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Hydriding and de-hydriding transitions in bulk and nanocrystalline binary metal hydrides were
studied using the Pd-H model system by measuring pressure-composition isotherms with in situ x-
ray diffractometry. Nanocrystalline Pd showed a smaller pressure hysteresis, solvus hysteresis, and
hysteresis in lattice parameter, compared to bulk Pd. The time-dependence of pressure equilibration
was measured after dosing with aliquots of hydrogen, giving equilibration times that were much
faster in the single-phase regions than in the two-phase plateaus. In the broad two-phase plateaus,
the pressure relaxations were exponential functions of time. A new explanation of hysteresis is
developed that is based on a dissipative potential barrier that impedes the motion of the interface
due to interactions between lattice defects and the two-phase interface. The exponential pressure
relaxations and hysteresis are consistent this mechanism. For a simple model of the pinning potential
the potential barrier maximum is an order-of-magnitude less than typical grain boundary energies.
These pinning effects are substantially different in the nanocrystalline Pd, suggesting differences in
the hydriding mechanism.

Usage: Secondary publications and information retrieval purposes.

I. INTRODUCTION

Hydrogen-based energy systems exist today, and show
promise for reducing carbon emissions. Metal hydride
systems are now used in battery, fuel cell, thermal stor-
age, and compression technologies.[1–5] One aspect of
metal hydrides that lowers their efficiency is hysteresis
– the absorption and desorption of hydrogen does not
occur with thermodynamic reversibility. This hysteresis
has been a research topic for many years. Hysteresis in
metal hydrides manifests as a difference in the hydrogen
absorption and desorption pressures (pressure hystere-
sis) and as a difference in the terminal phase boundary
compositions during hydriding and de-hydriding (solvus
hysteresis). The origin of hysteresis remains unclear. We
begin by summarizing some important theories of hys-
teresis that are based on different principles.

Schwarz and Khachaturyan (S-K) presented an analy-
sis of hysteresis that considers how elastic strain energy
modifies the thermodynamics of two-phase hydriding and
de-hydriding phase transitions.[6–8] The S-K theory is
based on Eshelby’s analysis of elastic inclusions in an in-
finite matrix. The S-K theory gives an expression for the
pressure hysteresis
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Pdes

)
=

4ρHY η
2(cβ − cα)

kBT
(1)

∗ Present institution: SSRL Materials Science Division, SLAC Na-
tional Accelerator Laboratory, Menlo Park, CA 94025

where Y = E/(1 − ν), E is Young’s modulus, ν is Pois-
son’s ratio, η the fractional change in lattice parameter
with respect to hydrogen concentration, and ρH is a mo-
lar volume term which, when fit to molecular dynam-
ics simulations of hydride formation in palladium, was
found to be approximately equal to the volume expan-
sion induced by the H interstitial.[8] The expression also
depends on the width of the coherent two-phase region,
cβ − cα. The S-K theory assumes coherent interfaces be-
tween the matrix and hydride phase, thus elastic energy
gives a “macroscopic” nucleation barrier that depends
on the hydrogen concentration. In this theory, defects do
not relieve the elastic stress.

In an earlier model, Flanagan, et al., proposed that
hysteresis originates with plastic deformation during ab-
sorption and desorption.[9] The addition of an enthalpic
term corresponding to dislocation formation ∆Hδ gives
a pressure hysteresis of 4∆Hδ/RT . The addition of ∆Hδ

also manifests in solvus hysteresis. This theory requires
a balanced annihilation of dislocations generated during
de-hydriding, however.

Recently, Griessen, et al., developed a mean field model
to predict size dependent spinodal pressures and associ-
ated hysteresis in Pd nanostructures.[10] This model as-
sumes a coherent core-shell hydriding geometry with dif-
ferent hydrogen concentrations in each component. Ex-
perimental hysteresis values were reproduced for sev-
eral Pd nanostructures by assuming a coherent tran-
sition with a modified surface-shell-core coupling. An
increased solubility of hydrogen in the low-hydrogen-
content α-phase and reduction in total capacity is at-
tributed to thermodynamically distinct absorption sites
on or near nanostructure surfaces.[10–12] However, re-
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cent experimental studies demonstrate that spherical cap
nuclei are energetically favorable compared to core-shell
geometries.[13, 14]

The palladium-hydrogen system is the prototypical
metal hydride, and a convenient one for studying hys-
teresis. At moderate temperatures and pressures, face-
centered cubic (FCC) palladium absorbs up to 0.7 H per
Pd while undergoing an isostructural expansion from the
α-phase to the hydrogen-rich β-phase. This transition re-
sults in a volume change of approximately 10%.[15] Here
we characterize the absorption and desorption of hydro-
gen by Pd by measuring pressure-composition isotherms
with simultaneous in situ X-ray diffraction, and by mea-
suring the equilibration times during the individual steps
of isotherm measurements. The same hysteresis is
found even for incomplete phase transformations – if
a partial absorption is reversed, the hydrogen partial
pressure shifts to the plateau pressure of the opposite
branch before significant changes in hydrogen concen-
tration occur.[16] Hysteresis, relaxation times, and the
composition dependencies of lattice parameters are con-
sistent with a new explanation for the hysteresis that is
based on an interface mobility which is impeded by pin-
ning forces in the microstructure. The pinning potentials
are an order-of-magnitude less than grain boundary en-
ergies and vary over a length scale of order 10 nm. The
nanocrystalline Pd has crystallite sizes smaller than this,
and it has a different hydriding behavior.

II. INTERFACE MOTION AS THE ORIGIN OF
HYSTERESIS

A. Chemical Potential and Interface Velocity

Palladium hydrides nucleate coherently. Then due to
their large misfit, they lose coherency as they grow above
a critical size.[13, 17] This loss of coherency creates an
array of defects, such as twin boundaries, slip bands, dis-
locations and, possibly, point defects [17]. The result-
ing dislocation densities can be quite high, so after the
earliest stages of growth, the hydride-matrix interfaces
propagate through arrays of defects. Due to elastic and
plastic interactions between the defects and interface, a
driving force is needed for the interface to move. Such
impediments to interface motion have been observed, for
example, during martensitic transformations where the
interfaces are moving through an array of dislocations
[18, 19].

We propose that interface pinning causes the hysteresis
between absorption and desorption. Assume a planar
interface with a local normal velocity of the interface, v,
is related to the driving force for interface migration, [20]

v = −M
{

[[ΩV]]− T βijnj [[Eik]]nk + ∂φp/∂x
}

(2)

where [[ξ]] , ξβ − ξα for a quantity ξ, x is a displace-
ment of the interface along the normal direction, M is

the mobility of the interface, ΩV is the grand potential
density, Tij is the stress tensor, nj is the normal to the
interface pointing from the β-phase to the α-phase, Eij
is the total strain tensor, φp is the pinning potential on
the interface caused by defects in matrix, and summation
from 1 to 3 over repeated indices is assumed. The second
term on the RHS comes from the work required to keep
the interface coherent during growth, which we keep at
this point to illustrate the potential role of coherency-
generated stresses.

If the quantity in the large braces in Eq. 2 is nega-
tive, then the β-phase will grow from α. In the absence
of stress and pinning, the jump in grand potential is the
chemical driving force for interface motion; if the grand
potential of β is less than that for α, the β-phase will
grow. The ∂φp/∂x is chosen so that when it is positive,
it impedes the motion of β growing into α. We assume
that the diffusion of H is very fast, and its concentration
is in local equilibrium at the moving interface. Thus gra-
dients in H composition within a single phase are small,
as observed experimentally, and there is no jump in the
diffusion potential of H at the interface,

[[MHV]] = 0 (3)

where MHV is the diffusion potential.
Since H is an interstitial atom in the Pd lattice, it is

necessary to account for the constraint that NI = NH +
NV, where NI is the number of interstitial sites, NH is the
number of H atoms, and NV is the number of vacancies
on the H sublattice. The diffusion potential is [20]

MHV = ρ0(µH(c)− µV(c))− ηTkk (4)

where µH and µV are the stress-free chemical potentials
of H and vacancies, respectively, ρ0 is the molar density
of interstitial lattice sites, η is the solute expansion coef-
ficient, where η = (1/a)da/dc (a is the lattice parameter
and c is the mole fraction of H). We assume Vegard’s
law is valid, and thus η is a constant. The molar grand
potential for each phase is [20]

Ω = F (c) + ρ−10 We −MHVc (5)

where the molar Helmholtz free energy at zero pressure
in the absence of stress is F = µHc+ µV(1− c), and We

is the elastic energy density.
Using Eqs. 4 and 5 in Eqs. 2 and 3 the velocity of the

interface is,

v = −M {ρ0[[µV(c)]]

+[[We]] + η[[cTkk]]− T βijn
β
j [[Eik]]nβk + ∂φp/∂x

}
(6)

and the diffusion potential is

MHV = ρ0[[µH(c)− µV(c)]]− η[[Tkk]] = 0 (7)

To define the compositions at the interface, it is nec-
essary to determine the stress in the system. We employ
a parallel plate geometry of α and β phases in a linearly
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elastic isotropic solid in which the elastic constants of the
two phases are identical and constant. The stress is gen-
erated because the compositions of the two phases are
different, and thus so are their lattice parameters. For a
coherent system, the elastic energy and trace of the stress
can be determined [21],

[[Tkk]] = −2Y η(ee + η[[c− ce]]) (8)

[[We]] + η[[cTkk]] + T βijn
β
j [[Eik]]nβk = (9)

Y e2e − 2ηeeY c
β
e − 2η2Y [[ce(c− ce)]]

where cαe , cβe are the equilibrium, stress-free compositions
without a pinning potential. The misfit between the two
phases is ee = η[[c]], and the lattice parameter of the α-
phase at cαe is used as the reference state for strain. Using
Eqs. 8 and 9 in Eqs. 6 and 7 yields the velocity

v = −M {ρ0[[ µV(c)]] + (10)

Y e2e − 2ηeeY c
β
e − 2η2Y [[ce(c− ce)]] + ∂φp/∂x

}
and the diffusion potential condition

ρ0[[µH(c)− µV(c)]]− 2Y η2[[c]] = 0 (11)

These two equations, along with the stress-free chemical
potentials (for example those giving the miscibility gap
in the Pd-H system), yield two nonlinear equations for
the two interfacial compositions for a given velocity and
mobility of the interface. Since the elastic state of one
phase is independent of the the other, the elastic energies
do not depend on the volume fraction of the phases and
thus there is no elastic-stress generated metastability and
nucleation barrier [21–24].

B. Phase Compositions, Gas Pressures

When the interface is pinned, v = 0, and thus the
terms in the brackets on the RHS of Eq. 10, along with
Eq. 11, give the concentrations at the interface. These
concentrations then define the diffusion potential in the
solid, which is equal to the chemical potential of H in
the gas. For an approximation that captures the essen-
tial physics of the pinning process, the two equations
defining the concentrations are solved in the limit that
the concentrations of each phase are close to the equi-
librium, stress-free, compositions without pinning, cαe ,
cβe . These compositions give the equilibrium incoherent
(stress-free, pinning-free) phase diagram. In this limit,
the concentration dependence of the terms involving the
chemical potentials are given by Taylor expansions about
the stress-free equilibrium state of each phase. It is also
necessary to linearize the terms involving the stress to
first order in c − ce. Using linearized chemical poten-
tials and the linearized forms of the elastic terms yields
two linear equations for the two unknown compositions

of the phases that give the phase compositions at which
the interface is pinned, see Supplementary Materials,

cαp − cαe =
∂φp/∂x+ Y η2[[ce]]

2

ρ0[[ce]]G′′αm (1 +Bα)

cβp − cβe =
∂φp/∂x− Y η2[[ce]]

2

ρ0[[ce]]G
′′β
m (1 +Bβ)

(12)

where Bi = 2η2Y/ρ0G
′′i
m and G′′im = ∂2Gim/∂c

2, i = α, β,
evaluated at the equilibrium incoherent compositions of
the phases. Since we have assumed that the diffusion
potentials are constant, these different compositions give
the same diffusion potential in the two-phase mixture.

The solid is in equilibrium with the gas,

µgH = MHV(c, Tkk) (13)

where µgH is the chemical potential of H in the gas. For
small deviations in the gas pressure about the equilibrium
pressure in the absence of stress and pinning, and using
Eq. 12 to determine the diffusion potential, MHV, the
deviation of the equilibrium pressure P at which v = 0
from the equilibrium value Pe is,

ln

(
P

Pe

)
=

2∂φp/∂x+ 2Y η2[[ce]]
2

ρ0RT [[ce]]
(14)

where R is the gas constant and the chemical potential of
the gas is µgH = µo+(RT/2) lnP , µo is the standard state
chemical potential and P is the partial pressure of H2 gas.
The equilibrium pressure is shifted by the presence of
stress, but does not change on charging and discharging,
coherency-induced stress does not cause hysteresis.

C. Thermodynamics with Interface Pinning

The pinning potential causes a hysteresis of absorp-
tion and desorption when the pinning force changes sign
with the direction of v. To illustrate, consider a pinning
potential with a periodic dependence,

φp =
A
2

[1− cos(kx)] (15)

where A sets the strength of pinning, and k = 2π/L
is the inverse length scale of the interaction. With a
greater driving force, the interface is displaced from its
equilibrium value at the bottom of the well located at
x = 0. The direction of displacement changes with ab-
sorption (β-phase grows) or desorption (α-phase grows).
The maximum force acting on the interface is given by
the interface displacement at which

∂2φp
∂x2

= 0 (16)

which is xc = ±L2 (n + 1/2), n = 0, ±1, ±2, .... Using
Eq. 15 and xc gives the maximum pinning force Fp,m as

Fp,m = − ∂φp
∂x

)
max

= ±Aπ
L

(17)
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The plus is the maximum force when charging (β grows)
and the minus is the maximum force for discharging (α
grows). The pressure hysteresis is evaluated by subtract-
ing desorption from absorption in Eq. 14:

ln

(
Pabs

Pdes

)
= 2

∂φp/∂x)abs − ∂φp/∂x)des
ρ0RT [[ce]]

(18)

Thus there is no effect of coherency stress on the hystere-
sis, since the equilibrium pressure due to coherency stress
does not depend on whether hydrogen is being absorbed
or desorbed. Using the maximum pinning force derived
from Eq. 15,

ln

(
Pabs

Pdes

)
=

4Aπ
Lρ0RT [[ce]]

(19)

The pinning also causes different phase compositions for
absorption and desorption. Using Eq. 17 in Eq. 12 yields
the pinning compositions of the α-phase on absorption
and desorption,

cαabs − cαe =
Aπ/L+ Y η2[[ce]]

2

[[ce]]ρ0G′′
α

m (1 +Bα)

cαdes − cαe =
−Aπ/L+ Y η2[[ce]]

2

[[ce]]ρ0G′′
α

m (1 +Bα)
(20)

expressions that are valid away from the critical temper-
ature, and coherent spinodal.

We expect that the pinning potential φp(x) will be
more complicated than Eq. 15, so in this case we can use
a general form as a Fourier transform

φp(x) =

∫ ∞
−∞

ψp(k) eikx dk . (21)

The pinning force Fp(x) is thus

Fp(x) = −∂φp
∂x

= −
∫ ∞
−∞

ik ψp(k) eikx dk . (22)

Equation 15 is symmetrical in ±x, so its pinning force
Fp(x) is real, and Fp(x) = −Fp(−x), a reasonable but
not clearly necessary condition. Equation 22 neverthe-
less shows that the higher Fourier components of ψp(k)
are weighted by k, and make larger contributions to the
pinning force. The spatial range of the pinning force is
therefore L ' 2π/kmax, where kmax is the largest k for
which ψp(k) is substantial. Equivalently, with a distri-
bution of defects that contribute to φp(x), the effective
pinning range L is that of the smallest features that offer
substantial pinning.

D. Kinetics with Interface Pinning

We assume that H diffusion in the Pd is fast on the
time-scale of interface motion. When a small amount of
H is added to the surrounding gas, it rapidly enters the

Pd, leading to the motion of the interfaces in the two-
phase mixture until the diffusion potential in the material
is again equal to the chemical potential of the H gas. The
decay of gas pressure can be measured experimentally,
and used as a probe of the dynamics of interface motion
on the two-phase mixture. The velocity of the interface is
given by Eq. 6. Assuming small departures in equilibrium
from the pinned state, see Supplementary Materials,

v = ρ0M(1 +Bα)G′′αm [[cp]](cα − cp) (23)

Defining f , V β/Vs as the volume fraction of β-phase
(Vs is the total volume of the material system), the rate
of change of f is given by

dV β

dt
= Vs

df

dt
=

∫
A

v ds (24)

where A is the area of the interface. Using Eq. 23 in
Eq. 24

Vs
df

dt
= ρ0M(1 +Bα)G′′αm [[cp]]

∫
A

(cα − cαp ) ds (25)

Since the composition of the α-phase is constant along
the interface,

df

dt
= ρ0M(1 +Bα)G′′αm [[cp]]A(cα − cαp )Vs (26)

Defining the interfacial area per volume SV , A/Vs,

df

dt
= ρ0M(1 +Bα)G′′αm [[cp]]SV (cα − cαp ) (27)

The SV should not vary much after an aliquot of H is
added, but it might change along the isotherm, in the
early or late stages of absorption, for example.

After inserting a small aliquot of H, the composition
of the material system is cs, with H distributed between
the α and β-phases.

cs = (1− f)cα + fcβ (28)

Since cs is constant after the aliquot of H is added, for
small supersaturations, see Supplementary Materials,

dcα

dt
= − G′′βm (1 +Bβ)[[cp]]

G′′βm (1 +Bβ)(1− fo) +G′′αm (1 +Bα)fo

df

dt

(29)
where fo is the volume fraction before the aliquot H is
added.

Using Eq. 27 in Eq. 29 yields,

dcα

dt
= −ΛMSV (t)(cα − cαp ) (30)

where Λ involves a volume fraction weighted average of
thermodynamic terms of each phase,

Λ =
ρ0[[cp]]

2G′′αm (1 +Bα)G′′βm (1 +Bβ)

G′′αm (1 +Bα)fo +G′′βm (1 +Bβ)(1− fo)
(31)
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Assuming that SV is little changed when a small aliquot
of H is added,

cα(t) = cαp + (cαpi − cαp ) exp {−ΛMSoV t} (32)

where cαpi is the initial pinned composition, which does
not have to be the same after the first absorption because
the defects responsible for the pinning may be different,
and SoV is the surface area per volume before the aliquot
is added.

Since the change in composition in the α phase fixes the
diffusion potential, which equals the chemical potential
in the gas, Eq. 32 yields,

P (t) = Pp + Pδ exp {−ΛMSoV t} (33)

where Pp is the pinning pressure and the transient pres-
sure excursion is Pδ = [ρ0(cαpi−cαp )(1+Bα)G′′αm Pp]/[kBT ]

and assuming that |P (t) − Pp| is small. We have al-
lowed for SV to depend on the initial volume fraction
fo, so there may be different relaxation times across an
isotherm.

III. METHODS

Palladium powder (200 mesh, 99.95% metals basis)
was purchased from Alfa Aesar (Ward Hill, MA, USA).
The powder was annealed at 1273 K for one hour under
N2 flow in a horizontal tube furnace before any hydriding
experiments. Palladium nanopowder (99.95%) was pur-
chased from US Research Nanomaterials, Inc., (Houston,
TX, USA) and degassed at 353 K for at least 8 hours
prior to any hydriding experiments.

Electron micrographs of annealed bulk Pd powder were
acquired with a high resolution Zeiss 1550VP Field Emis-
sion scanning electron microscope (SEM). Nanocrys-
talline Pd powder was analyzed with bright and dark-
field transmission electron microscopy (TEM) using an
FEI Tecnai F-30UT STEM. The powder was dispersed
in isopropanol and sonicated one hour to reduce agglom-
eration before loading on an amorphous carbon grid for
TEM.

In situ x-ray diffraction (XRD) experiments were per-
formed using an Inel CPS 120 powder diffractometer uti-
lizing Mo Kα radiation. A Si 〈110〉 single crystal ori-
ented in the 〈220〉 direction was used as the incident beam
monochromator. Two-theta calibration of the CPS 120
detector was performed with a NIST SRM 660a (LaB6).
At least 200mg of sample was first loaded into a tem-
perature controlled vertical sample holder, then placed
into a stainless steel chamber (980 mL) with a Be win-
dow. This reactor is connected to a gas manifold with
VCR fittings and MKS Baratron pressure transducers.
Prior to hydrogen uptake, the sample was evacuated at
353 K for 72 hours. Each sample was cycled at least once
prior to collection of data presented here. Full diffraction
measurements from at least two complete isotherms were
obtained for each temperature.

Raw diffraction data were initially processed with a de-
convolution algorithm to remove instrument effects. Ri-
etveld refinement with the GSAS-II software package was
subsequently used to extract lattice parameter data from
the deconvoluted in situ XRD results.[25] The Pd-H data
were fit with a two-phase model consisting of the solid so-
lution α-phase and the hydride β-phase, with the sum of
the phase fractions constrained to be unity.[26]

Pressure-composition isotherms of bulk and nanocrys-
talline Pd powder were also measured on an indepen-
dent volumetric Sieverts’ type apparatus. At least 1.0g
of sample were loaded into an AISI 316L stainless steel
reactor (5 mL) and evacuated (baseline 10−5 Pa) at 473
K (bulk Pd) or 353 K (nanocrystalline Pd) for 8 hours.
Each sample was cycled at least once prior to collection of
data presented here, and at least two complete isotherms
were measured for each sample and temperature.

Hydrogen concentrations in the sample were calculated
volumetrically with the NIST REFPROP database.[27,
28] Absorption and desorption were performed at 333 K
for both the in situ XRD and Sieverts’ apparatus ex-
periments. An additional pressure composition isotherm
was measured on the Sieverts’ apparatus for bulk Pd at
435 K. At each absorption (desorption) step, equilibra-
tion was reached when pressure in the reactor did not
change for a period of 15 minutes. After equilibration,
the next quantity of hydrogen was added (removed for
desorption) to the reactor.

IV. RESULTS

The microstructures of the annealed bulk Pd and as-
received nanocrystalline Pd powders were investigated
with scanning electron microscopy (SEM) and transmis-
sion electron microscopy (TEM). A high-resolution TEM
image of nanocrystalline Pd is provided in Figure 1, and
SEM and additional TEM images are provided in Sup-
plementary Fig. 1 and Supplementary Fig. 2. Annealed
Pd particles are 43.5±13µm in size with distinct internal
grains of 3.0 ± 1.3µm in diameter. The nanocrystalline
Pd consists of agglomerated crystallites 7.5 ± 2.3nm in
diameter, as measured from dark field images.

Pressure-composition isotherms for bulk and nanocrys-
talline Pd, measured on a Sieverts’ apparatus, are shown
in Fig. 2a. Uptake values of approximately 0.6 and 0.7
H/M are found for the nanocrystalline and bulk Pd, re-
spectively, consistent with other reports.[9, 11, 12, 29–
32]. Defining the dimensionless pressure hysteresis, h as
the left hand side of Eq. 1:

h = ln

(
Pabs

Pdes

)
, (34)

the 333 K pressure hysteresis measured from the
isotherms is 0.37 for nanocrystalline Pd and 0.88 for bulk
Pd. The high temperature hysteresis of the bulk Pd at
435 K is 0.37. A significant reduction in the absorption
plateau pressure for the nanocrystalline Pd (from 10 kPa
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FIG. 1. High resolution TEM image of the as-received
nanocrystalline Pd.

to 6.9 kPa) contributes primarily to the reduction in the
hysteresis at 333 K. Only a small increase in the desorp-
tion plateau is observed for the nanocrystalline Pd. An-
other important difference is that the transition is more
gradual for the nanocrystalline Pd; a sharp initial tran-
sition is observed for the bulk Pd. We also define solvus
hysteresis, ∆c, at the α- or β-phase boundary as:

∆cα = |cαabs − cαdes| (35)

and similarly for ∆cβ for the β-phase.
Pressure-composition isotherms are also measured in-

dependently at 333 K with a gas manifold and X-ray
transparent sample chamber designed for in situ X-
ray diffraction (XRD) experiments. No in situ data
was measured at 435 K because the hydrogen environ-
ment chamber cannot accommodate the required pres-
sures. Diffraction patterns are acquired at several steps
along the isotherm, and full sets of diffraction patterns
for the hydriding and dehydriding transitions in bulk
and nanocrystalline Pd are provided in Supplementary
Figs. 3,4. Isotherms measured during the in situ hydrid-
ing experiments are consistent with those plotted in Fig.
2a. They are compared in Supplementary Fig. S2 and
discussed in the Supplementary Materials. The hystere-
sis measured in both apparatus are the same.

Figure 2b plots full and minor loop isotherms for Pd-H
measured on the in situ system in which absorption was
stopped at 75% completion, then reversed. Rather than
traversing back along the absorption branch, the pres-
sure decreases to the desorption branch before significant
quantities of hydrogen are removed. Similar results have
been reported previously.[16]

Lattice parameters obtained from refinement of the in
situ diffraction data are plotted in Fig. 3. Variation of
lattice parameter with hydrogen concentration in single
phase regions was fit to a linear function (Vegard’s law);
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FIG. 2. a) Pressure-composition isotherms for bulk (blue, red
circles) and nanocrystalline (green trianges) Pd measured on
a Sieverts’ apparatus. The inset shows the plateau region on
a linear pressure scale. Closed symbols denote absorption,
and open symbols correspond to the subsequent desorption.
b) Full and a minor loop isotherms for bulk Pd measured in
situ. After absorption to approximately 75% capacity, the
isotherm was reversed and the sample was dehydrided.

the results are summarized in Table I. Within the two-
phase region, lattice parameters are nearly constant but
there is variation for the nanocrystalline Pd. This is ap-
parent in the continual increase in α-phase lattice pa-
rameter during absorption. Lattice parameters for both
phases are larger for absorption than desorption, with a
significant difference for bulk Pd (Figure 3a).

In principle, X-ray lattice parameters are sensitive to
both hydrogen concentration (through Vegard’s law) and
normal strains from coherency stresses (if present) at α/β
interfaces. Averaged over the volume of a polycrystalline
solid without external forces, the distribution of internal
strains generally does not have a substantial effect on the
average lattice parameter. In what follows, we attribute
changes in lattice parameter to changes in hydrogen con-
centration.

Phase boundary compositions are determined from



7

TABLE I. Vegard’s Law relationship and phase boundary
compositions in bulk and nanocrystalline Pd-H from refined
lattice parameter data. The variation of lattice parameter
with hydrogen concentration (1/a)da/dc is determined in the
single phase regions.

Region Bulka Nanocrystalline

αabs 0.045 ± 0.015 0.025 ± 0.004
αdes - 0.018 ± 0.011
βabs 0.047 ± 0.013 0.036 ± 0.003
βdes 0.039 ± 0.003 0.039 ± 0.008

a Empty entries correspond to regions with insufficient data
points to fit.

Fig. 3 by identifying the composition at which the lat-
tice parameters deviate from the values in the two-phase
region. These values are reported in Table II. For the
nanocrystalline Pd, the α-phase boundaries are instead
evaluated from the phase fraction results in Supplemen-
tary Fig. 5. In this case, the phase boundaries are taken
as the concentration in which the phase fraction deviates
from the single phase regime. High temperature phase
boundary compositions were determined by the graphical
method proposed by Wicke, et al., in which the plateaus
are extended to the opposite isotherm branch, and the in-
tersection point is taken as the phase boundary.[31] The
solvus hysteresis is evaluated with Eq. 35 and also re-
ported in Table I.

The variation of hydrogen pressure was monitored
as a function of time at each absorption or desorp-
tion step during pressure-composition isotherm measure-
ments, and fit to the exponential function in Eqs. 32 and
33. A characteristic equilibration time τ , corresponding
to [ΛMSoV ]−1, is plotted in Fig. 4a as a function of hydro-
gen content for the first desorption and second absorption
cycles. Representative fits to hydrogen absorption in the
single- and two-phase regions are plotted in Figs. 4b and
4c, respectively. These fits were also performed for data
in the single-phase regions.

Equilibration times increase as the two-phase region
is approached from either side. After the transforma-
tion enters the two-phase region, however, there is little
variation in τ . Hydrogen diffusivity in palladium at 333
K is 10−6cm2 sec−1, corresponding to diffusion times of
5 seconds into the center of bulk Pd particles [33], and
the characteristic time for heating the reactor vessel was
measured to be 5.4 seconds. Therefore τ is not dom-
inated by the diffusion of hydrogen or heat within the
two-phase region. It is possible that the diffusion of hy-
drogen and heat account for much of the relaxation time
in the single-phase regions.

FIG. 3. Refined lattice parameters of the a) bulk and b)
nanocrystalline Pd-H powders during hydrogen absorption
and desorption. The red and blue curves correspond to the
solid solution α-phase and hydride β-phase, respectively. Er-
ror bars are indicated by the shaded region.

TABLE II. Terminal compositions and solvus hysteresis of the
hydriding transition for bulk and nanocrystalline Pd obtained
from in situ XRD results at 333 K. High temperature (435
K) compositions for the bulk Pd are evaluated from the pres-

sure composition isotherm. The solvus hysteresis ∆cα/β are
evaluated using Eq. 35.

Sample Bulk Nanocrystalline
333 K 435 K 333 K

cabsα 0.035± 0.001 0.13 0.12± 0.01
cabsβ 0.62± 0.01 0.59 0.46± 0.015
cdesα 0.012± 0.0005 0.07 0.115± 0.005
cdesβ 0.564± 0.01 0.51 0.45± 0.01
∆cα .023± 0.0011 0.06 0.005± 0.011
∆cβ .056± .014 0.08 .01± 0.018
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FIG. 4. Kinetics of equilibration during absorption and des-
orption. a) Equilibration time constants τ as a function of
hydrogen concentration during cycling. Raw data from ab-
sorption cycle 2 and corresponding fits used to extract τ are
plotted in b) for the single-phase region and in c) for the two-
phase region. Reported error bars may be smaller than the
associated data marker.

V. DISCUSSION

A. Hysteresis and Hysteresis Energies

The magnitude of the pinning potential A is evaluated
from Eq. 19 using the experimentally-determined pres-
sure hysteresis, ρ0, and approximate value of [[ce]]. We
assume a characteristic L = 10 − 35 nm, obtained as
the inverse of the reported dislocation densities in cycled
Pd-H.[34–36] The pinning potentials for bulk Pd-H are
0.1 - 0.34 J m−2 and 0.04 - 0.15 J m−2 at 333 K and 435 K,
respectively. These energies are about an order of mag-
nitude less than grain boundary energies calculated for
FCC metals.[37, 38] The solvus hysteresis is different at
the α and β phase boundaries, as seen in Table II. This
behavior is consistent with the predictions of Eqs. 12 and
20, as G′′αm and G′′βm are not equivalent.

We next compare our results to the S-K theory, which
predicts that hysteresis is a result of an additional en-
ergy input needed to overcome a macroscopic coherent
nucleation barrier associated with the total elastic strain
energy of a mixture of two phases. Thus, for the strain
state assumed in their work for a second phase to form,
an energy barrier must be overcome and once it does the
entire system transforms to the other phase, which oc-
curs with a sufficient change in pressure of the gas. This

prediction is not consistent with behavior observed in the
minor loop of Fig. 2b. Both phases are present when the
direction of the transformation is reversed, meaning that
no nucleation barrier should exist.

The S-K theory also does not quantitatively describe
the hysteresis of isotherms of Pd-H. The S-K pressure
hysteresis (evaluated in Fig. 14 of [8]) for bulk Pd-H is
4.1 and 2.0 at 333 and 435 K, respectively, and 2.2 for
nanocrystalline Pd-H at 333 K, using (cβ − cα) as deter-
mined from our phase fraction data (Table II).[33, 39] A
shear modulus of 35 GPa is used for the nanocrystalline
Pd.[40]. The S-K theory significantly overestimates the
measured hysteresis of Pd-H.

Other theories propose that hysteresis is due to con-
tinued formation of dislocations as hydriding transitions
occur.[9] The energy of these dislocations is analogous to
the stored energy of cold work. We define a hysteresis
energy, calculated as the difference in diffusion potential
between the absorption and desorption plateaus

∆MHV =
1

2
RTρPd ln

(
Pabs

Pdes

)
(36)

where ρPd is the molar volume of Pd. From our exper-
imental isotherms, hysteresis energies for bulk Pd-H are
1.4×108 and 7.6×107J m−3 at 333 K and 435 K, respec-
tively. In cold-worked FCC metals the stored energy is
on the order of 1.0 × 106 J m−3, far less than measured
hysteresis energies.[41]

Equilibration times (Fig. 4a) are longer in the two-
phase region, indicating the presence of a persistent bar-
rier to phase transformation that does not exist in single-
phase regions. When the pinning potential is overcome
by a change in hydrogen partial pressure, the system re-
turns to the v = 0 equilibrium state as a decaying expo-
nential in pressure according to Section II D. An expo-
nential decay is seen in the data of Fig. 4c, but deviations
are apparent at long times. These deviations could arise
from a distribution of pinning potentials within the ma-
terial. Interestingly, the observed τ are different for ab-
sorption and desorption, with the difference larger than
variations in decay times across the individual transfor-
mation. We attribute deviations in τ to changes in SV (f)
during the transformation, although the pinning poten-
tial may differ for absorption and desorption. More work
is needed to explore these possibilities.

We estimate the unpinned interface velocity using the
measured τ . Supplementary Fig.7 plots the maximum
interfacial velocity as a function of SV (f) given τ . By
averaging Λ in Eq. 31 and placing bounds on SV (f) as
discussed in the Supplementary Materials, we expect a
maximum velocity on the order of 0.1 µm/s which decays
to approximately 1 nm/s before the interface is again
pinned.

Nanocrystalline Pd-H has a smaller hysteresis, smaller
total hydrogen capacity, and narrower two-phase region
than bulk Pd-H; as seen in Figure 2 and Table II. These
characteristics are also reflected in the lattice parameters
of Figure 3; during absorption, the lattice parameter of
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the α-phase is greater than in the bulk. During desorp-
tion, the lattice parameters of the β-phase are less than
the bulk.

The variation of lattice parameter with hydrogen con-
tent (1/a)da/dc is smaller in nanocrystalline than bulk
Pd, especially for the α-phase. This means that the vol-
ume distortion is less per hydrogen, allowing for increased
solubility of hydrogen in the α-phase. It has been hy-
pothesized that increased solubility of hydrogen in the
α-phase and reduction in total capacity is due to a signif-
icant fraction of energetically favorable interstitial sites
near the particle surface.[10–12] A high density of grain
boundaries in nanocrystalline Pd is visible in Figure 1,
that can also adsorb H.

Estimating the pinning potential in nanocrystalline
Pd-H using L set by the dislocation density is improper
as (de)hydriding of Pd nanostructures has been demon-
strated to occur without plastic deformation below a crit-
ical size of 300 nm.[13, 14, 42, 43] Hysteresis increases
with particle size up to this critical size, with a maximum
value of 1.41 evaluated from data reported by Ulvestad,
et al.[10, 13] It is likely that the hydriding transition oc-
curs entirely coherently for nanoparticles below 300 nm,
yet hysteresis predicted by the S-K theory is still an over-
estimate.

As stated in Section II C, the general pinning poten-
tial is set by the largest Fourier coefficient allowed by
the geometry of the system. Setting bounds on L, and
therefore a minimum kmax, restricts the possible values
of ψp(k). Thus, while Eq. 19 does not have an explicit
particle size dependence, the inherent size dependence of
Eq. 22 is captured in Eq. 18. As a simple example, we use
the nanocrystalline Pd-H hysteresis at 333 K to evaluate
A = 0.01 J m−2 using Eq. 19 with L = 3.5nm, half the
average particle size. We note that the nanocrystalline
Pd used in this work has crystallites smaller than the
dislocation separation for bulk Pd-H, indicating disloca-
tions likely do not serve as pinning sites in this system.
The magnitude of pinning in nanoscale Pd-H is less than
in bulk Pd-H, as evidenced by the reduced hysteresis,
but refining the mechanism will require further work to
determine the type and energetics of defects present in
nanoscale Pd-H.

Additional studies of the hydriding transition in Pd-H
nanostructures report behavior consistent with our pre-
dictions. Sytwu, et al., report a constant interface ve-
locity for dislocation-free hydriding transitions in nanos-
tructured Pd-H which was not diffusion limited.[43] Fur-
thermore, Ulvestad et al. observed that the presence of
dislocations in Pd nanoparticles impedes the hydriding
transition.[44] This behavior is consistent with our model
of an interface-based hysteresis, and indicates that pin-
ning can originate from more than just dislocations.
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FIG. 5. Absorption and desorption phase boundaries deter-
mined from terminal compositions of bulk and nanocrystalline
Pd-H. Bulk and nanocrystalline Pd-H data from this study are
plotted as red circles and green triangles, respectively. Addi-
tional bulk data from Wicke, et al., is plotted as upside down
triangles.[31] 6 and 4 nm nanoparticle Pd data from Vogel, et
al. is plotted as squares and diamonds, respectively.[26] Filled
markers denote absorption, open markers denote desorption.

B. Chemical Variations within the α and β Phases

Pressure and solvus hysteresis are both apparent in
the hydriding of Pd-H, as observed in Fig. 2 and Table
I. Shifts in the phase boundary composition resulting
from the solvus hysteresis manifest in the refined lattice
parameters of Fig. 3. A reduced hydrogen concentration
of each phase during desorption (as compared to absorp-
tion) results in smaller lattice parameters of each phase.
During hydrogen absorption by bulk Pd, aβ = 4.034 Å

whereas aβ = 4.025 Å on desorption. A similar trend is
observed for the α-phase lattice parameters.

The lattice parameter, and therefore hydrogen content,
in both phases remains constant during the phase trans-
formation. In the case of hysteresis arising from a macro-
scopic nucleation barrier, we would expect that supersat-
uration of the parent phase would result in changes in the
lattice parameter as supersaturated hydrogen diffuses to
the growing phase. Instead, the constant hydrogen con-
centration suggests a persistent barrier to growth of a
new phase, consistent with interface pinning.

C. Hysteresis Effects on the Phase Diagram

Solvus hysteresis alters the measured phase boundaries
on the P–c phase diagram. The Pd-H phase diagram
in Fig. 5 includes data from Table II, and from the
literature.[31] The phase boundaries for absorption are
shifted to the right compared to desorption. Wicke, et
al., proposed that desorption is closer to true “strain-



10

free” equilibrium, and thus desorption data should be
used for determining the true phase boundaries.[31] We
accept the existence of strains and stresses of hydriding,
but we show in Section II B that hydriding stresses do
not cause hysteresis, although they shift the equilibrium
pressures. With hysteresis, neither absorption nor des-
orption are representative of either coherent or incoherent
phase equilibrium.

With an impediment to interface movement, phase
boundaries for neither absorption nor desorption are
set by a true minimum of free energy. Nevertheless,
phase boundaries measured with interface impediments
are the physically-relevant phase boundaries. Accessing
true equilibrium phase boundaries would require no mi-
crostructural barrier to interface movement, as in a mate-
rial without dislocations or other heterogeneities. This is
unlikely, given the large lattice parameter misfit between
the phases. Measuring the thermodynamic phase bound-
ary requires that both an incoherent interface exists be-
tween the phases, and no dislocations or other defects are
present to pin the interface. Such an ideal material is not
expected in practice.

VI. CONCLUSIONS

The equilibrium pressures of hydrogen absorption and
desorption in bulk and nanocrystalline Pd-H were mea-
sured simultaneously with in-situ X-ray diffraction pat-
terns. For bulk Pd-H, the equilibrium pressure and lat-
tice parameter were nearly constant across the two-phase
plateau, but the hysteresis in both quantities was large
when switching from absorption to desorption. The time
response of the pressure was measured for each aliquot of
hydrogen added to the material, and showed an exponen-
tial relaxation that was about 40% faster for absorption
than desorption, but the relaxation time was nearly con-
stant across the two-phase plateau. The time constant
was much shorter in the single-phase regions of the Pd-H
phase diagram.

A new explanation of hysteresis is developed, based on
a dissipative potential barrier that impedes the motion
of the two-phase interface, analogous to a Peierls bar-
rier for defect motion. This potential barrier raises the
pressure for absorption, and decreases it for desorption.
We estimate pinning potentials of order 0.1-0.2 J m−2,
an order-of-magnitude smaller than grain boundary en-

ergies. An exponential time decay of the applied pressure
is consistent with an interface mobility that is driven by
a chemical potential with a pinning potential. An in-
terface velocity of order 0.1µm/s is estimated for the
isotherms measured at 333 K, but the precise velocity
depends on the density and shape of particles of the new
phase. When the interface motion is reversed part way
through the two-phase region, the pressure quickly re-
turns to the precise pressure of the other branch of the
isotherm. This is consistent with the reversal of the pin-
ning force for interface motion, but not with a macro-
scopic nucleation barrier from elastic energy.

Nanocrystalline Pd shows different hydriding behavior
than the bulk, with a smaller hysteresis and smaller hy-
drogen capacity. The lattice parameters of the two phases
of nanocrystalline Pd-H differ from the bulk material,
indicating that hydrogen absorption and desorption in
nanocrystalline Pd follows a different mechanism. Other
metal hydride systems involving non-isotropic expansions
or structural changes also exhibit hysteresis, further work
is necessary to analyze these systems in the framework
developed here.[45, 46]

The phase compositions show a distinct hysteresis,
with phase compositions that differ for absorption and
desorption. While this is a practical feature of hydriding
in a material with microstructural defects, these compo-
sitions are not equilibrium ones, but are associated with
the diffusion potential necessary to overcome the pinning
force on the interface. Nevertheless, they are pertinent
to the different processes of absorption and desorption.

The analysis of a dissipative potential barrier to inter-
face motion, used here to explain hysteresis in Pd-H, is
not limited to metal hydride phase transitions. This type
of barrier should be considered in all solute-driven phase
transitions, including those which have become ubiqui-
tous in the energy storage field.
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