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Abstract

We report x-ray photon correlation spectroscopy (XPCS) experiments with in situ rheometry

performed on a soft glass composed of a concentrated suspension of charged silica nanoparticles

subjected to step strains that induce yielding and flow. The XPCS measurements characterize the

particle-scale and mesoscale motions within the glass that underlie the highly protracted decay of

the macroscopic stress following the step strains. These dynamics are anisotropic, with slow, con-

vective particle motion along the direction of the preceding shear that persists for surprisingly large

times and that is accompanied by intermittent motion in the perpendicular (vorticity) direction.

A close correspondence between the convective dynamics and stress relaxation is demonstrated by

power-law scaling between the characteristic velocity of the collective particle motion and the rate

of stress decay.
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I. INTRODUCTION

Many soft amorphous solids behave as yield-stress materials that flow when subjected to

sufficiently large applied force but return to a solid when the force is removed1. The nature of

this fluid-solid transition is fundamental to the out-of-equilibrium state of glassy materials

and its dependence on sample history, and it plays a key role in prominent theoretical

ideas about glasses such as jamming and soft glassy rheology2–4. Further, since processing

amorphous solids often involves inducing flow, the manner in which the materials regain

solid-like properties following flow cessation is important for their utility in applications.

When flow ceases, soft amorphous solids typically display a protracted recovery during which

stress at fixed applied strain slowly decreases to a value, known as the residual stress, that can

depend on aspects of the preceding flow such as the shear rate and the total magnitude of the

strain4–16. While numerous rheology studies have characterized the macroscopic nature of

stress relaxation, little is known experimentally about the underlying microscopic structural

dynamics.

Identifying such microstructural changes connected to macroscopic deformation and flow

is a central challenge for the fields of soft matter and colloid science17. To address this

problem, a number of recent studies have combined microscopy or scattering methods in

concert with rheometry to probe the microscopic signatures of various aspects of the non-

linear rheological behavior of colloidal glasses. Such studies have included investigations

of the particle-scale rearrangements associated with yielding under start-up shear18,19 and

large-amplitude oscillatory shear20–23, studies connecting the microscopic and macroscopic

manifestations of slip24, and experiments probing the dynamics associated with creep25 and

precursors to failure26 under steady applied stress. However, to our knowledge no such previ-

ous work has considered the microscopic dynamics associated with stress relaxation at fixed

macroscopic strain. In this paper we report x-ray photon correlation spectroscopy (XPCS)

measurements that track particle-scale motion in a nanocolloidal soft glass following cessa-

tion of shearing and compare these dynamics with the time-dependent stress measured with

in situ rheometry.

The experiments focus on the dynamics that occur after the glass has been strained to

points near and above yielding. The XPCS results reveal anisotropic dynamics that are

qualitatively different along the direction of the preceding shear (i. e., the flow direction)
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and along the perpendicular (vorticity) direction. In the direction of the preceding shear,

the dynamics is characterized by convective-like particle motion that slows steadily with

time but that persists for surprisingly large times. An intimate connection between these

convective dynamics and the stress relaxation is demonstrated by power-law scaling between

the characteristic velocity of the particle motion and the rate of stress decay. Accompanying

this convective “back flow” is highly intermittent motion in the vorticity direction that has

the character of avalanches. These observations, which contrast with prevailing pictures of

the dynamics in soft glasses that describe stress relaxation in terms of local particle rear-

rangements, suggest a new theoretical perspective is needed to understand the phenomenon.

II. MATERIALS AND METHODS

A. Soft Glass Preparation and Characteristics

The ductile soft glass was composed of Ludox TM-50 (Sigma Aldrich), which are charge-

stabilized silica nanospheres, in water27. The average colloid radius was 13.3 nm with a

standard deviation of 1.4 nm, as determined from fits of x-ray form factor measured on a

dilute suspension of the colloids. The glass was formed from a suspension with initial colloid

volume fraction of approximately 0.3 and with 50 mM salt, according to the manufacturer’s

specifications. 25 mL of the suspension were centrifuged at 48,000 g for 30 minutes, and the

supernatant was poured off, leaving a solid plug of material. The plug was gently mixed to

remove concentration gradients and then was centrifuged at 2000 g for 5 minutes to remove

any air bubbles introduced by stirring. A 0.5 mL section was extracted from the center of

the plug for the rheo-XPCS experiments. Following the experiments, a portion of the sample

was weighed, then dried and reweighed, to measure the solid fraction, which corresponded

a colloidal volume fraction of φ = 0.43, assuming a silica density of 2 g/cm3.

Previous work by Philippe et al. on concentrated suspensions of Ludox TM-50 nanopar-

ticles identified the transition between a “supercooled” colloidal liquid at lower φ and an

out-of-equilibrium glass at higher φ near φg ≈ 0.4027. Notably, this volume fraction is sig-

nificantly below that of the hard-sphere glass transition, φhsg ≈ 0.58, implying the charged

nanocolloids form the glassy phase primarily by virtue of the soft repulsion created by the

screened Coulomb potential27. Hence, the suspension employed in our experiments with φ =
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0.43 can be described as nanocolloidal soft glass.

B. Rheo-XPCS

The rheo-XPCS experiments were carried out at Sector 8-ID of the Advanced Photon

Source. The sample was contained in a Couette cell of a stress-controlled rheometer (Anton

Paar MCR 301) mounted on the beam line, enabling rheological tests in parallel with x-ray

scattering measurements. A 10.9 keV, partially coherent x-ray beam of size 100 x 20 µm2

(V x H) was focused vertically to a 3 x 20 µm2 spot on the sample. An area detector (X-

spectrum LAMBDA 750K)28,29 4.91 m after the sample measured the scattering intensity

over wave vectors 0.06 nm−1 < |q| < 0.65 nm−1. The Couette cell was composed of thin-

walled polycarbonate with inner and outer diameters of 11.0 and 11.4 mm, respectively.

Measurements were performed with the axis of the Couette cell oriented vertically and the

horizontal incident beam directed radially through the center of the cell so that incident

beam was parallel to the shear-gradient (∆) direction. In the small-angle scattering regime,

where the scattering wave vector is essentially perpendicular to the incident wave vector, q

was hence in the flow-vorticity (v − ω) plane.

Figure 1(a) shows the stress σ as a function of applied strain γ during shear of the glass

at a strain rate γ̇ = 0.01 s−1. The data contain features common to yield-stress materials.

Above the linear elastic regime at small strain, the stress goes through an “overshoot” near

γ = 5% that is a characteristic of yielding. At larger strain, σ becomes roughly independent

of γ, indicating viscoplastic flow. In each stress relaxation measurement, the glass was first

held at zero applied stress for an extended period and was then subjected to steady shear

at strain rate γ̇ = 0.01 s−1 from zero initial strain until a desired strain γ was reached. The

strain was then fixed, and the stress required to hold γ constant was monitored as a function

of waiting time t. Strains at which measurements were performed, indicated by arrows in

Fig. 1(a), ranged from γ = 2%, which is in the linear elastic regime, to γ = 20%, which is

in the regime of viscoplastic flow. The time-dependent stress following the steps to each γ

is shown in Fig. 1(b). In all cases, σ displayed a protracted, quasi-logarithmic decay that

extended beyond the measurement time of 1000 s. (The rheo-XPCS measurements were

conducted over two days during which the rheology evolved slightly, due either to aging

of the soft glass27 or possibly to a small amount of evaporation of water from the sample.
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FIG. 1. (a) Stress as a function of strain during start-up shear at γ̇ = 0.01 s−1. The arrows

indicate the strain values at which shear was stopped and strain held fixed in the stress relaxation

measurements. (b) Stress as a function of waiting time with strain held at these various values

following a step from zero strain at strain rate γ̇ = 0.01 s−1.

Specifically, the linear shear modulus varied from 10.3 kPa to 16 kPa. Hence, the exact

magnitudes of the stress at different strains in Fig. 1(b) should not be compared.)

During the step strains and subsequent stress relaxation at fixed γ, a series of coherent

x-ray images, or “speckle patterns”, was obtained at 10 fps for 10000 frames to characterize

the microscopic dynamics. Additional measurements at γ = 5% and 6% at 100 fps for

10000 frames captured the dynamics at higher temporal resolution immediately following

the step strains. Figure 2(a) shows an example scattering pattern received by the area

detector during a measurement at 10 fps. Figure 2(b) shows the scattering intensity I(q),

averaged over 10000 frames and averaged over all wave-vector directions, as a function of the

wave-vector magnitude q. The inset to Fig. 2(b) shows the “measurable” structure factor
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SM(q) obtained from SM(q) = I(q)/F (q), where F (q) is the form factor measured on a

dilute suspension of the Ludox TM-50 particles. We note SM(q) only approximates the true

structure factor due to the polydispersity in particle size30. The primary feature in SM(q)

is a structure factor peak near q = 0.26 nm−1 typical of a colloidal glass.

FIG. 2. (a) Example area-detector image of the scattering pattern during a measurement at 10 fps.

The signal is expressed as the number of photons detected by each pixel of the detector. The small

circular region of with zero scattering near q = 0 is the shadow of the beam stop. (b) Scattering

intensity I averaged over wave-vector direction as a function of the wave-vector magnitude q. The

intensity is an average over 10000 frames. The inset to (b) shows the measurable structure factor

SM (q) determined from SM (q) = I(Q)/F (q), where F (q) is the measured form factor.

III. RESULTS AND DISCUSSION

A. Dynamics along the strain direction: convective “backflow”

The microscopic dynamics captured by the XPCS measurements during the stress re-

laxation showed strong dependence on waiting time and direction that is captured by the
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FIG. 3. Instantaneous correlation function C(qv, t1, t2) during a stress relaxation measurement

following a step to γ = 6% measured at qv = 0.26 nm−1 along the direction of the initial strain.

The white parallelogram indicates the region employed in calculating the autocorrelation function

at t = 293 s. The arrows, indicating the size of the region, span 171 s < t1,2 < 415 s.

instantaneous correlation function31,

C(q, t1, t2) =
< I(q, t1)I(q, t2) >

< I(q, t1) >< I(q, t2) >
, (1)

where I(q, t) is the scattering intensity at wave vector q and time t, and the brackets indicate

averages over detector pixels within a small vicinity of q. Figure 3 shows the instantaneous

correlation function during stress relaxation with γ = 6% at a wave vector parallel to the

initial strain, qv = 0.26 nm−1, near the first peak in the structure factor. The time when γ

reached 6% (t = 0) is taken as the origin in Fig. 3. Preceding the step strain, the dynamics

in the quiescent glass were arrested. Consequently, pairs of speckle patterns taken before

the step (i. e., both t1 < 0 and t2 < 0) are highly similar, and C(qv, t1, t2) is large and

effectively constant at a value near bf∞ + 1, where b ≈ 0.055 is the Siegert factor32, and f∞

is the wave-vector-dependent non-ergodicity parameter33 plotted in Fig. 4. Shortly following

the step, C(qv, t1, t2) is significantly larger than one only near the diagonal corresponding

to small time differences |t1 − t2|, indicating the step strain induced subsequent particle

dynamics that were initially rapid. With increasing waiting time the dynamics steadily

slowed, and correlations persist for progressively larger time differences such that the band

of large C(qv, t1, t2) values along the diagonal broadens.

To analyze these dynamics quantitatively, we obtain the more familiar normalized auto-
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correlation functions ∆g2(qv, τ ; t) by averaging C(qv, t1, t2) at fixed delay time τ = |t1 − t2|,

∆g2(qv, τ ; t) =
1

bf∞

(
〈C(qv, t1, t1 + τ)〉t1 − 1

)
, (2)

where the average is over a small interval of t1 so that the autocorrelation function can be

considered an approximate snapshot of the dynamics, and the waiting time t is taken as

the mean value of t1 over the interval. Specifically, since the dynamics evolved during the

measurement, the length of the interval was chosen to balance two conflicting priorities:

(i) it needed to be large enough that ∆g2(qv, τ ; t) decayed sufficiently to characterize the

dynamics, but (ii) it needed to be short enough so that ∆g2(qv, τ ; t) at different t resolved

the waiting-time dependence of the dynamics. As an illustration of the chosen procedure,

Fig. 3 shows the region, bounded by the white parallelogram, of the instantaneous correlation

function that was included in calculating ∆g2(qv, τ ; t) at t = 293 s from the measurement

at 6% strain. The horizontal and vertical arrows indicating the extent of the regions have

length ∆t = 5t/6, which was found to be optimal for balancing the above criteria. This

sized region relative to t (i.e., ∆t = 5t/6) was employed in calculating ∆g2(qv, τ ; t) at all

waiting times.

FIG. 4. The product bf∞ (symbols) obtained from the amplitude of the XPCS correlation function,

g2(q, τ) − 1, at small τ measured on the soft glass. The line shows the Siegert factor b obtained

from a separate XPCS measurement on a thin aerogel sample32. The wave-vector-dependent non-

ergodicity parameter f∞ is a measure of the fourier components of the arrested concentration

fluctuations in the glass33

.
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Figure 5(a) shows a set of autocorrelation functions for γ = 6%. With increasing waiting

time, ∆g2(qv, τ ; t) decays at a larger τ , reflecting the steadily slowing microscopic dynamics

along the initial flow direction. However, the autocorrelation functions at different t maintain

the same shape, indicating that the qualitative nature of the dynamics did not change with

waiting time. The autocorrelation functions at different qv also have very similar shapes, so

that ∆g2(qv, τ ; t) at all qv and t collapse onto a master curve when τ is scaled by the product

of a wave-vector-dependent factor α(qv) and a waiting-time-dependent factor δ(t), as shown

in Fig. 5(b). As shown in the inset to Fig. 5(b), α(qv) ∼ qv. The same lineshape and scaling

behavior of ∆g2(qv, τ ; t) was observed during stress relaxation at all strains. This scaling

behavior contrasts with that expected for diffusive motion, for which α(qv) ∼ q2
v perhaps

modulated by the structure factor due to de Gennes narrowing34. Instead, it indicates the

dynamics during the stress relaxation were convective along the direction of the initial strain.

We interpret this convective motion as an ultra-slow, long-wavelength “backflow” in the

glass and find that an affine velocity profile describes the observed dynamics very accurately.

Specifically, we model the dynamics with a distribution of velocities in the direction oppo-

site the initial strain35 that varies linearly with distance from the cell walls and reaches a

maximum vo(t) at a position yp from the outer wall,

v(t, y) =


(
y
yp

)
vo(t), if 0 < y < yp.(

H−y
H−yp

)
vo(t), if yp < y < H.

(3)

where y is the distance from the outer wall, and H = 200 µm is the cell gap. The autocor-

relation function for particle motion with such a velocity profile is given by36,37

∆g2(q, τ) =
sin2 (qvvoτ/2)

(qvvoτ/2)2 . (4)

Because vo varies with waiting time, and each measurement of ∆g2(q, τ ; t) spans a range of

t, we fit the data by integrating Eq. (4) over a range of vo; details are provided in Appendix

A. The solid lines in Fig. 5(a) show the results of such fits. The agreement between the

fits and the data is essentially perfect, but we note that ∆g2(q, τ) depends only on the

distribution of particle velocities parallel to q in the scattering volume38, and hence Eq. (4)

is independent of yp. That is, velocity profiles ranging from a symmetric triangular profile,

yp = H/2, to uniform shear due to a narrow slip plane near the inner cell wall, yp ≈ H,

are indistinguishable. This ambiguity regarding the flow profile is further illustrated by
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FIG. 5. (a) Normalized autocorrelation functions at qv = 0.26 nm−1 along the flow direction

at waiting times t = 6 s (circles), 16.7 s (squares), 46.5 s (triangles), 132 s (diamonds), and

650 s (inverted triangles) after a step to γ = 6%. The solid lines show results of fits based on

convective dynamics modeled using Eq. (4). (b) Autocorrelation functions at wave vectors 0.06

nm−1 < qv < 0.5 nm−1 and waiting times 6 s < t < 500 s plotted against delay time scaled by

a wave-vector-dependent factor α(qv) and waiting-time-dependent factor δ(t). The inset shows

log(α) as a function of log(qv). The solid line in the inset has a slope of one.

an alternative analysis presented in Appendix B that shows a parabolic, Poiseuelle-like

velocity profile models ∆g2(q, τ ; t) nearly as closely as Eq. (3) does. However, since XPCS

measurements are especially sensitive to velocity differences across the scattering volume36,38,

the results for the peak velocity, whose magnitude vo is shown in Fig. 6(a) as a function

of waiting time for all the strains, are robust. As these results demonstrate, the convective

flow slows steadily, with vo < 0.1 nm/s at large t, but persists to the largest measurement

times.
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Figure 6(b) displays vo for all the strains plotted against the rate of macroscopic stress

decay |dσ/dt| obtained from differentiating numerically the results in Fig. 1(b). The rate

of convective motion scales with |dσ/dt| irrespective of step size, demonstrating an intimate

relationship between this motion and the stress relaxation. At early t, when vo and |dσ/dt|

are large, the scaling approximates a power-law, vo ∼ |dσ/dt|m with m = 1.20 ± 0.01,

as indicated by the solid line in Fig. 6(b), which shows the result of a power-law fit to

the data with vo > 0.1 nm/s. This slow convective motion and its persistent role in the

stress relaxation contrasts with expectations based on simulations of soft glasses after shear

cessation that identified a brief initial period of rapid ballistic motion followed by an extended

period of local particle rearrangements14,15.

An intriguing connection can be made with the linear elasticity of the glass that further

indicates the significance of this convective motion and suggests a way to distinguish the

position yp of the velocity peak. In the linear regime at low strains in Fig. 1(a), σ = G′γ

with shear modulus G′ ≈ 13 kPa, or differentiating, σ̇ = G′γ̇. Identifying effective shear

rates to the velocity profile, γ̇eff = vo/H if yp = H or γ̇eff = 2vo/H if yp = H/2, one arrives at

vo = H
G′ |dσ/dt| or H

2G′ |dσ/dt| for yp = H or H/2, respectively. These relations are shown by

the dash-dotted and dashed lines in Fig. 6(b). The symmetric case, yp = H/2, agrees better

quantitatively with the data, suggesting the peak convective velocity was in the interior of

the sample. This comparison with linear elasticity is only approximate, however, due to

the nonlinear scaling of vo with |dσ/dt| at early t. We interpret this nonlinear scaling with

m > 1 as evidence for strain softening of the glass as a result of the yielding.

B. Dynamics along the vorticity direction: intermittent motion

Accompanying this persistent convection in the flow direction, along the vorticity direc-

tion intermittent, avalanche-like events dominate particle motion. For example, Fig. 7 shows

the instantaneous correlation function at a wave vector along the vorticity direction, qω =

0.26 nm−1, during stress relaxation at γ = 6%. In contrast to the steadily broadening profile

in Fig. 3, C(qω, t1, t2) shows irregular changes that signify unsteady particle motion. For

instance, as seen in Fig. 7, motion along the vorticity direction is largely arrested from t ≈

350 s to t ≈ 650 s, as C(qω, t1, t2) in this time range (i.e., both 350 s < t1 < 650 s and 350

s < t2 < 650 s) maintains a large, nearly constant value. However, near t ≈ 650 s, a major
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FIG. 6. (a) Peak velocity of convective motion as a function of waiting time following step strains

of sizes specified in the legend. (b) Peak velocity as a function of the rate of change of the stress.

The solid line shows the result of a power-law fit, vo ∼ |dσ/dt|m, to the data with vo > 0.1 nm/s,

which gives m = 1.20± 0.01. The dashed and dash-dotted lines show the relations vo = H
2G′ |dσ/dt|

and vo = H
G′ |dσ/dt|, respectively, where G′ = 13 kPa approximates the linear elastic modulus of

the glass and H is the cell gap.

rearrangement occurs so that speckle patterns prior to t ≈ 650 s and after t ≈ 650 s are

largely uncorrelated. Additional events occur near t ≈ 240 s and t ≈ 760 s, as indicated by

arrows in Fig. 7.

Figure 8 displays C(qω, t1, t2) measured in the vorticity direction at qω = 0.26 nm−1 dur-

ing stress relaxation measurements following steps to other strains. As with 6% strain,

the dynamics are characterized by intermittent events involving large-scale particle re-

arrangements that lead to large decreases in the correlation functions. Avalanche-like events
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are well documented in disordered systems yielding under stress22,23,39–43. Here, we observe

them associated with stress relaxation. We also note a similarity between these events and

intermittent microscopic dynamics in aging colloidal and metallic glasses following quenches

through the glass transition44,45, suggesting a connection between the microscopic dynamics

of stress relaxation and aging.

FIG. 7. Instantaneous correlation function C(qω, t1, t2) during a stress relaxation measurement

following a step to γ = 6% at qω = 0.26 nm−1 along the vorticity direction. The arrows indicate

waiting times at which intermittent events cause loss of correlation. The dashed lines show the

boundaries of the regions over which averages were performed to obtain the correlation functions

at fixed t2 shown in Fig. 10.

These irregular decorrelations in C(qω, t1, t2) appear at all qω, but their precise positions

in time vary with qω, providing information about the nature of the dynamics underlying

the events. For example, Fig. 9 displays the instantaneous correlation function measured

at various wave vectors in the vorticity direction during the stress relaxation measurement

at γ = 6%. To evaluate this wave-vector dependence quantitatively, we focus on the three

events indicated by the arrows in Fig. 7 and identify the waiting times at which the in-

stantaneous correlation falls to 1/e its maximum value in each case, a time we label td. We

note that analysis of the intensity autocorrelation function ∆g2(q, τ ; t) is not appropriate for

interpreting of such intermittent changes in correlation. Since τ is a time difference, and the

calculation of ∆g2(q, τ ; t) averages over absolute time, ∆g2(q, τ ; t) should in principle not

depend on absolute time, and in general it should be used only in the cases where the dy-
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FIG. 8. Instantaneous correlation function C(qω, t1, t2) during stress relaxation measurements

following steps to strains of (a) 2%, (b) 4%, (c) 5%, (d) 8%, (e) 12%, and (f) 20% measured at

qω = 0.26 nm−1 along the vorticity direction, perpendicular of the initial strain.

namics are steady-state such that no particular points in absolute time are special. (The use

of ∆g2(qv, τ ; t) to analyze the dynamics in the flow direction described in Sec. III.A above

does not strictly adhere to this restriction; however, since those dynamics evolve slowly and

smoothly, the deviations from steady state can be accounted for straightforwardly when

interpreting the correlation functions.) Instead, to identify quantitatively the waiting time

of the events that lead to loss of correlation in C(qω, t1, t2) at γ = 6% near t ≈ 650 s, we plot

in Fig. 10(a) C(qω, t1, t2) at a fixed t2 that is earlier than the time of the event (t2 < 650 s)

as a function of t1 for several qω. Specifically, to improve statistics we plot the average of

C(qω, t1, t2) over a small range of t2 demarcated by the dashed lines in Fig. 7, 462 s < t2 <

523 s, versus t1. This correlation function hence displays how correlation in the speckle

patterns is lost as the event near t ≈ 650 s progresses. The correlation function decays over

a range of t1 that depends on qω. We fit the decays to an empirical stretched-exponential

lineshape, ∆C exp
(
−(t1/td)

β
)
, where td can be considered the waiting time at which par-

ticle displacements during the event reached a length of order q−1
ω . The results for td at

different qω are shown in the inset Fig. 10(a). The time varies approximately linearly with
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wave vector, indicating the motion associated with the event is convective. The line in the

inset shows the result of a linear fit, td = tdi + (vdqω)−1, from which we find the convective

motion initiates at waiting time tdi = 534 ± 10 s and proceeds with characteristic velocity

vd = 0.023± 0.001 nm/s.

FIG. 9. Instantaneous correlation function C(qω, t1, t2) during stress relaxation measurements

following a step to strain of 6% measured along the vorticity direction at (a) qω = 0.09 nm−1, (b)

qω = 0.15 nm−1, (c) qω = 0.18 nm−1, (d) qω = 0.21 nm−1, (e) qω = 0.24 nm−1, (f) qω = 0.30 nm−1.

Figures 10(b) and (c) display results of equivalent analysis of the drops in correlation seen

in C(qω, t1, t2) in Fig. 7 near t ≈ 240 s and t ≈ 760 s, respectively. Specifically, Fig. 10(b)

shows C(qω, t1, t2) at a fixed t2 below 240 s as a function of t1 to capture the decorrelation

at t ≈ 240 s for several qω. To improve statistics the average of C(qω, t1, t2) over the narrow

range 176 s < t2 < 213 s is shown versus t1. The solid lines again show the results of fits using

the same empirical lineshape, ∆C exp
(
−(t1/td)

β
)
. Figure 10(c) displays the corresponding

results and analysis for the decorrelation near t ≈ 760 s. In this case, C(qω, t1, t2) averaged

over the narrow range 695 s < t2 < 735 s is shown versus t1. The insets to Figs. 10(b)

and 10(c) display td as a function of q−1
ω for each event. Again, td varies approximately

linearly with q−1
ω , as indicated by the lines in the insets, which show the results of fits to

td using the form td = tdi + (vdqω)−1. However, deviations from smooth linear behavior are
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also apparent in these events. We interpret these deviations as evidence that the motion

associated with these events, while primarily convective, did not proceed smoothly but itself

had some intermittency.

We interpret this intermittent convection in the vorticity direction as a consequence of the

dense packing in the glass and the backflow along the flow direction. As the particles move

relative to their neighbors as part of the back flow, their jammed, disordered arrangement

necessitates motion in the transverse direction at irregular intervals. However, we emphasize

that these events, which involve particle displacements primarily perpendicular to the initial

strain, appear to be only indirectly related to the decay of the macroscopic stress. As

Fig. 6(b) illustrates, the slow, steady motion that dominates dynamics in the flow direction

is the microscopic process that couples most closely to the stress relaxation.

IV. CONCLUSION

In conclusion, this study employing XPCS with in situ rheometry has uncovered an

unexpected microscopic process for stress relaxation in soft glasses associated with slow,

persistent convective motion anti-parallel to the preceding strain. We note this convection

resembles flow seen previously in filled polymers following tensile step strains46. This sim-

ilarity suggests this mechanism for stress relaxation might be general to amorphous solids.

This observation also further suggests connections with spontaneous slow dynamics seen in

previous XPCS and dynamic light scattering (DLS) experiments on systems that have un-

dergone rapid gelation47–52. Those dynamics, which similarly persist long after solidification

and have the same scaling with wave vector as in the inset to Fig. 5(b), have been tentatively

interpreted as heterogeneous strain related to slow relaxation of internal stresses.53. Further

studies that interrogate the microscopic dynamics associated with stress relaxation in glassy

materials would help illuminate these issues. More broadly, the capability demonstrated

here of integrating rheometry with XPCS, particularly when combined with recent advances

incorporating DLS with mechanical measurements54,55, holds promise for measuring the dy-

namics at the origin of a host of nonlinear rheological behavior in soft materials over a broad

range of lengths down to the nanometer scale.
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FIG. 10. Analysis of the drops in correlation in C(qω, t1, t2) near (a) t ≈ 650 s, (b) t ≈ 240 s,

and (c) t ≈ 760 s during the stress relaxation measurement at γ = 6%. (a) shows C(qω, t1, t2)

averaged over the narrow range, 462 s < t2 < 523 s, as a function of t1 at qω = 0.15 nm−1 (circles),

0.26 nm−1 (diamonds), 0.30 nm−1 (squares). The lines through the data show the results of fits

described in the text to find the waiting time td of the drop in correlation. As shown in the inset,

td varies linearly with q−1
ω . Panel (b) shows the equivalent analysis of C(qω, t1, t2) averaged over

the narrow range 176 s < t2 < 213 s as a function of t1, and panel (c) shows equivalent analysis

over the range 695 s < t2 < 735 s.
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VI. APPENDIX A: FITTING ∆g2(qv, τ ; t)

As described above, the process of obtaining ∆g2(qv, τ ; t) from C(qv, t1, t2) involved av-

eraging over the waiting-time interval ∆t. Hence, the measured ∆g2(qv, τ ; t) was related to

the “actual” time-varying autocorrelation function ∆ga2(qv, τ, t) by

∆g2(qv, τ, t) =
1

∆t

t+∆t/2∫
t−∆t/2

∆ga2(qv, τ, t
′)dt′ (5)

In the model of convective flow, Eqs. (3) and (4), ∆g2(qv, τ ; t) depends on the peak velocity

v0, which varies with waiting time. To fit the data using the model, we hence converted the

integral in Eq. (5) to an integral over peak velocities,

∆g2(qv, τ, t) = A(vl, vh)

vh∫
vl

sin2 (qvvot/2)

(qvvot/2)2 p(v0)dv0 (6)

where vl = v0(t+ ∆t/2) and vh = v0(t−∆t/2), p(v0) is a density function, and A(vl, vh) =

1/
vh∫
vl

p(v0)dv0 is a normalization factor. To obtain a form for the density function needed to

close this expression, we first noted that the characteristic decay time of ∆g2(qv, τ ; t) at any t

should vary inversely with the velocity at that t. Hence, the waiting-time-dependence of the

velocity should vary approximately proportionally with the factor δ(t) that re-scales τ such

that ∆g2(qv, τ ; t) at different t collapse onto a single scaling function as shown in Fig. 5(b).

Figure 11 shows δ(t) for all of the strain amplitudes and waiting times. The scale factor

decays at early waiting times approximately as a power law, δ(t) ∼ td, where the exponent

varies slightly with strain but in all cases is roughly d = −1.2. Hence, for the purposes of

approximating p(v0), we assumed the peak velocity had the same power-law relation with
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FIG. 11. Factors used to scale τ in order to collapse ∆g2(qv, τ ; t) at different waiting times like in

Fig. 5(b). The correlation functions at all waiting times and all strains, as indicated in the legend,

were scaled with respect to that for 6% strain at t = 15 s. Each value of δ is an average of the

factors over wave vectors 0.024 nm−1 < q < 0.030 nm−1. The solid line depicts the power-law

relation δ ∼ t−1.2.

waiting time as δ(t), which leads to

p(v0) ∝ v
1
d
−1

0 . (7)

With this form for p(v0), we fit Eq. 6 to ∆g2(qv, τ ; t) with vl and vh as free parameters,

leading to the fit results shown in Fig. 5(a). Using the fitted values of vl and vh, we obtained

the peak velocity for a given waiting time from

v0(t) = A(vl, vh)

vh∫
vl

vp(v0)dv0, (8)

leading to the values of v0 shown in Fig. 6.

VII. APPENDIX B: ALTERNATIVE MODEL FOR CONVECTIVE “BACK FLOW”.

As an alternative to the linear velocity profile described above (Eq. (3)) to analyze

∆g2(qv, τ ; t), we consider here a velocity profile with a parabolic shape analogous to pressure-

driven Poiseuille flow. Specifically, we model the particle dynamics with a velocity v in the

direction opposite the initial strain that varies with distance y from the center of the cell
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FIG. 12. Normalized autocorrelation functions at waiting times t = 6 s (circles), 16.7 s (squares),

46.5 s (triangles), 132 s (diamonds), and 650 s (inverted triangles) after a step to 6% strain. The

solid lines show results of fits based on convective dynamics modeled by the parabolic velocity

profile given in Eq. (9).

gap as

v(t, y) = −vp(t)

[
1− 4y2

H2

]
(9)

where vp(t) is the peak velocity, oriented in the flow direction, and H = 200 µm is the cell

gap. The autocorrelation function for particle motion with such a velocity profile is given

by37

∆g2(q, τ) =
1

ωτ
[C2(
√
ωτ) + S2(

√
ωτ)] (10)

where ω =
2

π
q · vp, and C(x) and S(x) are Fresnel integrals. Following the same procedure

as described in Appendix A to account for the time dependence of the velocity, we fit

∆g2(qv, τ ; t) using this model. Figure 12 shows ∆g2(qv, τ ; t) at different waiting times like

in Fig. 5(a) along with results of these fits. As the figure indicates, the parabolic velocity

profile models the data well; however, a quantitative comparison with the fits using the

linear velocity profile shows that the linear profile gives better agreement with the data.

The time-dependent peak velocities vp(t) that result from the fits with the parabolic profile

are very similar to the time-dependent velocities describing the linear profiles v0(t) shown

in Fig. 6, and so the same conclusions regarding the velocities can be made.
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