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The ionic materials Li4P2S6 and Na4P2S6 are both based on the same building blocks of the
dimer ions (P2S6)4−. Motivated by new experimental structural and ion conductivity studies, we
computationally examine this family of materials, finding Na4P2S6 and its modification Li2Na2P2S6

to be promising Na ion electrolytes. Using first principles calculations based on density functional
theory and density functional perturbation theory within the harmonic phonon approximation,
we show that vibrational effects provide non-trivial contributions to the structural stabilization
of these materials. Computed non-resonant Raman phonon spectra and temperature dependent
ionic conductivity for Na4P2S6 are both found to be in reasonable agreement with experiment.
First principles analysis of ionic conductivity in both Na4P2S6 and Li2Na2P2S6 indicates that Na
ions move primarily within the interlayer region between the (P2S6)4− layers, efficiently proceeding
via direct or indirect hops between vacancy sites, with indirect processes involving intermediate
interstitial sites.

I. INTRODUCTION

There is growing interest in developing all-solid-
state batteries for stable and efficient energy storage
applications. For example, a recent review [1] notes
that inorganic solid electrolytes “lie at the heart of
the solid-state battery concept”, stressing the im-
portance of basic research for expanding our knowl-
edge of the fundamental properties of these materi-
als. As particular examples, alkali-metal hexathio-
hypodiphosphate materials Li4P2S6 and Na4P2S6

and their modifications are of interest to the effort of
developing all solid state batteries. While Li4P2S6

has been found to have very small ionic conductiv-
ity [2–4], and is cited [5] as a decomposition prod-
uct in the preparation of lithium thiophosphate elec-
trolytes, Na4P2S6 [6] appears to be a competitive
electrolyte for sodium ion batteries. Recent experi-
ments [6, 7] have provided new structural and elec-
trochemical results which prompt a reexamination
of previous computational studies on these materi-
als [2, 8] and also prompt an investigation of their
modifications, resulting in the prediction of a new
promising Na ion electrolyte having the composition
Li2Na2P2S6.

Li4P2S6 and Na4P2S6 have very similar chemical
and structural properties based on the same build-
ing blocks of (P2S6)4− (hexathiohypodiphosphate)
complex ions which have D3d point symmetry which
typically align along the crystallographic c-axis. The
crystal structure of Li4P2S6 was analyzed by Mercier
et al. in 1982 [9], finding a disordered lattice with

space group P63/mcm (#193) [10]. In 2016 Hood et
al. [2] showed that the disordered Mercier structure
could be explained by the energetic insensitivity of
the system to the detailed layer arrangements of the
(P2S6)4− complex ions. In that paper, the disor-
dered Mercier structure was categorized in terms of
the placements of the (P2S6)4− ions along the hexag-
onal c-axes using the labels P↑ and P↓. For the few
example structures we investigated, the lowest en-
ergy structures were those with 50% P↑ and 50%
P↓, while the structure with 100% P↑ has the higher
symmetry space group P 3̄1m (#162) [10], with an
energy of 0.03 eV per formula unit higher than the
lowest energy structures. More recently, Neuberger
et al. [7] showed that it is possible to prepare more
highly crystalline samples. These samples, when
analyzed with a combination of X-ray analysis and
nuclear magnetic resonance (NMR) measurements,
were found to have an ordered structure with two in-
equivalent P sites and to be characterized with the
space group P321 (#150) [10] with three formula
units per unit cell. This new analysis provides an
explanation of how twinning and poor crystallinity
may result in samples consistent with the disordered
Mercier structure [9]. The Neuberger analysis super-
sedes the incorrect analysis of Dietrich et al. [3] and
approximately corresponds to a Mercier-like struc-
ture with 1

3 P↑ and 2
3 P↓. However, for reasons dis-

cussed below, we will reference the Neuberger struc-
ture in terms of the P 3̄m1 space group (#164) [10].

Meanwhile, the analogous sodium ion material
Na4P2S6 was synthesized in 2014 by Kuhn et



al. [11] and shown to be characterized by an
ordered based-centered monoclinic structure with
space group C2/m (#12) [10]. Simulations by Rush
et al. [8] suggested that the C2/m structure may be
metastable with respect to lower energy configura-
tions analogous to the Li4P2S6 materials. However,
recent experimental results of Hood et al. [6] on
Na4P2S6 find its ground state structure to be the
C2/m structure of Kuhn [11] and also find that it
has very promising ionic conductivity.

In view of the new experimental findings, the
present paper reports a reexamination of our earlier
work on Li4P2S6 and Na4P2S6 and also considers
a possible mixed ion material with the composition
Li2Na2P2S6. Our goal is to determine whether mod-
ified and enhanced computational methods can ex-
plain the observed ground state structures of these
materials and to explore mechanisms of Na ion con-
ductivity in Na4P2S6 and Li2Na2P2S6. The remain-
der of the paper is organized as follows. Section
II presents the formalism and computational meth-
ods used in this work. Section III presents the
computational results for the structural analysis of
Li4P2S6 and Na4P2S6, including the static lattice
results in Sec. III A and the effects of phonon en-
ergies within the harmonic approximation in Sec.
III B. Section III B 1 presents the phonon dispersion
curves and comparison between the calculated and
measured Raman phonon spectrum for Na4P2S6,
while Sec. III B 2 presents the phonon dispersion
curves for Li4P2S6. Results for the phonon contri-
butions to the stabilization of the crystalline phases
of both Na4P2S6 and Li4P2S6 are presented in Sec.
III C. Section IV presents results on the most sta-
ble structure of Li2Na2P2S6. Section V examines
the Na ion conductivity properties of Na4P2S6 and
Li2Na2P2S6. Section VI contains the discussion and
conclusions.

II. CALCULATIONAL METHODS

A. General formalism and software
implementation

The calculations in this study were based on
density functional theory (DFT) [12, 13] and den-
sity functional perturbation theory (DFPT) [14–
18] implemented in the ABINIT [19] and QUAN-
TUM ESPRESSO [20] codes, using the projector
augmented plane wave (PAW) [21] method and us-
ing atomic datasets generated with the ATOMPAW
code [22]. These datasets were generated with the

most recent version of the ATOMPAW code which
has been modified for better compatibility with the
QUANTUM ESPRESSO formalism [23]. The soft-
ware packages VESTA [24] and XCRYSDEN [25]
were used for visualizations of structural configu-
rations and FINDSYM [26] helped with the space
group analysis of the structures. The Mercury soft-
ware package [27] was used to simulate X-ray pat-
terns from calculation results and from published
structural data. Additionally, the Bilbao Crystallo-
graphic Server [28] was used to help with the sym-
metry analysis.

Our previous simulation studies of ion conducting
materials [2, 8] used the exchange-correlation func-
tional of the local density approximation (LDA) [29]
because of its generally good representation of vi-
brational properties of materials [30]. However, in
the present work, it is necessary to reexamine these
previous simulations. Encouraged by recent reports
by Petretto et al. [31] and by He et al. [32] in sim-
ulating structural and vibrational spectra for a wide
range of inorganic materials in reasonable agreement
with experiment, we were motivated to adopt the
exchange-correlation functional based on a modified
generalized gradient formulation known as PBEsol
[33].

B. Formalism for evaluating phase stability

1. First principles estimation of the Helmholtz free
energy

For a system held at constant temperature T
and volume V , the equilibrium state is described
by a minimum of the Helmholtz free energy func-
tion F (T, V ). Within the framework of the Born-
Oppenheimer approximation [34] and the harmonic
phonon approximation [14, 35], F (T ) is determined
by a sum of two terms [36]

F (T ) = FSL(T ) + Fvib(T ), (1)

where the subscript “SL” denotes the static lattice
energy at equilibrium and the subscript “vib” de-
notes the harmonic phonon contribution. For insu-
lating materials in their ground state,

FSL(T ) ≈ USL, (2)

the static lattice Helmholtz free energy is approx-
imately temperature independent and determined
by the internal energy USL which is well approxi-
mated by the total energy of the system determined
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from DFT [12, 13], optimized with respect to the
crystalline lattice vectors and atomic positions. In
fact, our previous simulation studies of the materi-
als [2, 8] considered only this static lattice contribu-
tion. In the present work, USL was evaluated using
both ABINIT using a plane wave cutoff for repre-
senting the valence wave functions of |k + G|2 ≤
50 Ry and QUANTUM ESPRESSO using a slightly
larger plane wave cutoff of |k + G|2 ≤ 64 Ry. Here
k and G represent an electronic wave vector and
reciprocal lattice vector, respectively. For calcula-
tions using primitive unit cells, the Brillouin zone
sampling of the electronic Bloch wave vector k used
Monkhorst-Pack grids [37] of 3×3×4 for the P 3̄m1
structure and 6×6×6 for the C2/m and P 3̄1m struc-
tures. For calculations using supercells, the Brillouin
zone sampling was adjusted accordingly.

For evaluating the contribution to the Helmholtz
free energy due to phonon vibrations in the harmonic
phonon approximation [14] we use DFPT which has
been implemented in both ABINIT and QUAN-
TUM ESPRESSO. We follow a procedure similar
to that described in several references including one
by Howard et al. [38], as summarized briefly as fol-
lows. The harmonic phonon approximation is based
on the assumption that it is sufficiently accurate to
describe variations of the equilibrium atomic geom-
etry of the static lattice by a Taylor series of small
deviations in the atomic displacements of USL up
to quadratic order. This approximation does not
include any effects of thermal expansion and the vi-
brational frequencies derived from the analysis are
independent of temperature. The corresponding vi-
brational Helmholz free energy Fvib(T ) is explicitly
given by the equation,

Fvib(T ) =

∫ ∞
0

dωfvib(ω, T ) (3)

where the weighted phonon density of states factor
fvib(ω, T ) is defined as [35],

fvib(ω, T ) = kBT ln

(
2 sinh

(
~ω

2kBT

))
g(ω). (4)

Here kB is the Boltzmann constant and g(ω) denotes
the phonon density of states normalized to 3N for a
material withN atoms in the unit cell. The weighted
phonon density of states factor fvib(ω, T ) is derived
from the distribution of quantum mechanical har-
monic oscillator states [35]. In order to assess the
contributions of various phonon modes to the vibra-
tional free energy, it is also convenient to define an

integrated weighted phonon density of states factor

f intvib(ω, T ) ≡
∫ ω

0

fvib(ω
′, T )dω′. (5)

The phonon density of states g(ω) is determined
from a knowledge of the frequencies of the normal
modes of vibration ων(q) as a function of phonon
wavevector q:

g(ω) =
V

(2π)3

∫
d3q

3N∑
ν=1

δ (ω − ων(q)) , (6)

where the integral is taken throughout the unit cell.
For our 3-dimensional systems, the integral of Eq.
(6) is equal to the total number of normal modes of
the evaluation cell (3N) which is 108, 36, and 36 for
the P 3̄m1, C2/m, and P 3̄1m structures respectively.

2. Normal mode analysis

The normal mode frequencies ων(q) are found by
solving eigenvalue problems of the form

Msω
2
ν(q)uνsi(q) =

∑
tj

C̃si,tj(q)uνtj(q). (7)

Here the indices s, t, . . . denote atoms within the unit
cell and the indices i, j, . . . denote Cartesian direc-
tions (x, y, z). Ms denotes the atomic mass of the

atom at site s. The matrix C̃si,tj(q) is the Fourier
transform of the matrix of second derivatives of the
static lattice energy USL with respect to small dis-
placements of atoms in the unit cell. Explicitly, the
analytic part of the second derivative matrix is given
by

C̃si,tj(q) =
∑
m

∂2USL({u})
∂usi(Rl)∂utj(Rm)

e−iq·(Rl−Rm),

(8)
where Rl and Rm represent the positions of the the
lth and the mth unit cell in the crystal, respectively.
Because of the translational symmetry of the lattice,
the summation over Rm in Eq. (8) spans all trans-
lation vectors of the unit cell and the result does not
depend upon Rl. The parameters usi(Rl) represent
the displacement in the i direction of atom s from
its equilibrium position (τ s + Rl) in cell l. For a
normal mode analysis of the system characterized
by phonon wavevector q, usi(Rl) is related to the
normal mode amplitude uνsi(q) according to

usi(Rl) = uνsi(q)eiq·Rl . (9)
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Within the framework of DFPT, Eq. (8) can be
evaluated as in terms of the displacement amplitudes
usi(q) according to

C̃si,tj(q) =
∂2USL

∂u∗si(q)∂utj(q)
. (10)

For ionic materials in the q → 0 limit, in addi-
tion to the analytic contribution to the dynamical
matrix (10), effects due to the coupling of ion mo-
tions to long wavelength electromagnetic fields [14–
18, 34, 39] must be taken into account. These long
wavelength electromagnetic field couplings lead to
the frequency splitting of transverse optical (TO)
and longitudinal optical (LO) modes at q = 0 and
for hexagonal and other layered geometries as con-
sidered in this work, they lead to apparent discon-
tinuities in the phonon dispersion curves ων(q) for
some of the normal modes [39].

It is convenient to define an atomic weight factor
which represents the contribution of each atom type
a among the sites s to the mode ν according to

W ν
a (q) ≡

∑
s∈a,i

|eνsi(q)|2 , (11)

where the normalized eigenvectors are defined ac-
cording to

eνsi(q) =
√
Msu

ν
si(q) where

∑
si

|eνsi(q)|2 = 1.

(12)
Using atomic weight factors given by Eq. (11) for
each normal mode, a projected density of phonon
modes function (PJDOS) for each atomic type can
then be defined according to

ga(ω) ≡ V

(2π)3

∫
d3q

3N∑
ν=1

(δ (ω − ων(q))W ν
a (q)) .

(13)
Defined in this way, it is apparent that∑

a

ga(ω) = g(ω). (14)

In practice, it is of interest to examine the dis-
persion of the normal mode frequencies ων(q) plot-
ted along various lines within the Brillouin zone.
In order to facilitate analysis of the phonon disper-
sion curves ων(q) and projected densities of states
ga(ω) functions, both ABINIT and QUANTUM
ESPRESSO use interpolations based on Eq. (8)
evaluated from the DFPT results of the unique q
points on a coarser Brillouin zone sampling grid. In

the present work the coarse Brillouin zone sampling
grids for the phonon wave vectors q were based on
Monkhorst-Pack grids [37] using 3×3×4 the P 3̄m1
structure and 3 × 3 × 3 for the C2/m and P 3̄1m
structures. All of these quantities provide insight
into the factors which contribute to minimizing the
Helmholtz free energy (Eq. (1)) which thus deter-
mine the most stable phase at any given tempera-
ture.

3. Analysis of non-resonant Raman spectra

For purposes of validation, it is helpful to com-
pare computed and measured results whenever pos-
sible. In this case, non-resonant Raman spectra have
been measured for samples of Na4P2S6 [6]. Further-
more, with an updated version of ABINIT [40], it is
now possible to make a first principles estimate of
Raman spectra within the PAW formalism [21], al-
though restricted only to the local density approxi-
mation (LDA) [29] exchange-correlation functionals.
Accordingly, for this portion of the calculation only,
we used atomic datasets generated by ATOMPAW
[22] with the LDA exchange correlation functions.
Past experience [41] shows that this functional gen-
erally gives excellent results for phonon frequencies
while systematically underestimating lattice equilib-
rium lattice constants in terms of agreement with
experimental measurements.

There have been a number of papers in the liter-
ature detailing the equations for first principles es-
timations of Raman spectra. In this work we follow
the work and approximate the notation of Umari et
al. [42], Veithen et al. [43], and Prosandeev et al.
[44]. We assume that the sample is composed of ran-
domly oriented crystals and that the measured spec-
trum is unpolarized. For the Stokes shifted spectrum
with an assumed Lorentzian line shape, the Raman
intensity I(ω) as a function of frequency ω can be
expressed according to

I(ω) =
∑
ν

〈
dσ

dΩ

〉ν
Γν

(ω − ων)2 + Γν2
. (15)

Here the sum over ν includes all of the Raman ac-
tive normal modes with frequencies ων . Γν repre-
sents a linewidth parameter that is estimated empir-
ically. The orientationally averaged Raman power
cross section is given by [42]〈

dσ

dΩ

〉ν
= V ~(ωI − ων)4(nν(T ) + 1)

2ωνc4
|
〈
ανij
〉
|2.

(16)
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Here V represents the volume of the scattering sam-
ple, c is the speed of light, ωI denotes the frequency
of the incident laser light, and nν(T ) represents the
temperature dependent Bose-Einstein distribution
of the mode ν:

nν(T ) =
1

e~ων/kBT − 1
. (17)

The Raman matrix element for scattered light di-
rection i and incident light direction j for mode ν is
given in terms of the the displacement derivative of
the electronic dielectric matrix ε∞ij according to

ανij =

√
V

4π

∑
sk

∂ε∞ij
∂τsk

uνsk. (18)

Here the summation goes over all atoms s in the unit
cell and all cartesian directions k. τsk denotes the
kth component of the equilibrium position of atom
s within a unit cell and uνsk denotes the kth com-
ponent of atom s of phonon eigenvector of Eq. (7)
evaluated for q = 0. The orientational averaging
can be expressed in terms of invariants of |

〈
ανij
〉
|2

according to [44, 45]:

|
〈
ανij
〉
|2 =

1

30

(
10G(0)

ν + 5G(1)
ν + 7G(2)

ν

)
, (19)

where

G(0)
ν =

1

3

(
ανxx + ανyy + ανzz

)2
G(1)
ν =

1

2

((
ανxy − ανyx

)2
+ (ανxz − ανzx)

2
+
(
ανyz − ανzy

)2)
G(2)
ν =

1

2

((
ανxy + ανyx

)2
+ (ανxz + ανzx)

2
+
(
ανyz + ανzy

)2)
+

1

3

((
ανxx − ανyy

)2
+ (ανxx − ανzz)

2
+
(
ανyy − ανzz

)2)
.

(20)

C. Formalism for modeling ionic conductivity

1. Nudged elastic band (NEB) calculations

As in previous work [2, 8], the “nudged elastic
band” (NEB) approach [46–48] was used to estimate
the Na ion migration energy Em. For both Na4P2S6

and Li2Na2P2S6 in the C2/m structure, simulations
were performed on supercells constructed from prim-
itive cells multiplied by 2 × 1 × 2. In addition to
simulating the energy path diagram for Na ion va-
cancies between adjacent host lattice sites in order
to estimate Em, this same supercell was used to es-
timate the formation energy Ef as the static lattice

energy difference from the perfect supercell an one
with a host lattice Na ion placed in an interstitial
position, forming a vacancy-interstitial pair. From
these results we can infer that the activation energy
Ea for Na ion conductivity can be estimated as

Em ≤ ENEB
a ≤ Em + 1

2Ef . (21)

Here, the upper estimate represents the case for a
well formed sample with few native vacancies, while
the lower estimate represents the case for a sam-
ple with a significant population of vacancies. It is
generally expected that the temperature (T ) depen-
dence of the conductivity is described by an Arrhe-
nius relationship:

σ(T ) =
A

T
e−E

NEB
a /kBT (22)

where A is a temperature independent constant and
kB denotes the Boltzmann constant,

2. Molecular dynamics simulations

First principles molecular dynamics simulations
were performed by using QUANTUM ESPRESSO
[20], focusing on the investigation of Na ion diffusion
in both Na4P2S6 and Li2Na2P2S6. For each mate-
rial, the simulations were carried out for a supercell
constructed with 2×1×2 conventional unit cells and
8 formula units, using a minimal zero-center k-point
sampling grid 1× 1× 1. The plane-wave expansion
included |k + G| ≤ 64 Ry and the energy tolerance
of the self-consistent field was set to 10−8 Ry. Each
simulation used a time step of ∆t = 2.4 fs in a micro-
canonical ensemble (NVE) and the Verlet algorithm
[49] was chosen to integrate the equation of motion.
Since the equations of motion conserve the simula-
tion energy E, the average temperature can be de-
termined for each ensemble from the average kinetic
energy of the simulation. Due to the temperature
fluctuations within each simulation, the temperature
cannot be precisely set by this procedure, but the ap-
proximate temperature can be controlled by setting
the initial conditions of each simulation. This ap-
proach and choice of parameters gave good results
in previous molecular dynamics studies of ionic con-
ductors by our group [38]. Compared to the NEB
approach for studying ion hops along a presumed
migration pathway, the molecular dynamics simula-
tions model the dynamics of motions of the ensemble
of ions within the femtosecond time scale. Thus it
is possible to display more diffusion pathways and
reveal new diffusion mechanisms.
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In order to quantify the molecular dynamics re-
sults in terms of Na ion conductivity we use the ap-
proximate treatment based on the mean squared dis-
placements (MSD) of the mobile Na ions. Denoting
by rs(t) the trajectory of the sth ion as a function
of time t, the MSD is given by

MSD(t, T ) ≡ 1

NNa

〈
NNa∑
s=1

|rs(t)− rs(0)|2
〉
T

. (23)

Here NNa represents the number of Na ions in the
simulation cell. The brackets represent an ensem-
ble average which in practice is achieved by averag-
ing the expression over multiple trajectories with the
same time interval t [50]. The subscript T denotes
the average temperature of the simulation. In the
limit of long simulation times, the MSD is related to
the tracer diffusion Dtr(T ) which in turn has an Ar-
rhenius dependence on the simulation temperature
T . For a 3-dimensional system,

Dtr(T ) =
1

6
lim
t→∞

(
MSD(t, T )

t

)
= D0e−E

MSD
a /kBT .

(24)
For this system, the Nernst-Einstein relationship be-
tween the electrical conductivity and the tracer dif-
fusion coefficient [51, 52] is given by

σ(T ) =
NNa

V

e2Dtr(T )

kBTHr
. (25)

Here V represent the volume of the simulation cell
and Hr denotes the Haven ratio [53, 54] which pro-
vides a measure of the correlation in the motions of
the conducting ions. Comparing the constant coef-
ficients in Eqs. (24) and (22) and assuming that the
two activation energies are comparable, we find the
Arrhenius constants have the relationship

A =
NNae

2D0

V kBHr
. (26)

Here we see that the molecular dynamics analysis
does provide an estimate of the magnitude of ionic
conductivity up to the unknown Haven ratio Hr,
while the NEB approach does not. In general, the
activation energy EMSD

a estimates the ensemble av-
erage of single ion processes, while ENEB

a estimates
the activation energy for hopping between idealized
local minima in Na ion vacancy potential energy sur-
face.

TABLE I: Summary of static lattice results.
Lattice constants for the primitive unit cells are
listed in units of Å and angles in degrees. The

static lattice energy differences ∆USL are listed as
eV/(formula unit) referenced to the energy of the

P 3̄m1 structure.

Li4P2S6 a b c α β γ ∆USL

P 3̄m1 a 10.42 10.42 6.54 90.0 90.0 120.0 0.00
C2/m b 6.08 6.08 6.89 97.9 97.9 119.1 0.31
P 3̄1m 6.03 6.03 6.48 90.0 90.0 120.0 0.04
Na4P2S6 a b c α β γ ∆USL

P 3̄m1 11.10 11.10 7.25 90.0 90.0 120.0 0.00
C2/mc 6.51 6.51 7.52 98.5 98.5 117.6 0.00
P 3̄1m 6.45 6.45 7.13 90.0 90.0 120.0 0.09

a Corresponding experimental values quoted from Ref. 7
are a = b = 10.51Å, c = 6.59Å assuming the closely
related space group P321.

b Lattice parameters for conventional unit cell are
ac = 6.17Å, bc = 10.48Å, cc = 6.89Å, and βc = 105.8 deg.

c Lattice parameters for conventional unit cell are
ac = 6.74Å, bc = 11.13Å, cc = 7.52Å, and βc = 106.5 deg.
The corresponding experimental values quoted from Ref.
11 are ac = 6.725Å, bc = 11.222Å, cc = 7.542Å, and
βc = 107.03 deg.

III. ANALYSIS OF STABLE CRYSTAL
STRUCTURES OF Li4P2S6 AND Na4P2S6

A. Computed optimized static lattice
structures

Based on previous computational experience and
new experimental analysis outlined in the Introduc-
tion (Sec. I) we focus on three different structures
for analyzing the structural properties of Li4P2S6

and Na4P2S6. These are the trigonal Neuberger
structure [7] analyzed for well-crystallized samples
of Li4P2S6 having 3 formula units per unit cell, the
base-centered monoclinic Kuhn structure [11] ana-
lyzed for crystals of Na4P2S6 having 1 formula unit
per primitive cell, and the trigonal reference struc-
ture having space group P 3̄1m which is based on
a subgroup of the Mercier structure of Li4P2S6 [9]
having 1 formula unit per primitive unit cell. While
the P 3̄1m structure has not been observed for these
materials, it does present a useful reference related
to the C2/m structure.

Table I summarizes the lattice constants and an-
gles computed for these structures. From this table,
it is apparent that the calculated structural parame-
ters are very close to the available experimental val-
ues, differing by at most 0.1 Å and 1 deg for the
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(a)
(b) (c)

FIG. 1: Ball and stick visualizations of Li/Na4P2S6 in the (a) P 3̄m1 (b) C2/m and (c) P 3̄1m structures
showing axes of primitive cell (brown lines and red arrows) with Li/Na, P, and S represented by blue,

black, and yellow balls, respectively. Two shades of blue are used to indicate the two inequivalent Li/Na
sites in each structure.

lattice constants and angles. Figures 1a, 1b, and 1c
show the ball and stick models of the three struc-
tures. The unique fractional coordinates are given
in the Appendix.

In the course of optimizing the Neuberger struc-
ture using the experimentally analyzed [7] fractional
coordinates for Li4P2S6 as a guide, we find that the
optimized structure has an additional inversion cen-
ter compared with P321 space group, resulting in
the space group P 3̄m1 (#164) [10]. This slightly
contradicts the results of Neuberger et al. [7], pre-
sented in their supplementary materials. On the
other hand, the X-ray diffraction patterns of the
P 3̄m1 and P321 structures, which are shown in Fig.
2, appear to be very similar. In this paper we will re-
fer to the Neuberger structure in terms of the P 3̄m1
space group.

FIG. 2: Comparison of X-ray diffraction patterns
for wavelength λ = 1.54 Å for Li4P2S6 generated
from the Mercury software package [27]. The up-
per (red) curve represents the experimental analysis
[7] analyzed with the P321 space group; the lower
(blue) curve represents the simulation results having
the P 3̄m1 space group.

For the centered monoclinic unit cell C2/m struc-
ture of Na4P2S6 analyzed by Kuhn et. al [11], it is
convenient to use the primitive cell vectors (a,b, c)
which can be related to the conventional monoclinic
cell parameters (ac, bc, cc, βc) according to [55, 56]

a = 1
2acx̂− 1

2bcŷ

b = 1
2acx̂ + 1

2bcŷ

c =cc cosβcx̂ + cc sinβcẑ

(27)

Analyzed in terms of the primitive cell parameters, it
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is apparent from Table I and Figs. 1b and 1c that the
primitive cell form of Kuhn structure is very similar
to the simple hexagonal P 3̄1m structure.

Also listed in Table I are the static lattice energies
∆USL referenced to the energy of the P 3̄m1 struc-
ture. The results for the materials in the C2/m
and P 3̄1m structures are somewhat different from
the earlier results by Rush [8] obtained using the
LDA exchange-correlation functional. The current
results using the PBEsol exchange-correlation func-
tional find the lowest static lattice energy of Li4P2S6

in the P 3̄m1 structure which is consistent with the
LDA results which found the related Mercier struc-
tures to have the lowest stateic lattice energies.
For Na4P2S6, the PBEsol exchange-correlation func-
tional finds the lowest static lattice energies for both
the P 3̄m1 and C2/m structures, while the LDA re-
sults found the stability pattern for Na4P2S6 to be
similar to that of Li4P2S6.

B. Phonon contributions

1. Na4P2S6

In order to further analyze the structures, we com-
puted the phonon normal modes as explained in Sec.
II B using DFPT in both the ABINIT and QUAN-
TUM ESPRESSO codes. While the equations in
Secs. (II B 1,II B 2, and II B 3) reference the phonon
frequencies in units of rad/s, the results presented
here are instead quoted as ω/(2πc) in units of cm−1

(where c denotes the speed of light constant). Figure
3 shows the phonon dispersion curves along with the
corresponding atom type projected density of states
(ga(ω)) for Na4P2S6, comparing results in three con-
sidered structures. For each structure, the associ-
ated path of high-symmetry q points is selected as
recommended for the type of Bravais-lattice with di-
agrams shown in Fig. 3 (d) and (e), reproduced
from Ref. [57]. In view of the fact that the phonon
frequencies throughout the Brillouin zone are real,
each structure is predicted to be dynamically sta-
ble. The figure shows considerable similarity be-
tween the phonon dispersions ων(q) and atom type
projected density of states ga(ω), for the three struc-
tures. While vibrational amplitudes on the S sites
occur throughout the frequency range, the Na am-
plitudes contribute to mode frequencies in the range
of 0− 300 cm−1. Vibrations in the range 300− 600
generally correspond to modes associated with the
(P2S6)4− dimer ions. In particular, all three struc-
tures have two modes per formula unit which are in-

dependent of q, indicating pure internal dimer vibra-
tions. For example, for the C2/m structure, these
internal vibrational modes occur near the frequen-
cies ω30(q) = 370 cm−1 and ω32(q) = 540 cm−1

and occur at similar frequencies for the other two
structures. For the P 3̄m1 structure having 3 for-
mula units per primitive cell, these internal dimer
vibrations occur in two groups of 3 modes each, with
a small splitting within each group due to a slight in-
equivalence of one-third of the (P2S6)4− placements.
The three phonon band plots in Figs. 3a, 3b, and
3c display the apparent dispersion discontinuities at
the Γ point mentioned in Sec. II B 2 [39].

Since the Raman spectrum of Na4P2S6 in the
C2/m structure has been measured [6], it is use-
ful to examine its Raman active phonon vibrational
modes theoretically and computationally. Accord-
ing to group theory analysis [28] of the q = 0 nor-
mal modes for this system which is characterized by
the C2h point group, the 36 vibrational modes are
distributed among the 4 distinct representations ac-
cording to 9Ag+7Au+9Bg+11Bu. Here the infrared
active modes have symmetry 7Au+11Bu and the re-
maining symmetries 9Ag + 9Bg are Raman active.

As mentioned in Section II B 3, the ABINIT code
[40] has not yet implemented the Raman intensity
analysis for the PBEsol [33] exchange-correlation
functional, but only for the LDA [29] functional.
Consequently, it is important to assess how sensitive
are the computed phonon frequencies to the choice
of exchange-correlation functional. For this test, we
used PAW datasets generated with the ATOMPAW
[22] code and, as a further check, also use optimized
norm-conserving (ONC) developed by Haman [58]
which are available from the Pseudodojo project
[59]. In Fig. 4 we compare the spectra of Ra-
man active mode frequencies computed using the
LDA and PBEsol exchange-correlation functionals
using both the PAW and ONC datasets. The re-
sults show that the phonon frequencies generated
with the LDA exchange-correlation functional using
the ONC and PAW datasets are essentially identical,
while those generated with the PBEsol exchange-
correlation functional and the PAW datasets, used in
the majority of this manuscript, are usually shifted
to lower frequencies in the range of 5-15 cm−1.

Using DFPT to estimate the Raman spectra of
Na4P2S6 in the C2/m structure as described in
Sec. II B 3 we can make a quantitative compari-
son with the measured spectrum which is presented
in Fig. 5. For this simulation, we used the LDA
exchange-correlation functional and both ONC and
PAW datasets. The computed spectra assumed that
T = 300 K and assumed a constant Lorentzian
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(a) (b)

(c)
(d) (e)

FIG. 3: For Na4P2S6, plots of phonon normal mode frequencies ω(q) in units of cm−1 for (a) P 3̄m1, (b)
C2/m and (c) P 3̄1m structures all in their primitive unit cells plotted along various lines within the

Brillouin zone. The atom type projected density of states (ga(ω) – PJDOS) are plotted using the same
frequency scale along the right panel of each dispersion plot. Brillouin zone diagrams (d) for the trigonal
P 3̄m1 and P 3̄1m structures and diagram (e) for the monoclinic C2/m structure are reproduced from

Hinuma et al. in Ref. 57 with permission from the publisher.

linewidth of Γν = 10 cm−1. The computed and
experimental intensities were adjusted so that their
peak intensities were each scaled to a value of 1. The
computed intensity curves using the ONC and PAW
are essentially superposed one on another validat-
ing both the code implementations of the two for-
malisms and also validating these ONC and PAW
datasets. The results also show a close agreement
between the computed and experimental values. For
example, both the experiment and calculation ob-
serve the highest intensity peak at about 383 cm−1

and 371 cm−1, respectively. More specifically, this
peak corresponds to a normal mode of Ag symme-
try associated with the internal stretching motions
of the (P2S6)4− ions. This mode also corresponds to
the lowest frequency non-dispersive mode mentioned

in Sec. III B 1 and shown in Fig. 3b. In future work,
it may be appropriate to further investigate the sen-
sitivity of the computed spectra on the Lorentzian
linewidth parameter Γν .
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FIG. 4: Frequencies of q = 0 Raman active modes of
Na4P2S6 in the C2/m structure. Comparing results
of (a) ONC, (b) PAW, both using LDA, to the results
of (c) PAW using PBEsol.

FIG. 5: Calculated Raman intensities for the C2/m
structure of Na4P2S6 using ONC (turquoise) and
PAW (black), in comparison to the experimental
spectrum (red) [6] resulting from an incident light
wavelength of 532 nm. The calculated spectra
used the LDA exchange-correlation functional and
were evaluated at T = 300 K. For each mode, the
Lorentzian linewidth Γν was chosen to be 10 cm−1.

2. Li4P2S6

FIG. 6: Phonon band structure and the correspond-
ing projected density of states for Li4P2S6 in the
P 3̄m1 structure. See Fig. 3d for the Brillouin zone
diagram of the hexagonal structure.

Since the Neuberger [7] preparation of Li4P2S6,
corresponds to the P 3̄m1 structure, it is useful
to compare its vibrational spectrum with that of
Na4P2S6 shown in Fig. 3a in order to get a sense of
the difference caused by replacing Na by Li within
the lattice of the same symmetry as shown in Fig. 6.
The comparison shows that the vibrational spectra
for the two materials are very similar; the main dif-
ferences are that the Li amplitude motions extend
to higher frequencies – 370 cm−1 compared with the
corresponding Na amplitude motions.
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C. Helmholtz free energy and stability of
crystalline phases

(a)

(b)

FIG. 7: Plot of Helmholtz free energy and the vibra-
tional free energy (insert) for (a) Na4P2S6 and (b)
Li4P2S6, comparing results for the P 3̄m1 (black),
C2/m (red) and the P 3̄1m (purple) structures. In
both sets of curves the zero of energy is taken by
setting USL(P 3̄m1) = 0.

The total Helmholtz free energy of Na4P2S6 in
each of the three model structures, as evaluated from
Eqs. (1-3) are shown Fig. 7a in comparison with
these of Li4P2S6 analogues as plotted in Fig. 7b.
The corresponding vibrational free energies Fvib near
the room temperature are inserted in each subfigure
for comparing the contributions to the stability of
the crystal. As implied by the overlapped black and
purple curves in the inserted figures, the phonon con-
tributions from the two hexagonal structures P 3̄m1
and P 3̄1m are almost identical with energy value
higher than that of C2/m structure throughout the

TABLE II: Summary of simulation energies for
Na4P2S6 and Li4P2S6 at T = 300 K. Results given

in units of eV/(formula unit); for each material,
the energy zero is set at the static lattice energy

USL for the P 3̄m1 structure.

Na4P2S6 ∆USL Fvib(300 K) F (300 K)
P 3̄m1 0.00 -0.04 -0.04
C2/m 0.00 -0.08 -0.08
P 3̄1m 0.09 -0.04 0.05
Li4P2S6 ∆USL Fvib(300 K) F (300 K)
P 3̄m1 0.00 0.19 0.19
C2/m 0.31 0.12 0.43
P 3̄1m 0.04 0.20 0.24

temperature range for both materials. In the case
of Na4P2S6, the lowest Helmholtz free energy of the
C2/m structure indicates that the vibrational free
energy contributes to the stabilization of this phase.
While for Li4P2S6, although the C2/m structure
possesses the lowest vibrational free energy, it is the
static energy USL that plays a dominant role in sta-
bilizing in the P 3̄m1 structure.

We present the summary of simulation energies at
T = 300 K in Table II to detail the relationships
between the competing energies. It is interesting to
note that at this temperature, Fvib < 0 for all of
the Na4P2S6 structures while Fvib > 0 for all of the
Li4P2S6 structures. It is also interesting to note that
the vibrational contributions to the stabilization of
these materials is substantial. For both materials
at T = 300 K, the C2/m structure has the lowest
value of Fvib. This stabilizes the Na4P2S6 in the
C2/m structure relative to the other two structures.
However for Li4P2SS , the P 3̄m1 structure has the
smallest value of F = 0.19 eV/formula unit benefit-
ing from contributions of static lattice energy. Over-
all, our results on each material are consistent with
the corresponding experimental analysis [6, 7, 11] in
term of structural stability.

In order to further understand how the phonon
normal modes contribute to the vibrational
Helmholtz free energy Fvib(T ), it is helpful to exam-
ine the weighted phonon density of states factor de-
fined in Eq. (4) and its integral defined in Eq. (5) as
well as the phonon density of states g(ω) defined by
Eq. (6) which are all plotted in Fig. 8 for the func-
tions evaluated at T = 300 K represented Na4P2S6

(a) and Li4P2S6 (b), both in their C2/m structures.
Here we see that while g(ω) ≥ 0 for all frequencies
ω, fvib(ω, T ) changes sign from negative to positive
when 2 sinh(~ω/(2kBT )) = 1. For T = 300 K, and

11



for ω in units of cm−1, this sign change occurs at
ω ≈ 201 cm−1. Figure 8 shows that in the frequency
range 0 ≤ ω ≤ 201 cm−1, Na4P2S6 has a greater
phonon density of states than does Li4P2S6, which
numerically explains why the vibrational Helmholtz
free energy of Na4P2S6 is much lower than that of
Li4P2S6. Qualitatively, the fact that Na4P2S6 has a
greater phonon density of states at low frequencies
could be explained by low frequency vibrations of
the more massive Na ions compared with those of
the less massive Li ions.

(a) (b)

FIG. 8: Details of the vibrational stabilization at
T = 300 K for (a) Na4P2S6 (b) Li4P2S6 in the
C2/m structure. In each subplot, the black curve
indicates the phonon density of states g(ω), the
red curve represents the weighted phonon density of
states fvib(ω, T = 300 K) scaled by a factor of 100,
and the purple curve gives the integrated weighted
phonon density of states factor f intvib(ω, T = 300K) as
defined in Eqs. (6, 4, and 5), respectively. In these
plots the corresponding vertical scales are in units of
states/cm−1 for g(ω), eV/(formula unit)/cm−1 for
fvib, and eV/(formula unit) for f intvib.

IV. PREDICTION OF A MIXED ION
ELECTROLYTE Li2Na2P2S6

A. Optimized structure

(a) RLi
g (b) RLi

h

FIG. 9: Diagrams of two possible arrangements of
ions for primitive crystalline unit cells of Li2Na2P2S6

in their optimized C2/m structures with Li, Na,
and the building block (P2S6)4− units represented
by green balls, blue balls, and wireframes, respec-
tively. Li ions in (a) are located at the equivalent g
sites while in (b) Li ions are located at h sites.

In addition to the reexamination of known crys-
talline materials Na4P2S6 and Li4P2S6, we also
examined the possibilities for mixed ion material
Li2Na2P2S6 based on the idea of ionic substitution.
For example, starting with the C2/m structure of
crystalline Na4P2S6, we consider the possibility of
modifying the structure by substituting two Li ions
for two Na ions in the setting of the primitive cell.
The C2/m structure of Na4P2S6 has two crystal-
lographically distinct Na sites with Wyckoff labels
g and h. These are indicated by light blue and
dark blue shades in Fig. 1b, respectively. From
this viewpoint, we intuitively construct two likely
geometries of atomic arrangements for Li2Na2P2S6.
For the configuration RLig illustrated in Fig. 9a, we
replace all equivalent Na ions in Na4P2S6 of type g
with Li ions. For the configuration RLih illustrated
in Fig. 9b, we replace all Na ions of type h with
Li ions. After optimization using variable cell tech-
niques, both proposed structures retain their space
group symmetry of C2/m with the optimized lattice
parameters for each potential structure being listed
in Table III. Given that RLig results in a low energy
structure having relative static lattice energy of -0.16
eV with respect to RLih , this configuration is deter-
mined to be the ground structure of Li2Na2P2S6 and
will be used in subsequent analysis and simulations.
It is also worth mentioning that the equilibrium vol-

12



ume of Li2Na2P2S6 in the RLig structure has approxi-
mately 10% less volume than that of Na4P2S6, which
is not surprising because the Li ion has a smaller ra-
dius than does the Na ion.

TABLE III: Comparison of the optimized lattice
parameters for Li2Na2P2S6 in the RLig and RLih

structures. Also listed are the static lattice energy
differences ∆USL referenced to the energy of the

RLih structure in units of eV/formula unit.

RLi
g RLi

h

Primitive cell: a = b (Å) 6.18 6.46
c (Å) 7.50 7.01
α = β (deg) 97.77 97.88
γ (deg) 119.21 118.43

Conventional ac (Å) 6.26 6.61
cell: bc (Å) 10.67 11.10

cc (Å) 7.50 7.01
βc (deg) 105.50 105.54
∆USL (eV/FU) -0.16 0.00

In the case of having Na as well as Li ions vibrat-
ing in the same lattice, it would be interesting to
compare the vibrational features of Li2Na2P2S6 with
that of the pure alkali material Na4P2S6 in terms of
phonon dispersion relations which are given in Fig.
10 and Fig. 3b, respectively. The comparison shows
that the dispersion curves of the two materials are
very similar with the same number of modes covering
an almost identical range of frequencies. The fact
that the harmonic phonon analysis of the ground
state structure of Li2Na2P2S6 results in all phonon
modes having real frequencies, provides evidence of
the dynamical stability.

FIG. 10: Phonon band structure and the corre-
sponding projected density of states for Li2Na2P2S6

(in the stable RLig structure). See Fig. 3e for the
Brillouin zone diagram of the C2/m structure.

B. Possible reaction pathways

To the best of our knowledge, the crystal
Li2Na2P2S6 has not been yet observed experimen-
tally. However, with predictive capabilities of first-
principles calculations, we can quantitatively eval-
uate the plausibility of synthesizing the material
by considering a number of reactions. Perhaps the
simplest reaction involves replacing Na with Li in
Na4P2S6 according to

Na4P2S6 + 2Li→ Li2Na2P2S6 + 2Na. (28)

In this reaction (28) we assume that both Na4P2S6

and Li2Na2P2S6 are in their ground state C2/m
structures and Li and Na are in their metallic body
centered cubic structures. The reaction energy of
the products P and the reactants R is then esti-
mated from

∆F (T ) = ∆USL + ∆Fvib(T ) + ∆Fmetalelec (T ). (29)

The reaction energy ∆F (T ) calculated in this way
represents the net energy of the process, typically
referenced to room temperature (T = 300 K) and
does not account for possible reaction barriers. Nev-
ertheless, ∆F (T ) is useful for assessing stabilities;
∆F (T ) > 0 implies that the reactants are more sta-
ble than the products, while ∆F (T ) < 0 implies that
the products are more stable than the reactants at
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temperature T . Here ∆USL = UPSL − URSL repre-
sents the static lattice energy difference between the
left-side reactants and the right-side products of the
reaction as determined from ground state (zero tem-
perature) density functional calculations. Similarly,
we denote ∆Fvib(T ) = FPvib(T )−FRvib(T ) in the har-
monic phonon approximation, as the vibrational en-
ergy change during the reaction process. For this re-
action which involves metallic constituents, there is
in principle a contribution ∆Fmetalelec (T ) due to tem-
perature dependent electronic excitations of metallic
Li and Na. However our calculations indicate these
contributions are numerically small (∼ 10−3 eV) and
can be neglected. Graphs of ∆F (T ) and separately
of the Helmholtz free energies of the reactants and
products as a function of temperature T are pre-
sented in Fig. 11. For this reaction, ∆F (T ) < 0 for
the computed temperature range and at T = 300K,
∆F (T = 300K) = −0.35 eV. This suggests that it is
energetically favorable for Li to replace Na accord-
ing to reaction (28) over a significant temperature
range.

FIG. 11: Plot of the reaction energy of Eq. 28 as
a function of temperature. The inner plot presents
the comparison of the Helmholtz free energy of the
reactants (blue curve) with that of products (red
curve) for the predicted reaction.

While reaction (28) provides a possible synthesis
route producing the mixed ion electrolyte with an
excess Na metal coating, there are a number of other
possible reactions one can imagine to produce the
pure mixed ion electrolyte Li2Na2P2S6. We have
analyzed some of these according to Eq. (29), ne-
glecting the ∆Fmetalelec (T ) contributions. The results
are summarized together with the results for reac-
tion (28 or No. 1) in Table IV. From this table, we
see that the only reaction that has a positive ∆F is
No. 3, suggesting that Li2Na2P2S6 is unstable rel-

ative the phase separated mixture of Na4P2S6 and
Li4P2S6. On the other hand, knowing that Li4P2S6

forms at very high temperature [2, 7, 9], suggests
that there may be a large activation barrier to the
formation of Li4P2S6. It is possible that a low tem-
perature synthesis process that keeps the reaction
energy below the energy of the reaction barrier to
form Li4P2S6 could provide a successful pathway to
the synthesis of Li2Na2P2S6. Perhaps some of the
reactions mentioned in Table IV (other than No. 3)
are worth investigating for this purpose.

V. IONIC CONDUCTIVITIES

A. Nudged elastic band (NEB) analysis

In order to understand mechanisms of Na ion con-
ductivity in Na4P2S6 and Li2Na2P2S6 in the C2/m
structure, it is helpful to visualize part of simulation
cell (composed of 2× 1× 2 conventional monoclinic
cells) as illustrated in Fig. 12a. Previously reported
analysis of Na ion conductivity in Na4P2S6 in the
C2/m structure [8] found the most energetically fa-
vorable migration to occur with a vacancy mecha-
nism within planes containing Na ions at the crys-
tallographic h sites between (P2S6)4− layers. One
example zigzag path is illustrated in Fig. 12a show-
ing net migration along the a-axis. Using the NEB
methods discussed in Sec. II C 1, the energy path
diagrams for Na ion vacancy migration along neigh-
boring h sites for Na4P2S6 and Li2Na2P2S6 are com-
pared in Fig. 12b. The results indicate that Em is
significantly smaller for Li2Na2P2S6 compared with
that of Na4P2S6 which correlates with the short-
ened distance between neighboring h sites by ap-
proximately 0.2 Å.

The Na ion vacancy mechanism for the macro-
scopic ion conductivity depends upon a population
of Na ion vacancies. For a highly ordered crys-
tal, this population depends on the “formation” of
interstitial-vacancy pairs. In previous work [8], the
most favorable interstitial sites were found to be lo-
cated at the crystallographic d sites which are close
to and in the the same plane as the h sites as shown
in Fig. 12a. The results of the present work using
the PBEsol exchange-correlation function are qual-
itatively similar but numerically different from the
previous work [8] which used the LDA functional.
In the present work, we find the following values (in
units of eV): Em = 0.25 and 0.16 and Ef = 0.18
and 0.13 for Na4P2S6 and Li2Na2P2S6, respectively,
suggesting that Li2Na2P2S6 may have promising Na
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TABLE IV: Computed energy differences (Eq. 29) for indicated reactions in eV units, evaluated at
T = 300 K and neglecting electronic excitation contributions. Na4P2S6 and Li2Na2P2S6 are assumed to

have the optimized C2/m structures discussed in this manuscript, Li4P2S6 is assumed to have the
optimized P 3̄m1 structure discussed in this manuscript, Na and Li are assumed to have the optimized bcc

(space group Im3̄m (#229)) structures, while the assumed structures of all other constituents are
referenced in the footnotes.

No. Reaction: R→ P ∆USL ∆Fvib ∆F
1 Na4P2S6 + 2 Li → Li2Na2P2S6 + 2 Na -0.29 -0.06 -0.35
2 2 Li + 2 Na + 2 Pa + 6 Sb → Li2Na2P2S6 -10.62 0.06 -10.56
3 1

2
Na4P2S6 + 1

2
Li4P2S6 → Li2Na2P2S6 0.13 -0.03 0.10

4 1
2

Na4P2S6 + 2
3

Li3PS4
c + 1

12
P4S4

d → Li2Na2P2S6 -0.24 -0.02 -0.26
5 2

3
Na3PS4

e + 2
3

Li3PS4
c + 1

6
P4S4

d → Li2Na2P2S6 -0.48 -0.00 -0.48
6 2

3
Na3PS4

e + 1
3

P4S10
f + 2 Li → Li2Na2P2S6 -5.01 0.06 -4.95

7 2
3

Li3PS4
c + 1

3
P4S10

f + 2 Na → Li2Na2P2S6 -4.70 0.07 -4.63

a Black phosphorous with Space Group Cmce (#64); from Ref. 60.
b Orthorhombic (α-S8) with Space Group Fddd (#70); from Ref. 61.
c γ-Li3PS4 with Space Group Pmn21 (#31); from Ref. 62.
d α-P4S4 with Space Group C2/c (#15); from Ref. 63.
e α-Na3PS4 with Space Group P 4̄21c (#114); from Ref. 64.
f P4S10 with Space Group P 1̄ (#2); from Ref. 65.

ion conductivity. These and related results will be
summarized in Table V.

B. Molecular dynamics simulations

First principles molecular dynamics simulations
were performed using supercells of Na4P2S6 and
Li2Na2P2S6 as described in Sec. II C 2. In order
to collect statistically significant numbers of hop-
ping events within reasonable simulation times, it
was necessary to use high temperatures for the simu-
lations; typically the temperature averaged over the
simulation time was 〈T 〉 > 900 K. It is expected that
the high temperature simulation results can be ex-
trapolated to more physical temperatures in a sim-
plified accelerated dynamics algorithm [66]. This ap-
proach follows the pioneering work of Mo et al.. [67]

The results offer additional perspectives on the
Na ion migration mechanisms of these materials. In
particular, by directly observing the ion trajecto-
ries, we find that the most significant ion motion
occurs within planes containing Na ions (located at
the Wyckoff labeled h sites at equilibrium) between
(P2S6)4− layers, consistent with the NEB analysis
discussed above. For simplicity, we will refer to this
plane as the interlayer plane. We found that there is
essentially no conduction path along the the c-axis of
these materials. We also examined the Li ion motion
for Li2Na2P2S6. At equilibrium, the ions are located

at the Wyckoff sites labeled g which are within the
(P2S6)4− layer planes. We found the Li ion trajec-
tories to be characterized by oscillations about their
equilibrium positions resulting in a high degree of
site-localization and essentially no diffusion. Simi-
lar behavior was observed for the g site Na ions in
Na4P2S6.

In order to visualize the significant Na ion motion
in these materials, Fig. 13 shows the superposed
snapshots of the ion positions in a volume containing
the interlayer plane. The snapshots were taken each
time interval of 20∆t, where ∆t denotes the Verlet
time integration parameter, for the first 30 ps of the
MD simulations. For Na4P2S6 the average tempera-
ture was 〈T 〉 = 955 K and for Li2Na2P2S6 the aver-
age temperature was 〈T 〉 = 973 K. At the beginning
of the calculation, there are 8 Na ions with labels
from Na(1) to Na(8) corresponding to their respec-
tive host lattice h sites (h1 − h8) in the simulation
cell. The notations (d1 − d4) indicate the interstitial
d sites within the supercell. More labels with super-
script ′ were placed in each subfigure representing
sites in neighboring cells.

Figure 13 shows that in contrast to the predictions
of the NEB analysis which focused on ion vacancy
migration along the a-axis, the molecular dynamics
results suggest that ion migration occurs through-
out the interlayer plane due to involvement of the
interstitial d sites. Additionally, the results qualita-
tively show that, compared to the case for Na4P2S6,
it is evident that the Na ions hop more frequently
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(a)

(b)

FIG. 12: (a) Ball and stick diagram of a portion of
the simulation cell used to study Na ion

conductivity in Na4P2S6 and Li2Na2P2S6 with the
same ball color conventions as used in the diagrams
shown in Sec. III. Dark blue balls indicate Na ions
with Wyckoff labels h, light blue balls indicate Na

or Li ions with Wyckoff labels g, and grey balls
indicate interstitial sites with Wyckoff labels d.
The red arrows indicate the most likely Na ion
vacancy migration pathway between adjacent h

sites. (b) Configuration energy diagram results of
NEB calculation of Na ion vacancy migration along

one step of the indicated pathway, comparing
results for Na4P2S6 and Li2Na2P2S6.

in Li2Na2P2S6, presenting a more extensive network
of diffusional channels. Some general observations
of the hopping events are as follows. The migration
of Na ions is either via direct vacancy mechanism
between the host h↔ h sites or via indirect vacancy
mechanism between h ↔ d sites. Specifically, the
diffusion process can be triggered by one Na ion at a
host h site jumping into the nearest-neighbor d site,
leaving a vacancy that is available to be occupied by
another Na ion from a nearby h site. For these simu-

(a)

(b)

FIG. 13: Superposed snapshots of 30 ps molecular
dynamics simulations visualized within slices of the
simulation cells containing a interlayer plane for (a)

Na4P2S6 with average temperature 〈T 〉 = 955 K
and (b) Li2Na2P2S6with average temperature

〈T 〉 = 973 K. The time interval between snapshots
is 20∆t = 0.048 ps. The blue balls represent the

host h sites and the gray balls represent the
interstitial d sites. Each distinct Na ion is

represented with a unique color in order to follow
its motion throughout the simulation. The red
arrows indicate particular examples of Na ion

jumps between sites with the tail and head of each
arrow consistent with the time sequence of the

jump.
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lations, no migrations between the d↔ d sites were
observed. This suggests, that for these materials,
the Na ion migration processes involve both direct
vacancy hops and indirect vacancy hops with inter-
stitial intermediates, but direct interstitial mecha-
nisms were not identified in these datasets. For ex-
ample, in Fig. 13a the first hop in the simulation
occurs for Na(4) at t = 0.60 ps, jumping from site
h4 to site d′4. Later at t = 1.57 ps, the Na(3) ion
jumps from site h3 to fill the vacancy h4. A simi-
lar initial process is observed in Fig. 13b in a faster
time scale where t = 0.60 ps, the Na(3) ion jumps
from site h3 into the site d′3, and subsequently at
t = 0.97 ps, the Na(2) ion jumps from its h2 site
into the vacant h3 site.

In order to quantify these effects, we can analyze
the nearest neighbor hopping events as a function
of time. In particular, for t > 0, we can determine
the average number of hops between nearest neigh-
bor (nn) h sites (Hh↔h(t)) and the average number
of hops between nearest neighbor (nn) h ↔ d sites
(Hh↔d(t)) in the follow way. Within the simula-
tion cell there are 2 interlayer planes containing a
total of 16 Na ions, each with a label s. At each
time t, we assign each of these s mobile ions to the
nearest host lattice site hk where within each plane,
1 ≤ k ≤ 8 or interstitial site dl where within each
plane 1 ≤ l ≤ 4. Then for each time t > 0, we
compute the hop counter functions according to the
comparison of the site assignments at time t − ∆t
and t

Csh↔h(t) =

{
Csh↔h(t−∆t) No config. change
Csh↔h(t−∆t) + 1 h↔ nn h

Csh↔d(t) =

{
Csh↔d(t−∆t) No config. change
Csh↔d(t−∆t) + 1 {h, d} ↔ nn {d, h}

(30)

with Csh↔h(t = 0) = 0 = Csh↔d(t = 0). The al-
gorithm must be adapted to take into account hops
across the simulation cell boundaries. From these
hop counter results we can then compute the accu-
mulated and averaged hop functions according to

Hh↔h(t) =
1

16

16∑
s=1

Csh↔h(t)

Hh↔d(t) =
1

16

16∑
s=1

Csh↔d(t).

(31)

The results of this analysis are illustrated in Fig.
14. As expected, the accumulated hop function for
Li2Na2P2S6 is larger than the corresponding func-
tion for Na4P2S6 for both h ↔ d and h ↔ h

events. A less intuitive result of this analysis is that
Hh↔d(t) > Hh↔h(t) for both materials, indicating
the importance of the intermediate interstitial pro-
cesses for ion migration in these materials.

FIG. 14: Plots of the accumulated hop functions
Hh↔h(t) and Hh↔d(t) as a function of the simula-
tions time t. The results for Na4P2S6 are shown in
black and purple and the results for Li2Na2P2S6 are
shown in red and green. The data from the sim-
ulations illustrated in Fig. 13 were used for this
analysis.

In order to connect the simulations with ion con-
ductivity, molecular dynamics runs with simulation
times of 50-70 ps were performed at various aver-
age temperatures. For Na4P2S6 the average tem-
peratures were 〈T 〉 = 955, 1051, 1143, and 1287 K,
while for Li2Na2P2S6 the average temperatures were
〈T 〉 = 994, 1060, 1193, and 1260 K. The results, as-
suming the Haven ratio Hr = 1, together with the
available experimental measurements are presented
in Fig. 15, plotting log(Tσ) vs. 1/T . On the ba-
sis of Eqs. (24) and (25), the activation energy
is obtained from the slope of the corresponding fit
line. For the case of Na4P2S6, it shows that the
calculated tracer activation energy EMSD

a = 0.41
eV is in reasonably good agreement with the ex-
perimental value of Eexpa = 0.39 eV. The discrep-
ancy between experiment and computation may be
due to the rough approximation of the Haven ratio.
Other possible reasons for the discrepancy include
the choice of statistical ensemble for modeling the
system and the simulation time may also affect the
accuracy of the numerical analysis. The tracer ac-
tivation energy of Li2Na2P2S6 is EMSD

a = 0.30 eV.
Consistent with the NEB analysis, we again see that
Li2Na2P2S6 presents better ionic conductivity than
Na4P2S6. The results for both NEB and molecular

17



dynamics analyses are summarized in Table V. Here
we note that for these systems, ENEB

a 6= EMSD
a be-

cause of their different treatments of the effects of in-
terstitial (d) sites. The NEB analysis presented here
only considered direct hops between nearest neigh-
bor vacancy sites, including the interstitial sites only
in the estimation of the population of vacancies via
the Boltzmann factor due to the formation energy
Ef of the intestitial-vacancy pair. The molecular
dynamics analyses indicate significant contributions
of hops between vacancy and interstitial sites, pre-
senting a plausibly more physical picture of the Na
ion migration processes.

FIG. 15: Plots of the ionic conductivity with the
calculated values for Na4P2S6 (blue diamonds) and
Li2Na2P2S6 (green triangles) evaluated using Eq.
(25) with Hr = 1. The experimental value for
Na4P2S6 (red circles) was obtained by refitting the
data in Ref. [6]. The straight lines represent the
best-fit of the computational or the experimental
analysis.

VI. DISCUSSION AND CONCLUSIONS

The three focuses of this work are (1) a com-
prehensive (re-)examination of the crystal struc-
tures and stabilities of Li4P2S6 and Na4P2S6, (2)
a prediction and analysis of a mixed ion electrolyte
Li2Na2P2S6, and (3) an assessment of the Na ion
conductivity properties of Na4P2S6 and of the mixed
ion material Li2Na2P2S6.

The results of the structural analyses are pre-
sented in Sec. III with the numerical results eval-
uated at T = 300 K summarized in Table II. Here
we see that, within the harmonic phonon approxima-
tion [14, 35], the Helmholtz free energy due to vibra-

TABLE V: NEB and MD results on Na4P2S6 and
Li2Na2P2S6 calculated with the PBEsol

exchange-correlation functional, in comparison to
those of previous work obtained using the LDA
exchange-correlation functional and available

experimental data. All energies are given in eV
units.

Materials Analysis Em Ef Ea

Na4P2S6 LDA + NEB a 0.30 0.24 0.42
PBEsol + NEB 0.25 0.18 0.34
PBEsol + MD − − 0.41
Experiment b − − 0.39

Li2Na2P2S6 PBEsol + NEB 0.16 0.13 0.23
PBEsol + MD − − 0.30

a Reference 8
b Reference 6

tions plays a non-trivial role in stabilizing the ma-
terials. Using plots of the weighted phonon density
of states factor and its integral in Fig. 8, it is pos-
sible to understand the vibrational stabilization of
the more massive Na ions relative to the correspond-
ing Li ion vibrations in these materials. Addition-
ally, we found that computations using the PBEsol
exchange-correlation functional [33] contributed to
the better agreement with the experimental results
compared with previous calculations [2, 8] which
used the LDA exchange-correlation functional [29].
The present computational results are consistent
with the latest structural analyses, finding the sta-
ble structures at T = 300 K to be the Neuberger
structure [7] for Li4P2S6 and the Kuhn structure [11]
for Na4P2S6. For the Neuberger structure, we of-
fered computational evidence of a slight correction to
structural analysis, suggesting that the space group
should be P 3̄m1 (#164) rather than the reported
space group of P321. Further evidence of compu-
tational consistency with experiment was obtained
in comparing experimental and computational non-
resonant Raman phonon spectra of Na4P2S6 shown
in Fig. 4. Here the most intense signal was iden-
tified as due to the internal stretching mode of the
(P2S6)4− complex ions.

The results of analyzing the structure and stabil-
ity of the possible mixed ion electrolyte Li2Na2P2S6

are presented in Sec. IV. We found that two Li
ions can substitute for the two intralayer Na ions of
Na4P2S6 in the C2/m structure. Here, “intralayer”
refers to the layers containing the (P2S6)4− building
blocks of the structure. Compared with the orig-
inal Na4P2S6 structure, the resulting Li2Na2P2S6

crystal maintains the C2/m space group with con-
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tracted lattice constants in the layer planes. Both
Na4P2S6 and Li2Na2P2S6 have similar interlayer Na
ions arranged at equilibrium on sites with Wyck-
off label h. Table IV lists reaction energies as esti-
mated from differences in the Helmholtz free energies
in the harmonic phonon approximation evaluated at
T = 300 K for several possible reaction pathways.
While we find that Li2Na2P2S6 is unstable with re-
spect to 1

2 (Li4P2S6 + Na4P2S6), we reasonably ar-
gue that since Li4P2S6 forms at high temperature
(typically 900 deg C) [2, 7, 9], it may be possible
to stabilize Li2Na2P2S6 with low temperature reac-
tions such as perhaps some of those listed in Table
IV.

Results relating to simulations of Na ion conduc-
tivity in Na4P2S6 and Li2Na2P2S6 are presented
in Sec. V. Both NEB and molecular dynam-
ics simulations find the dominant ionic conductiv-
ity to be due to Na ion motions in the interlayer
planes. Because of its contracted lattice, it is pre-
dicted that Li2Na2P2S6 has larger conductivity and
lower activation barriers compared with Na4P2S6.
The analysis of the molecular dynamics trajectories
suggests that both Na ion vacancy migration and
indirect participation of interstitial sites contribute
to the conductivity throughout the interlayer plane.
Analyzing the Na ion trajectories in terms of the
MSD(t, T ) (Eq. (23)) and using the Nernst-Einstein
Eq. (25) with the assumption of the Haven ratio
Hr = 1, the simulated ion conductivity could be
compared with the experimental measurements for
Na4P2S6 as shown in Fig. 15. There is reasonable
agreement between the simulations and experimen-
tal results. If it becomes possible to stablize the
mixed ion material Li2Na2P2S6, our simulations sug-
gest that it will have a very promising Na ion con-
ductivity.

Appendix A: Details of the Neuberger
structures of Li4P2S6 and Na4P2S6

The simulated structure corresponding to the
structure analyzed by Neuberger [7] is detailed in
Table VI. We use the space group analysis of the
P 3̄m1 structure rather than of the P321 structure of
the Neuberger paper [7]. The P positions for the two
space groups have the same Wyckoff labels, while
the S positions of the P321 structure having the 6g
multiplicity and label are equivalent to the 6i mul-
tiplicity and label of the P 3̄m1 structure. For the
Li/Na sites, the pairs of 3e and 3f sites of the P321
structure correspond to the 6g and 6h multiplicities
and labels of the P 3̄m1 structure.

Appendix B: Details of Kuhn structures of
Li4P2S6 and Na4P2S6

TABLE VI: Comparison of the fractional
coordinates of Li/Na4P2S6 based on the Neuberger
structure [7]. The column labeled “Wyck” lists the
conventional cell multiplicity and Wyckoff labels

based on the P 3̄m1 space group. The
“Experiment” column lists the coordinates from

the P321 analysis [7] which in general is in
one-to-one correspondence except that the 6g sites
of the P 3̄m1 structure map to two distinct 3e sites

of the P321 structure and 6h sites of the P 3̄m1
structure map to two distinct 3f sites of the P321

structure as indicated.

Li4P2S6 Calculated Experiment
Atom Wyck x y z x y z

Li 6 g 0.666 0.000 0.000 0.625/−0.683 0.000 0.0000
Li 6 h 0.667 0.000 1

2
0.631/−0.671 0.000 1

2

P 2 c 0.000 0.000 0.171 0.000 0.000 0.170
P 2 d 1

3
2
3

0.663 1
3

2
3

0.668
P 2 d 1

3
2
3

0.324 1
3

2
3

0.335
S 6 i 0.110 0.220 0.242 0.108 0.217 0.241
S 6 i 0.114 0.557 0.254 0.122 0.561 0.250
S 6 i 0.447 0.224 0.259 0.452 0.226 0.255

Na4P2S6 Calculated
Atom Wyck x y z

Na 6 g 0.659 0.000 0.000
Na 6 h 0.676 0.000 1

2

P 2 c 0.000 0.000 0.157
P 2 d 1

3
2
3

0.660
P 2 d 1

3
2
3

0.342
S 6 i 0.102 0.205 0.229
S 6 i 0.129 0.564 0.271
S 6 i 0.463 0.231 0.264

The simulated fractional atomic coordinates of
Li4P2S6 and Na4P2S6 are detailed in Table VII
based on the conventional unit cell in the C2/m
structure and compared with the experimental re-
sults reported by Ref. 11 from X-ray measurements
on single crystal samples. The results are very sim-
ilar to those reported earlier by Rush et al. [8]
simulated using the LDA exchange-correlation func-
tional.
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TABLE VII: Calculated fractional atomic
coordinates of Li/Na4P2S6 in the Kuhn structure
[11] based on the conventional unit cell compared

with the Kuhn structure [11] listed in the
“Experiment” column. The column labeled

“Wyck” lists the conventional cell multiplicity and
Wyckoff label.

Li4P2S6 Calculated
Atom Wyck x y z

Li 4 g 0.000 0.668 0.000
Li 4 h 0.000 0.823 0.500
P 4 i 0.055 0.000 0.168
S 4 i 0.769 0.000 0.260
S 8 j 0.734 0.336 0.238

Na4P2S5 Calculated Experiment
Atom Wyck x y z x y z

Na 4 g 0.000 0.662 0.000 0.0000 0.6627 0.0000
Na 4 h 0.000 0.816 0.500 0.0000 0.8153 0.5000
P 4 i 0.053 0.000 0.157 0.0532 0.0000 0.1561
S 4 i 0.794 0.000 0.244 0.7942 0.0000 0.2414
S 8 j 0.722 0.347 0.230 0.7233 0.3499 0.2312

Appendix C: Details of the P 3̄1m reference
structures of Li4P2S6 and Na4P2S6

Table VIII lists the fractional coordinates of
Li/Na4P2S6 found in these simulations for the
metastable P 3̄1m structure. The corresponding lat-
tice parameters are listed in Table I and the results
are very similar to those reported earlier by Rush et
al. [8] simulated using the LDA exchange-correlation
functional.

TABLE VIII: Fractional coordinates of
Li/Na4P2S6 simulated in the P 3̄1m structure. The
column labeled “Wyck” lists the conventional cell

multiplicity and Wyckoff label.

Li4P2S6 Na4P2S6

Atom Wyck x y z x y z
Li/Na 2 c 1

3
2
3

0.000 1
3

2
3

0.000
Li/Na 2 d 1

3
2
3

1
2

1
3

2
3

1
2

P 2 e 0.000 0.000 0.174 0.000 0.000 0.163
S 6 k 0.329 0.000 0.247 0.304 0.000 0.238

Appendix D: Details of the predicted structure
of crystalline Li2Na2P2S6

Table IX lists the fractional coordinates of
Li2Na2P2S6 for the ground state RLig structure in
comparison with the results for the metastable RLih
structure. The initial configurations of these two
structures were constructed based on the optimized
primitive cell parameters of Kuhn structure for the
Na4P2S6.

TABLE IX: Calculated fractional coordinates of
Li2Na2P2S6 in the RLig and the RLih structures
based on the conventional unit cell of C2/m

symmetry. The column labeled “Wyck” lists the
conventional cell multiplicity and Wyckoff label.

Li2Na2P2S6 RLi
g

Atom Wyck x y z
Li 4 g 0.000 0.668 0.000
Na 4 h 0.000 0.817 0.500
P 4 i 0.053 0.000 0.154
S 4 i 0.768 0.000 0.236
S 8 j 0.732 0.339 0.217

Li2Na2P2S6 RLi
h

Atom Wyck x y z
Li 4 h 0.000 0.843 0.500
Na 4 g 0.000 0.664 0.000
P 4 i 0.052 0.000 0.167
S 4 i 0.786 0.000 0.263
S 8 j 0.718 0.346 0.251
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