.82, and c = 10.79 Å.40 Three different sizes
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FIG. 2. (a) PBE band structure of bulk GeSe. (b) DMC excitonic gap and quasiparticle gap for

bulk GeSe as function of N−1 where N is the total number of atoms in the supercell. The dotted

line indicates a simple linear regression fit.

of supercell with up to 108 formula units (f.u.) of GeSe were simulated using TABCs with up

to 64 twists in order to minimize one-body finite-size effect. Figure 1(a) shows that linear re-

gression provided an excellent fit for TABC-DMC total energies in the thermodynamic limit,

and the extrapolated total energy was estimated to be -360.796(3) eV/f.u. Using the same

protocol, we calculated extrapolated TABC-DMC total energies at various unit-cell volumes

in order to obtain the equation of state. We calculated the DMC energy by changing the

unit cell volume, keeping the aspect ratio and (relative) atomic coordinates fixed. Using the

Vinet function to fit the equation of state, as shown in Fig. 1(b), the equilibrium DMC lattice

parameter a and bulk modulus were estimated as 4.40(1) Å and 32.1(3) GPa, respectively,

which are in good agreement with the experimental values of 4.40 Å and 37.9 GPa. The

DMC cohesive energy for bulk GeSe was calculated as 6.91(2) eV/f.u. As the experimental

cohesive energy for bulk GeSe is not reported yet to the best of our knowledge, we expect

that this DMC cohesive energy can give good guidance to assess the energetic stability of

GeSe-based materials as DMC has been shown to yield accurate cohesive energies in many

materials.18,41–44

We then carried out DMC calculations to estimate the band gaps of bulk GeSe. DMC

excitonic gaps can be evaluated by computing Eex
g = Eph(k) − E0 where E0 and Eph(k)

represents the ground state energy and the DMC total energy upon a particle-hole exci-

tation, particle-hole excitation energy respectively, with the latter estimated by promoting

an electron from the top of the valence band to the bottom of the conduction band at a
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momentum k. In order to find the relevant single-particle momentum k we plotted the

DFT band structure for bulk GeSe using DFT-PBE. In the PBE band structure of bulk

GeSe (see Fig. 2(a)), we can see that the direct minimum gap minimum is located at the

high-symmetry Γ point, which is the k-point at which we calculated the excitonic gap. We

verified that the band structure obtained using PBE0 gave the same direct and indirect gaps

as the PBE bandstructure (see Appendix C for details). In addition to the excitonic gap,

we also estimated the DMC quasiparticle gap by calculating the ground state total energy

difference of N + 1, N − 1, and N electron systems, Eqp
g = E(N + 1) +E(N − 1)− 2E(N).

Both the DMC excitonic and the quasiparticle gaps were fully extrapolated to the bulk ther-

modynamic limit using a simple linear regression fit, with estimated DMC gaps in different

supercell sizes of 32, 72, and 108 f.u. supercells, as can be seen in Fig. 2(b). The extrapo-

lated excitonic direct gap was calculated to be 1.62(16) eV, which is in the good agreement

with the experimental result for the direct gap, 1.53 eV.45 The extrapolated quasiparticle

gap of 1.95(21) eV is seemingly larger than the excitonic gap although the two values are

within each others’ error bars. In any case, one would expect the excitonic gap to be smaller

by an amount equal to the exciton binding energy; our results suggest a weak exciton binding

energy ∼ 0.3 eV.

Computed direct gap and structural properties of bulk GeSe in this study are summa-

rized in Table I. Among the XC functionals in Table I, there is no single DFT XC functional

that simultaneously yields structural properties and band gap in reasonable agreement with

experimental values. For example, the PBE0 lattice parameters and cohesive energy are in

good agreement with the experimental or DMC values, but the PBE0 band gap is signifi-

cantly larger than the experimental one. In contrast, the DMC results are in good agreement

with the experimental results for both structural properties and band gap. Based on our

accurate DMC results for bulk GeSe, we can confidently assume that DMC will enable us

to predict accurate structural properties and band gap of monolayer GeSe as well to guide

future experiments and computational works.

We now turn to the monolayer form of GeSe. In order to study monolayer GeSe, it is

necessary to obtain an accurate monolayer structure, which is not known yet experimentally.

In experiments, the monolayer geometry will also be affected by the substrate used. That is

an additional complication that we will not consider here, but will focus on the unstrained

equilibrium structure of monolayer GeSe. As seen in Fig. 3, there are a total of eight struc-
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TABLE I. Equilibrium lattice constant (a), bulk modulus (B0), cohesive energy (Ecoh), and band

gap (Eg) for bulk GeSe computed using various DFT XC functionals and DMC; Eex
g and Eqp

g are

the excitonic and quasiparticle gap, respectively.

method a (Å) B0 (GPa) Ecoh (eV) Eg (eV)

PBE 4.43 28.9 6.89 0.68

LDA 4.38 32.8 8.54 0.58

SCAN 4.43 30.0 - 0.88

PBE0 4.38 33.2 6.96 1.88

B3LYP 4.48 27.1 6.06 1.77

HSE06 4.38 32.4 5.97 1.21

DMC 4.40(1) 32.1(3) 6.91(2)
Eex

g : 1.62(16)

Eqp
g : 1.95(21)

Exp. 4.401 37.92 - 1.533

1Ref. [40]. 2Ref. [46]. 3Ref. [45].

FIG. 3. (a) Top and (b) side view of GeSe monolayer. Parameters in the geometry are taken from

Ref. [14].

tural parameters that need to be optimized for the monolayer geometry. Direct structural

optimization based on force minimization is not yet fully developed in efficient algorithms

in QMC methods, and a brute-force optimization by mapping out the energy landscape as

a function of eight degrees of freedom would be prohibitively expensive. Direct structural

optimization based on force minimization, while developed and implemented for VMC by

Sorella and co-workers47, and also by Filippi and co-workers48, is not yet fully developed in

efficient DMC algorithms, particularly for solids and heavier elements. In contrast, DFT
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TABLE II. Relaxed geometry of a GeSe monolayer using various DFT XC functionals. The exper-

imental values are for bulk GeSe.

a (Å) b(Å) d(Å) l1(Å) l2(Å) θ1(deg) θ2(deg) θ3(deg)

PBE 4.26 3.95 2.50 2.65 2.52 96.5 93.9 97.2

LDA 4.03 3.96 2.51 2.71 2.51 93.9 89.3 96.0

SCAN 4.71 3.76 2.46 2.57 2.54 94.2 103.6 95.4

PBE0 4.21 3.85 2.48 2.58 2.51 96.5 100.3 91.8

B3LYP 4.47 3.89 2.51 2.56 2.51 96.9 98.5 96.7

HSE06 4.38 3.99 2.46 2.63 2.50 98.8 101.3 93.2

Exp.(Bulk)1 4.40 3.85 2.49 2.58 2.54 95.4 103.6 90.8

1Ref. [45].

is routinely used to optimize a given structure based on force minimization. Therefore, we

first optimized the monolayer structure using DFT in order to get a rough estimate of its

geometry and of the difference between monolayer and bulk structures.

Table II shows structural parameters for fully relaxed monolayer GeSe using various

DFT XC functionals. When we compare the DFT results for monolayer to the experimental

values for bulk GeSe, we see large differences in the GeSe structural parameters between

monolayer DFT and experimental results. However, because of the strong variation of the

calculated structural parameters for monolayer GeSe with the DFT XC functional we cannot

at this point assertively claim that the monolayer geometry is different from that of the bulk.

In particular, the meta-GGA SCAN shows significantly larger lattice parameter a than is

obtained from other XC functional for monolayer or bulk GeSe. Based on the large variation

within the DFT results, we conclude that structural optimization using DMC is necessary.

As stated earlier, force-minimization methods for QMC DMC are not well-developed. We

therefore used an energy-minimization method based on the DMC total energy and without

use of DMC energy gradients. A total of eight structural parameters consisting of two lattice

parameters and six atomic coordinates are not straightforward to fully optimize manually; if

we were to use a quartic function, which has been widely used for geometry optimization49,50,

optimizing the monolayer structure would require at least 58 grid points in order to estimate

the global minimum in the energy surfaces for eight structural parameters. Because such
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a brute-force method requiring a total of 390,625 DMC total energy calculations would be

prohibitively expensive, we introduce two distinct ways to efficiently optimize the monolayer

structure using DMC with a reduced set of degrees of freedom.

A. DMC lattice parameter optimization with DFT atomic coordinates

We first computed a 52 DMC energy data grid for optimizing only the lattice parameters

a and b for the monolayer, while the remaining internal atomic coordinates (d, l1, l2, θ1, and

θ2 – see Fig. 3) were relaxed using DFT at a given pair of lattice parameters a and b. This

replaces the six parameters for the internal atomic coordinates with the relaxed DFT results.

Therefore, the choice of the DFT XC functional used to relax the atomic coordinates is very

important in order to obtain the best possible DFT atomic coordinates. In order to choose a

XC functional for the relaxation, we calculated DMC total energies at a few different lattice

parameters and with DFT internal atomic coordinates relaxed (at fixed lattice parameters)

using various XC functionals. In order to select the DFT XC functional for the relaxation of

the internal atomic coordinates, we first did a screening of various DFT functionals. We fixed

the lattice parameter b at 3.95 Å and selected four different values of the lattice parameter

a. For each value of a, we then optimized the atomic coordinates using six different DFT XC

functionals, and finally calculated the DMC energy for the given lattice parameters a and

b and the optimized atomic coordinates, in total 24 DMC calculations. These calculations

suggested that the HSE06 XC functional provides the best atomic coordinates as the DMC

total energy was lowest for the HSE06-optimized atomic coordinates. We then proceeded

with the 25 DMC energy calculations scanning lattice parameters a and b for fixed (relative)

atomic coordinates given by the HSE06 optimization. We will denote this DMC energy

“DMC(HSE06)”. Details of the DMC computations using relaxed DFT atomic coordinates

can be found in Appendix B.

This optimization procedure yields an energy as function of the lattice parameters a and

b. As can be seen in the total energy contour plot in Fig. 4, the DMC(HSE06) energy mini-

mum is located at a = 4.73(1) Å and b = 3.76(1) Å which is far away from the PBE(HSE06)

energy minimum (DFT-PBE total energy calculated with the HSE06-optimized atomic coor-

dinates) of a = 4.26 Å and b = 3.95 Å. This significant difference between the DMC(HSE06)

and PBE(HSE06) energy landscapes strongly suggests that the fully optimized DMC and
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FIG. 4. Total energy contour plots for (a) PBE(HSE06) and (b) DMC(HSE06) energies as functions

of lattice parameters a and b in atomic units. Crosses indicate global minima of the energy contours.

DFT geometries are rather different. Moreover, PBE and HSE06 optimizations of the atomic

coordinates yield very different results (Table II) while PBE and PBE(HSE06) optimizations

of the lattice parameters yield almost identical results. This suggests that the DFT underes-

timates the difference in forces between the PBE and HSE06 atomic coordinates. Moreover,

we found that the PBE(HSE06) optimized lattice parameters a and b are identical to the

fully relaxed PBE lattice parameters even though their internal atomic coordinates are dif-

ferent (see Table II). This can be understood to originate in erroneously negligible differences

between the PBE and HSE06 computed atomic forces, which leads us to suspect that the

atomic force evolution is underestimated in the DFT relaxation process. On the other hand,

we see large discrepancy between the lattice parameters obtained from DMC(HSE06) and

the fully relaxed HSE06 result, the latter with a = 4.38 Å and b = 3.99 Å, even though

the same HSE06 functional was used in the relaxation of the atomic coordinates. This tells

us that among the tested DFT XC functionals, HSE06 yields the best atomic coordinates,

although they still differ discernibly from those obtained from DMC, and still yield large

errors in the lattice parameters. This tells us that among the DFT XC functionals, HSE06

yields relatively accurate optimized atomic coordinates but can still yield large errors in the

lattice parameters. Thus, we conclude that lattice parameters and atomic coordinates need

to be optimized simultaneously using a fully DMC-based energy-minimization method.
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TABLE III. Progress of DMC energy and structural parameters for the GeSe monolayer during

the parallel line search. Step 0 corresponds to the PBE relaxed geometry, which was the starting

point of the search. Error bars corresponding to the 1-σ uncertainty of the last significant digits

are shown in parentheses for each quantity.

Step EDMC (eV/unit cell) a (Å) b (Å) x z1 z2

0 -721.0684(49) 4.26 3.95 0.4140 0.55600 0.56000

1 -721.1277(98) 4.27(2) 3.95(1) 0.402(6) 0.5603(3) 0.5536(4)

2 -721.1432(38) 4.40(1) 3.89(1) 0.399(3) 0.5607(3) 0.5528(4)

3 -721.1533(38) 4.40(2) 3.89(1) 0.400(3) 0.5604(2) 0.5532(2)

B. DMC geometry optimization using a surrogate Hessian based parallel line

search method

As stated earlier, optimization of crystal structures with multiple cell and/or internal

parameters is generally a challenge for DMC as forces and stresses are not yet widely avail-

able. Energy-based methods may instead be used, however these generally require many

costly energy evaluations in order to sample the atomic potential energy surface (PES) in

sufficient detail to determine the optimal structure. Here, we briefly outline a new surrogate

Hessian based optimization method that accelerates the search for the DMC PES optimum

by incorporating approximate information from the DFT-energy Hessian. This significantly

reduces the number of DMC calculations required. The full details of this method will be

the subject of an upcoming publication.

The method combines line search with information from the DFT energy Hessian. Line

search is a robust method to locate minima of multi-dimensional functions, and it is often

used in QMC optimization methods for wavefunction parameters25. A potential drawback

of line search is slow convergence, potentially requiring many iterations and hence many

calculations of the DMC total energy. If the DMC energy Hessian were available, it could

significantly accelerate the search. We instead guide the search using the approximate DFT

Hessian, which still provides significant acceleration. For GeSe, the DFT energy Hessian

was evaluated in the parametric subspace spanned by cell parameters a, b and internal

parameters x, z1, z2, where x, z1, z2 are fractional coordinates of the four atoms in the
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unit cell, the positions of which are Ge(x, 0.25 z1), Ge(x+0.5, 0.75, 1-z1), Se(0.5, 0.25,

1-z2), and Se(0, 0.75, z2), respectively. We noted that DFT-optimized structures would

yield fixed atomic fractional coordinates y along the b-axis for all XC functionals used.

Therefore, we could fix the atomic fractional coordinate y and use symmetry constraints for

the remaining fractional coordinates to reduce the number of degrees of freedom to three

for the internal atomic coordinate plus two for the lattice parameters. The explicit relations

between (l1, l2, d, θ1, θ2, θ3) and (a, b, c, x, z1, z2) are

l21 = (xa)2 + (0.5b)2 + [(z1 − z2)c]2

l22 = [(x− 0.5)a]2 + [((z1 + z2)− 1)c]2

d = [(z1 + z2)− 1]c

θ1 = 2 tan−1

[
0.5b√

x2a2 + (z1 − z2)2c2

]

θ2 = cos−1

[
(2x− 1)xa2 + 2(z1 − z2 − z21 + z22)c2

2
√

(0.5− x)2a2 + (1− z2 − z1)2c2
√
x2a2 + 0.25b2 + (z1 − z2)2c2

]

θ3 = cos−1

[
(2x− 1)xa2 + 2(z2 − z1 − z22 + z21)c2

2
√

(0.5− x)2a2 + (1− z2 − z1)2c2
√
x2a2 + 0.25b2 + (z1 − z2)2c2

]
, (1)

where c is the dimension of the simulation supercell along the z axis (coincident with the

crystallographic c-axis in Fig. 3) that includes vacuum padding. In our simulations, c =

21.58 Å.

The Hessian was found in this subspace by a quadratic fit to direct PBE energy values

calculated on a uniform grid containing five points along each dimension. Next, the Hes-

sian so obtained was diagonalized to yield a set of search directions within this parameter

space. In this diagonalization step, we find that the lattice parameters a and b are coupled,

parameters z1 and z2 are coupled, while x is essentially independent. If the DFT Hessian is

a perfect surrogate for the DMC Hessian (i.e. no error) and if the energy surface is locally

well approximated by a multi-dimensional quadratic function, then performing a line search

along each of the separate directions in parallel converges to the DMC PES minimum in a

single step.

In practice for GeSe, convergence was achieved by the second step. The search began

from the PBE relaxed geometry. In each step, seven DMC calculations were performed along
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TABLE IV. Relaxed PBE and DMC geometry of the GeSe monolayer. The experimental values

are for bulk GeSe geometry.

a (Å) b(Å) d(Å) l1(Å) l2(Å) θ1(deg) θ2(deg) θ3(deg)

PBE 4.26 3.95 2.50 2.65 2.52 96.5 93.9 97.2

DMC(HSE06) 4.73(1) 3.76(1) 2.44 2.56 2.53 94.2 103.1 96.4

DMC 4.40(2) 3.89(1) 2.45(1) 2.63(1) 2.49(1) 95.4(5) 100.2(2) 93.4(2)

Exp.(Bulk)1 4.40 3.85 2.49 2.58 2.54 95.4 103.6 90.8

1Ref. [45].

each parameter direction (31 calculations in total as all search directions shared a common

point) and the energy curve along each line was approximated by a least-square quartic

polynomial fit. The minimum along each separate direction defined the starting parameter

coordinate for the next iteration of the search. Table III contains the convergence of the

structural parameters with search step. As the structural parameters converge, the total

energy also converges to sub-millihartree accuracy.

Table IV summarizes the optimized DMC structural parameters for GeSe monolayer.

The DMC(HSE06) internal atomic coordinates are in general in better agreement with the

DMC ones than are the PBE ones, but the differences in lattice parameters a and b are large;

HSE06 does not simultaneously yield accurate atomic coordinates and lattice parameters.

While the DMC(HSE06) internal atomic coordinates are in rather good agreement with the

DMC ones, the differences in lattice parameters a and b are large, which clearly shows that

HSE06 does not simultaneously yield accurate atomic coordinates and lattice parameters. In

the DMC geometry optimization, the initial geometry was set to the relaxed PBE monolayer

geometry, which has smaller lattice parameter a and larger b than the experimental bulk

lattice parameters, but the DMC relaxed geometry is close to the bulk GeSe one in terms

of lattice parameters and the six atomic coordinates. We conclude that the absence of the

interlayer interactions in the monolayer form does not give rise to significant changes in the

lattice parameters, but does give rise to some differences in the internal atomic coordinates.

Having obtained the optimized GeSe monolayer structure, we can calculate the interlayer

binding energy of GeSe by computing the total energy difference between the bulk and

monolayer forms. The interlayer binding energy extrapolated to the bulk limit is estimated
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FIG. 5. PBE monolayer GeSe band structure for (a) PBE and (b) DMC geometry. Blue lines

represent candidates for direct and indirect gap.

FIG. 6. DMC quasiparticle and excitonic gaps for monolayer GeSe as function of N−1 where N

represents the total number of atoms in the supercell. The dotted line indicates a simple linear

regression fit.

to be 0.27(2) eV. Because the experimental binding energy is not yet reported, this DMC

binding energy can serve an accurate guide for predicting interlayer binding energies for

multi-layer GeSe for future studies.
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TABLE V. Calculated DFT and DMC band gaps for monolayer GeSe (in eV). Note that all band

gaps are computed in the same optimized DMC geometry.

Direct (Γ) gap (eV) Direct gap (X-Γ) Indirect gap Quasiparticle gap

LDA 1.50 1.24 1.02 -

PBE 1.64 1.34 1.16 -

SCAN 1.90 1.61 1.38 -

PBE0 2.97 2.45 2.27 -

B3LYP 2.71 2.36 2.21 -

HSE06 2.29 1.87 1.67 -

DMC (bulk) 1.62(16) - - 1.95(21)

DMC (monolayer) 3.2(1) 3.6(2) 3.2(2) 3.1(2)

C. Electronic band gaps

With the fully optimized DMC monolayer geometry, we examined carefully how the

electronic band structure and band gaps in the DMC geometry differ from those of DFT

geometries, which are the ones that have generally been used. In the PBE band structure

(based on the PBE-relaxed geometry), the direct gap and indirect band gaps are located

between X and Y high symmetry points (see blue lines in Fig. 5(a)). Among these two band

gaps in the PBE band structure, it is difficult to confidently confirm the band gap position

because of the very small energy difference (about 0.05 eV) between the direct (1.06 eV)

and indirect PBE gaps (1.01 eV). In Fig. 5(b), the PBE band structure based on the DMC

geometry exhibits larger band gaps than the PBE geometry, but the minimum band gaps

are located at the same k-points as for the PBE geometry for both the direct (1.24 eV)

and indirect gaps (1.02 eV). However, the direct gap is 1.50 eV at the Γ point in the DMC

geometry, which is significantly smaller than the band gap (2.32 eV) in the PBE geometry.

This clearly shows that the GeSe monolayer band structure is very sensitive to the precise

structure. As a consequence, it is very important to accurately predict the structure in order

to obtain accurate electronic structure. It also suggests that controlling strain, e.g., by using

different substrates or by mechanical bending of samples, can be a route to manipulate the

electronic properties of monolayer GeSe, in particular its optical absorption.
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In order to obtain accurate band gaps we estimated DMC gaps at selected k-points in

the Brillouin zone, two direct and one indirect gap, based from the PBE band structure in

the DMC geometry (see Fig. 5). Table V shows a summary of the results for the DFT and

DMC band gaps. The DMC excitonic and quasiparticle gaps for monolayer GeSe in the

Table are fully extrapolated results (see Fig. 6) as are the corresponding bulk values. In

Table V, all DFT calculations yield a smaller indirect band gap than direct gaps, suggesting

the characteristics of an indirect semiconductor. While PBE, LDA, and SCAN largely

underestimate band gaps compared to corresponding DMC band gaps, the hybrid functionals

(PBE0, B3LYP, and HSE06) that incorporate some exact Hartree-Fock exchange yield band

gaps closer to those of DMC (although still significantly smaller), highlighting the importance

of including some level of electron-electron interactions beyond local and semi-local exchange

and correlations and the importance of reduced electron self-interaction.

Monolayer GeSe has substantially larger band gaps, in the range of 3.2 eV to 3.6 eV,

than bulk GeSe, 1.6 eV to 2 eV. This suggests that monolayer GeSe is a highly tunable wide

band-gap semiconductor using strain to manipulate the band gap and its optical absorption

edge. Based on the DMC gaps, we cannot conclusively state whether the monolayer is a

direct or indirect band gap semiconductor. However, the closeness of the direct gap at the Γ

point and the indirect gap (X to Y gap) and the strain sensitivity of the electronic structure

suggests that monolayer GeSe has a tunable direct-to-indirect gap transition.

The estimated DMC band gaps for monolayer are significantly larger than DFT band

gaps. Because experimental values for the monolayer band gaps are not known and some pre-

vious DMC studies yielded overestimated band gaps compared to experimental values,43,51

we need to eliminate potential methodological errors in the estimated DMC band gaps for

monolayer GeSe (note that the DMC bulk direct gap at the Γ point of 1.6 eV is close to

the experimental value of 1.53 eV which suggests that this DMC gap is not plagued by

methodological errors). A potential source of error is the fixed-node approximation: if the

nodal structures for the ground state and excited state trial wavefunctions are poor, this can

give rise to errors in estimated band gaps. In particular, it has been claimed that fixed-node

errors in the excited state is a potential source of errors51. In order to eliminate such an

error, we compare the DMC band gap to band gaps obtained using sCI through CIPSI in

order to investigate the dependence of the band gap on the number of determinants in the

wavefunction. Table VI shows calculated CIPSI energies for the ground and excited state

18



TABLE VI. Calculated CIPSI total energies in DZ and TZ quality basis sets and their extrapolated

energies to the complete basis set limit. Ndet, Evar, EPT2, and Eextrap. represent the total number

of determinants, variational energy, second-order perturbative correction, and extrapolated energy

to the EPT2 = 0 limit, respectively. Energies are given in eV.

basis Ndet state Evar EPT2 Eextrap.

DZ 9264974 ground -705.72 -0.97 -706.89

excited -703.09 -0.94 -704.27

gap 2.62

TZ 10197480 ground -713.82 -1.76 -715.98

excited -711.71 -1.81 -714.13

gap 1.85

CBS extrap. ground -719.81

excited -718.28

gap 1.52

in a 1 × 1 GeSe monolayer cell. We computed variational energies Evar and second-order

perturbative corrections EPT2 up to a maximum number of determinant (Ndet) of 9,264,974

for double-zeta (DZ) and 10,197,480 for triple zeta (TZ) basis sets in order to estimate the

extrapolated energy Eextrap. for the full variational space using linear extrapolation to the

limit EPT2 → 0. Using Eextrap. for DZ and TZ basis sets, we finally obtained energies ex-

trapolated to the complete basis set (CBS) limit for the ground and for excited state with

an electron promoted at the Γ point. The excitonic gap, which is calculated as the energy

difference of Eextrap. in the CBS limit between the ground and excited states, is computed

as 1.52 eV. Based on the good agreement of the estimated excitonic gap between CIPSI

(1.52 eV) and DMC (1.36(6) eV) at the same size of supercell, we expect that the error

induced by the fixed-node approximation is negligible in the DMC excitonic gap for GeSe

monolayer. We were not able to compute CIPSI energies in larger supercell sizes, but the

almost identical CIPSI and DMC band gaps lead us to expect that CIPSI band gap fully

extrapolated to the thermodynamic limit would exhibit band gaps very similar to the DMC

band gap energy estimated using a single-determinant wavefunction. From these CIPSI and

DMC results, we conclusively confirm that monolayer GeSe is a wide-gap semiconductor
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at low temperatures and that its band gap is severely underestimated by common DFT

approximations.

IV. CONCLUSIONS

We obtained structural properties and band gaps of bulk and monolayer GeSe using QMC

methods. We have shown that QMC yields accurate structural and optical properties for

bulk GeSe but that DFT results vary significantly depending on the choice of XC func-

tionals. This is analogous to the findings of Wines, Saritas and Ataca22 who showed that

structural and electronic properties of monolayer GaSe obtained using DFT methods are

unreliable, and even many-body perturbation theory methods such as the Bethe-Salpeter

equation underestimates the direct gap. We used DMC to optimize the monolayer GeSe

structure using an algorithm based on a surrogate Hessian based method that considerably

accelerated the optimization process. We found that monolayer GeSe exhibits a shallow

potential energy surface minimum over a large range of lattice parameters. This makes

the structures obtained by DFT very sensitive to the XC functional used. Moreover, the

electronic structure, including positions of band minima and band gaps, is sensitive to the

structural geometry with a consequence that the DFT electronic properties also vary sig-

nificantly with the choice of XC functional. We also used DMC to estimate direct gaps

at the high-symmetry Γ point and at a point on the high-symmetry line connecting the X

and Γ points; we also estimated the indirect gap at a transition (from near the X point

to near the Y point in the Brillouin zone) suggested by the PBE band structure based on

the DMC structure. We also confirmed, using multi-determinant wavefunctions, that the

nodal error in the computed DMC gaps is small. DMC shows that the Γ-point direct gap

is approximately the same as the indirect gap. This, and the sensitivity of the electronic

structure to the physical structure, suggests that monolayer GeSe gaps are highly tunable

and that a transition can be induced from a direct gap to an indirect gap semiconductor,

with potential applications exploiting the resulting changes in optical absorption. More-

over, our work, as well as the one by Wines, Saritas, and Ataca22 clearly demonstrate the

need for highly accurate structural and electronic structure methods in order to reliably

assess the properties of GeSe and GaSe, and presumably also for most mono-chalcogenides

as well as for transition-metal dichalcogenides, which is necessary in order to fully exploit
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FIG. 7. PBE total energy per formula unit GeSe for bulk GeSe as a function of k-point mesh (left

panel), and as a function of kinetic energy cut-off (right panel).

the properties of these materials in future applications.
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Appendix A: Convergence with respect to k-point mesh and TABC

Fig. 7 shows the DFT PBE total energy per GeSe formula unit for bulk GeSe with respect

to k-point mesh (left panel) and kinetic energy cutoff (right panel). Based on these data,

we used an 8× 8× 8 k-point mesh and a kinetic energy cutoff of 4762 eV (350 Ry). Fig. 8

shows the DMC total energy per GeSe formula unit as a function of the number of twists

used in TABC. The figure shows that the DMC TABC is well converged at 8× 8× 8 (512)
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FIG. 8. DMC total energy per GeSe formula unit for bulk GeSe as function of number of twists in

TABC.

twists, with only about a 2(5) meV/GeSe difference in total energy from using 10× 10× 10

twists. Based on the well converged results at 512 twists for a four formula unit supercell,

we used 64 twists for a 32 formula unit supercell, which was the smallest supercell used in

our study.

Appendix B: DMC calculation on relaxed DFT GeSe atomic coordinates

We computed DMC total energy for the monolayer with the relaxed atomic coordinates

using different DFT XC functionals in order to find the best XC functional that can minimize

DMC total energy at given lattice parameter. DMC was performed in large 72 f.u. supercell

consisting of total 720 electrons. Figure 9 represents DMC total energies in the selected

lattice parameters. Because of atomic coordinates difference, we see large discrepancy in

DMC energy between different XC functionals used for the structure relaxation. Between

these XC functionals, we can see that HSE06 relaxed atomic coordinates show uniformly

lower DMC total energy than the other XC functionals for various lattice parameters. From

these result, we predict that HSE06 XC functional can provide relatively stable GeSe atomic

coordinates as compared to the other XC functionals, which lead us to decide to use HSE06

XC functional for the geometry optimization.
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FIG. 9. DMC total energy for GeSe monolayer in lattice parameter (a) a = 4.05, (b) 4.15, (c) 4.26,

and (d) 4.47 Å as function of DFT XC functional used for atomic coordinates relaxation. Note

that lattice parameter b is the same as 3.95 Å.

Appendix C: PBE0 band structure

We calculated the DFT band structure for monolayer GeSe using the PBE0 XC functional

on a 12× 12 k-point mesh to confirm that (at least for the PBE and PBE0 functionals) the

direct and indirect gaps occur at the same k-points (Fig. 10).
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