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We perform a crystal structure search using Bayesian optimization and evaluate its efficiency with
a varying parameter value in the descriptor. Applying the crystal structure search to crystalline
silicon shows that the efficiency of the search depends heavily on the parameter value. We find that
the efficiency is linked to the distribution of the descriptor. Therefore, we introduce an information
measure of the distribution to estimate an appropriate parameter value for performing the crystal
structure search efficiently. The measure can also be used to predetermine an appropriate parameter
value. The validity of the measure is confirmed with its applications to silicon oxide and yttrium–
cobalt alloy.

I. INTRODUCTION

Computational crystal structure searches are a ma-
jor challenge in materials science [1]. They provide a
powerful tool for finding new materials and identifying
uncertain crystal structures. Crystal structure searches
find the most stable structure or acceptably low-energy
structures for a given chemical composition. From a
mathematical perspective, this is a global optimization
problem, in which the global minimum or local minima
of an acceptably small value of a given objective func-
tion is identified. In the crystal structure search, eval-
uating an objective function corresponds to evaluating
the potential energy of a crystal structure and descend-
ing to a local minimum during global optimization cor-
responds to relaxing a crystal structure. We often use
first-principles methods for the structure relaxation and
energy evaluation to compute the potential energy sur-
face accurately. However, the first-principles calculation
uses a large amount of computational resources for some
systems, and the calculation must be repeated during the
global optimization. Thus, to reduce the computational
cost, it is important to minimize the number of calcula-
tions performed to find the global minimum.

Many global optimization techniques have been used in
crystal structure searches to reduce the number of struc-
ture relaxations and energy evaluations, such as the ran-
dom search algorithm [2, 3], evolutionary algorithm [4, 5],
and particle swarm optimization [6, 7]. In addition, a
crystal structure search method using Bayesian optimiza-
tion (BO) [8] has been developed recently [9]. BO is
a global optimization machine learning technique for a
black-box function that is not explicitly given or requires
a large amount of computation to be evaluated. The ob-
jective function to be optimized is the potential energy as
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a function of a crystal structure here. BO suggests a can-
didate by balancing exploration of a domain far from the
obtained data and exploitation of good obtained data.

A crystal structure is represented by a numerical vector
called a descriptor that is used to quantify how similar
structures are. The search space in BO is spanned by the
descriptor. The descriptor is evaluated from atomic co-
ordinates, although it is not a set of atomic coordinates
itself, to satisfy the following two requirements. One is to
be the same between identical structures to measure the
similarity correctly, which is, in other words, to be invari-
ant under translation and rotation of the system and un-
der permutations of atoms of the same chemical element.
The other is to be evaluated only from a crystal structure
because the energy is not available before executing BO.
The mapping of a crystal structure to a descriptor does
not need to be injective, which means that descriptors
for different structures can be the same. Many descrip-
tors have been proposed, and they often have parameters
that must be predetermined [10–13]. Because the param-
eters change the descriptors or the BO input, as shown
in Fig. 1, the parameters would affect the performance of
the crystal structure search. The presence of the param-
eters in the descriptor raises the following two questions.
(i) How strongly does the efficiency of the crystal struc-
ture search depend on the choice of values of the param-
eters? (ii) How are the parameter values predetermined
to provide an efficient crystal structure search?

In this paper, to answer these two questions, we exam-
ine the dependency of the efficiency of the crystal struc-
ture search using BO on the parameter in the descriptor
by case studies and propose an information measure to
determine parameter values. The paper is organized as
follows. First, we explain the crystal structure search
method and setup for evaluating the efficiency in Sec. II.
Next, in Sec. III, we clarify how much a parameter in
the descriptor affects the efficiency of the crystal struc-
ture search and introduce a related information measure
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FIG. 1. Flowchart of the crystal structure search using
Bayesian optimization (BO). A crystal structure is repre-
sented by a descriptor to be treated by BO. Parameters in
the descriptor, numbers of atoms, and a molecular dynamics
code must be given by a user in advance.

by focusing on crystalline silicon as a model case. We
show that the measure can be used to decide a param-
eter value in the descriptor prior to starting the crystal
structure search. The dependency of the efficiency on a
parameter and validity of the measure are revealed also
for silicon oxide and yttrium–cobalt alloy. Finally, we
provide a summary in Sec. IV.

II. METHODS

A. Crystal structure search using Bayesian
optimization

We perform the crystal structure search by using
CrySPY code [14], in which an algorithm using BO is
implemented [9]. Figure 1 shows the flowchart for the
structure search. The code searches for the minimum-
energy structure within a pool of crystal structures by
using a descriptor and the total energy of a crystal struc-
ture as the explanatory and response variables, respec-
tively. Once we give a pool of crystal structures that
have identical chemical compositions and the number of
atoms per unit cell, the code repeats alternately pick-
ing candidates from the pool by BO and relaxing the
structures of the candidates. Before performing BO, the
descriptors are evaluated for all the structures, and then
the descriptors are standardized, namely linearly trans-
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FIG. 2. Schematic view of Bayesian optimization (BO). The
descriptor is multi-dimensional. The circles indicate the train-
ing data or descriptors and total energies of already relaxed
crystal structures. The opacity of the shading represents the
predicted probability of the total energy and the solid line
is the mean. Each dotted line indicates a descriptor of a
crystal structure that is not yet relaxed. BO predicts total
energies for the remaining structures in a probabilistic man-
ner and suggests candidates. A candidate is chosen based on
the predicted mean and variance, or expectation value and
uncertainty.

formed so that each dimension has a mean of zero and
a variance of one. We use the F -fingerprint [11] as the
descriptor. A schematic of the BO procedures is shown
in Fig. 2.

The CrySPY code uses the common Bayesian opti-
mization library (COMBO) [15] to conduct BO. Candi-
dates are selected according to an acquisition function.
We use that based on Thompson sampling [16]. The ac-
quisition function is computed from the training data set
with the descriptors and total energies already obtained
through the Gaussian process. The kernel function in
the Gaussian process is the Gaussian kernel with the
Euclidean distance, in which hyperparameters are auto-
matically determined by the type II maximum likelihood
estimation each time before picking candidates.

The CrySPY code also calls a molecular dynamics
code to relax the crystal structures of the selected candi-
dates. The crystal structure relaxation is the most time-
consuming part in CrySPY. The CrySPY code can
access both ab initio and classical molecular dynamics
codes. In this study, we use soiap [17] and the Vienna
Ab initio Simulation Package (VASP) [18]. The ZRL
potential [19] is employed in calculations by soiap. See
Appendix C for details of the ZRL potential. Use of the
classical potential, ZRL, reduces computational costs and
does not matter to the main aim of the present work of
clarifying the dependence of the crystal structure search
efficiency on a parameter in the descriptor.
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B. Setup for evaluating the efficiency of the crystal
structure search

First, we prepare a pool of crystal structures, which
consists of 1000 structures generated randomly using the
CrySPY code. Next, we repeat alternately perform-
ing BO and crystal structure relaxation until we find
the minimum-energy structure. BO picks 5 candidates
from the pool at a time. Thus, we evaluate the num-
ber of structures examined until we find the minimum-
energy structure; the fewer the number of structures, the
more efficient the crystal structure search. Because the
search for the minimum-energy structure is stochastic,
we perform 100 minimum searches independently using
the same pool of crystal structures and extract summary
statistics to evaluate the efficiency.

A component of the descriptor is

FAB(rα) =

A,unit cell∑
i

B∑
j( 6=i)

δσ(rα − rij)
4πr2ij(NANB/V )∆r

− 1, (1)

where A and B are chemical elements in a crystal struc-

ture,
∑A,unit cell
i is the summation over A atoms within

the unit cell,
∑B
j( 6=i) is the summation over B atoms in-

cluding periodic replicas other than atom i, NA and NB
are the numbers of A and B atoms in the unit cell, respec-
tively, V is the volume of the unit cell, rij is the Euclidean
distance between atoms i and j, rα = rmin + (α− 1)∆r,
α = 1, . . . , Npoint, Npoint = b(rmax−rmin)/∆rc+1, b·c is
the floor function, and δσ(r) is the delta function approx-
imated by the probability density function of the normal
distribution with a mean of zero and variance σ2. If a
system is a simple substance, e.g. Si16, the αth compo-
nent of a descriptor is FSiSi(rα). If a system contains
multiple chemical elements, a descriptor is a vector con-
structed by concatenating FAB(rα)s of all element pairs.
For instance, a descriptor of Si6O12 has 3Npoint com-
ponents whose first Npoint components are FSiSi(rα)s,
middle Npoint components are FSiO(rα)s, and last Npoint

components are FOO(rα)s. The four parameters, rmin,
rmax, ∆r, and σ, must be given to evaluate the descrip-
tor from a crystal structure. We evaluate the efficiency
of the crystal structure search by varying the values of
these parameters. The same pool of crystal structures is
also used for different parameter values.

III. RESULTS AND DISCUSSION

A. Dependence of efficiency on a parameter in a
descriptor

In this and the next subsection, we discuss crystalline
silicon, Si16, as a model case. The structure relaxation
is performed by soiap with the ZRL potential. The
diamond-type structure has the lowest energy after re-
laxing all the structures in the pool. There is only one
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FIG. 3. Number of structures examined until the minimum-
energy structure is found with respect to parameter σ in the
descriptor. The minimum search is performed for a pool
of crystal structures consisting of randomly generated 1000
structures of Si16. The diamond-type structure has the low-
est energy after relaxing all the structures in the pool, and
there is only one crystal structure relaxed to the diamond-
type structure. The minimum search is performed 100 times
independently for the same pool. The solid line, inner filled
region, and outer filled region indicate the median, lower to
upper quartile, and minimum to maximum, respectively. The
open circles indicate the means. Parameters other than σ are
set as rmin = 0.5 Å, rmax = 20 Å, and ∆r = 0.2 Å.

crystal structure relaxed into the diamond-type struc-
ture.

Figure 3 shows the number of structures examined un-
til the minimum-energy structure is found with respect
to parameter σ for fixing the remaining parameters, rmin,
rmax, and ∆r. The number depends heavily on the value
of σ. The minimum search requires a large number of
examinations for small and large σ. As a matter of fact,
at worst, it is larger than the mean number for the ran-
dom search of 500.5. The variance of the number is also
large in these regions, indicating that efficiency depends
strongly on the stochastic process of BO. Such behavior
is undesirable for the performance of the crystal struc-
ture search. This result demonstrates that the parame-
ters in the descriptor should be adjusted to conduct the
crystal structure search efficiently. The mean number is
smallest at σ = 16/15 Å, which is comparable to half
of the bond length between Si atoms. This correspon-
dence is probable because σ is the broadening width of
the delta function at an atomic position. The broadened
delta function can be regarded as an existence probabil-
ity of a fluctuating atom. In this sense, the descriptor
of Eq. (1) represents a crystal structure with fluctuating
atoms. The fluctuation would be on the order of a bond
length from a physical point of view.

When σ is small, function F (r) in Eq. (1), from which
the descriptor is sampled, is spiky; therefore, the descrip-
tors are substantially different, even if the crystal struc-



4

tures are similar. In contrast, when σ is large, F (r) is
broad, and thus the descriptors are similar even if the
crystal structures are substantially different. Thus, pa-
rameter σ changes the distribution of the descriptors.
These results can also be found in an analysis by ag-
glomerative hierarchical clustering (see Appendix B).

B. Information measure for efficiency estimation

Because the efficiency of the crystal structure search
depends strongly on the parameter values, an appropriate
value must be determined prior to starting the crystal
structure search. The results in Sec. III A suggest that
the crystal structure search works efficiently if similarities
between pairs of the descriptors are widely distributed
from low to high. This implication is also supported by
another analysis by agglomerative hierarchical clustering.
Therefore, the uniformity of a distribution of similarity
between descriptors can be a measure of the efficiency of
the crystal structure search, or more specifically, can be
used to choose an appropriate parameter value.

We define such a measure in terms of the descriptor x,
which we call the similarity-based information measure
(SIM), as

S({xi}) = E [{sij}], (2)

where {xi} is a set of standardized descriptors, E [ · ] is
the cumulative residual entropy (CRE) [20], and {sij} is
a set of similarities. The similarity between xi and xj is
defined by

sij = exp

(
−

d2ij
2 Var[{di′j′}]

)
, (3)

where dij = ‖xi −xj‖2 and Var[ · ] denotes the variance,
which is motivated by the Gaussian kernel used in BO.
CRE is one of the information measures extended from
the Shannon entropy. If Y follows a non-negative discrete
uniform distribution that has a non-zero probability at
N points y1 < · · · < yN , CRE is expressed as

E [Y ] = −
N−1∑
k=1

∆yk

(
1− k

N

)
log

(
1− k

N

)
, (4)

where ∆yk = yk+1 − yk. See Appendix A for details of
CRE. It is practically important that SIM can be evalu-
ated only from a set of crystal structures without com-
puting their energies. SIM is one possible definition and
there can be other definitions for measuring the efficiency.

Next, we check whether SIM can be used as a measure
of efficiency. Figure 4 shows SIM with respect to param-
eter σ. The maximum of SIM corresponds to the most
efficient point, or the minimum of the number of exam-
ined structures in Fig. 3. This suggests that we can use
SIM as a measure of efficiency and choose an appropriate
parameter value.
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FIG. 4. Similarity-based information measure (SIM) with re-
spect to parameter σ in the descriptor. The set of descriptors
is the same as that used in Fig. 3 for each value of σ.

C. Application of the information measure for
adjusting a parameter

1. Another parameter

Because SIM measures information about the distri-
bution of descriptors rather than about parameter σ, it
is expected that the correspondence of the measure to
the efficiency holds also for parameters other than σ. To
test this prediction, we use SIM to adjust ∆r under fixed
rmin, rmax, and σ/∆r as an example. In this case, the
number of dimensions of the descriptor is different for
each ∆r, and a good choice for the value is not as clear
as the choice for σ.

Figure 5(a) shows SIMs evaluated along ∆r. This re-
sult suggests that ∆r should be set to 0.2 Å, where SIM
reaches its maximum. We can confirm that the recom-
mended value gives high efficiency (Fig. 5(b)). This im-
plies that SIM is generally a good measure for determin-
ing parameters in the descriptor.

2. Binary systems

To test if the measure is applicable to systems other
than crystalline silicon, we extend a target of the pa-
rameter adjustment to binary systems. Crystal struc-
tures of binary systems are basically more complicated
than that of crystalline silicon. Therefore, the descriptor
needs more dimensions and the crystal structure search is
harder. We perform the parameter adjustment for Si6O12

and Y2Co17, which have primarily different bonding na-
ture.

Figure 6 shows results for Si6O12. The structure relax-
ation is performed by soiap with the ZRL potential. The
minimum-energy structure in this pool is not α-quartz
that is known to be most stable, although the energy dif-
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FIG. 5. Adjustment of parameter ∆r in the descriptor for
Si16. (a) Similarity-based information measure (SIM) with
respect to parameter ∆r and (b) number of structures exam-
ined until the minimum-energy structure is found. The solid
line, inner filled region, and outer filled region indicate the
median, lower to upper quartile, and minimum to maximum,
respectively. The open circles indicate the means. Parame-
ters other than ∆r are set as rmin = 0.5 Å, rmax = 20 Å, and
σ = 16∆r/3. Other setups are the same as those of Fig. 3.

ference between them is less than 1 meV/SiO2. There is
only one crystal structure relaxed to the minimum-energy
structure. We can confirm also for this system that the
parameter value where SIM reaches its maximum gives
high efficiency.

Figure 7 shows results for Y2Co17. The structure re-
laxation is performed by VASP. The minimum-energy
structure in this pool is Th2Zn17-type, which is known
to be most stable. There are four crystal structures re-
laxed into the Th2Zn17-type structure. SIM has a peak
at σ = 32/15 Å and the crystal structure search is most
efficient at that σ. From these two case studies, we found
that SIM could be useful also for a binary system to pre-
determine a value of a parameter in the descriptor.

As shown in Fig. 7, however, SIM is highest at σ =

(a)
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FIG. 6. Adjustment of parameter σ in the descriptor for
Si6O12. (a) Similarity-based information measure (SIM) with
respect to parameter σ and (b) number of structures examined
until the minimum-energy structure is found. The minimum
search is performed for a pool of crystal structures consist-
ing of randomly generated 1000 structures of Si6O12. There
is only one crystal structure relaxed to the minimum-energy
structure. The minimum search is performed 100 times in-
dependently for the same pool. The solid line, inner filled
region, and outer filled region indicate the median, lower to
upper quartile, and minimum to maximum, respectively. The
open circles indicate the means. Parameters other than σ are
set as rmin = 0.5 Å, rmax = 20 Å, and ∆r = 0.2 Å.

2048/15 Å and that of the most efficient point is almost
equal to but slightly lower than the maximum value.
SIMs at these σs are comparable because distributions
of the distance between descriptors, dij in Eq. (3), are
almost the same (Fig. 8(a)). Meanwhile, dij itself is dif-
ferent between these σs as shown in Fig. 8(b). It means
that distributions of descriptors are different, hence the
different efficiencies.

Although SIM fails to estimate an appropriate param-
eter value in the case of Y2Co17, another information
measure based on agglomerative hierarchical clustering
succeeds (see Appendix B). Agglomerative hierarchical
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FIG. 7. Adjustment of parameter σ in the descriptor
for Y2Co17. (a) Similarity-based information measure (SIM)
with respect to parameter σ and (b) number of structures
examined until the minimum-energy structure is found. The
minimum search is performed for a pool of crystal structures
consisting of randomly generated 1000 structures of Y2Co17.
There are four crystal structures relaxed into the Th2Zn17-
type structure. The minimum search is performed 100 times
independently for the same pool. The solid line, inner filled
region, and outer filled region indicate the median, lower to
upper quartile, and minimum to maximum, respectively. The
open circles indicate the means. Parameters other than σ are
set as rmin = 0.5 Å, rmax = 20 Å, and ∆r = 0.2 Å.

clustering takes account of inter-cluster distances such
as a pair-pair distance other than the pairwise distance.
Such a many-body correlation might be important to
characterize a distribution of descriptors in the case of
Y2Co17.

We recommend, however, using SIM rather than the
information measure based on clustering. There are sev-
eral methods for measuring the inter-cluster distance.
The result of clustering depends on the method, and
therefore, an estimated parameter value does. In practi-
cal situation, we might be able to estimate an appropri-
ate value by SIM even in a failed case by finding a local

maximum before it is saturated.

IV. CONCLUSION

We performed a crystal structure search using BO for
crystalline silicon as a case study. We revealed that
the number of structures examined until the minimum-
energy structure was found, namely the efficiency of the
crystal structure search, depends heavily on a parameter
in the descriptor. The efficiency was worse than that of
the random search in some cases; therefore, the value of
the parameter should be chosen carefully. To predeter-
mine a parameter value in the descriptor, we proposed
SIM as a measure of the efficiency. Because BO uses the
energy of a crystal structure as well as the descriptor,
no measure defined without the energy can predict the
efficiency perfectly. However, we confirmed by case stud-
ies of crystalline silicon, silicon oxide, and yttrium–cobalt
alloy that the efficiency is high when SIM reaches its max-
imum for a parameter, while the most efficient point is
located at a local maximum in the case of yttrium–cobalt
alloy. Hence, we can adjust a parameter by searching for
the maximum of the measure.

In addition to the crystal structure search discussed
here, BO has recently been applied to some areas of
materials sciences, such as virtual screening of material
databases [21]. A common issue in BO is the need to
predetermine the descriptor and its parameter. Once a
descriptor is chosen, the present work provides a promis-
ing way of determining a suitable parameter value for the
descriptor.
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Appendix A: Properties of CRE

Because we define a measure for a discrete uniform dis-
tribution, an information measure used in the definition
should be valid for the discrete probability distribution.
CRE is one such information measure, which is defined
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FIG. 8. Distribution of the distance between descriptors for Y2Co17. (a) Histograms of the distance at typical σs and (b)
correlation of the distance between σ = 32/15 and 2048/15 Å. The distance is defined as dij = ‖xi − xj‖2, where xi and xj

are the standardized descriptors.

for a non-negative random variable X by

E [X] = −
∫ ∞
0

dx F (x) logF (x), (A1)

where F (x) = Pr(X > x) is the complementary cumu-
lative distribution function (CCDF). When X follows a
discrete uniform distribution, Eq. (A1) results in Eq. (4).
CRE is valid for the discrete probability distribution ow-
ing to CCDF. In contrast, the differential entropy h[X],
which is also an extension of the Shannon entropy, cannot
be evaluated for the discrete probability distribution be-
cause it is defined by using the probability density func-
tion f(x) as h[X] = −

∫
dx f(x) log f(x). Although the

Shannon entropy H[X] can be evaluated for the discrete
probability distribution, the value for a discrete uniform
distribution depends only on the number of points N as

H[X] = −
∑N
i=1 Pr(X =xi) log Pr(X =xi) = logN , and

thus it is not suitable for use in the definition of a mea-
sure.

CRE is independent from the shift of a random vari-
able [22]. If random variable Y is the linear transforma-
tion of random variable X as Y = aX+b with a > 0 and
b ≥ 0, CRE of Y is expressed as

E [Y ] = a E [X], (A2)

which does not depend on shift b.
We show the following two examples of CRE from

Ref. 20.

1. E [X] = a/4 if random variable X follows the con-
tinuous uniform distribution supported on [0, a].

2. E [X] = 1/λ if random variable X follows the expo-
nential distribution with the mean 1/λ.

Both examples show that CRE is large when the variable
is distributed over a wide range.

Appendix B: Analysis by agglomerative hierarchical
clustering

We introduce another measure for the efficiency of the
crystal structure search based on the dendrogram. Pos-
sible crystal structure candidates in the pool used in BO
are characterized by a d-dimensional vector of the de-
scriptor. The distance between these crystal structures
is evaluated from the descriptors, which depends on the
parameters we use in the descriptor. We perform agglom-
erative hierarchical clustering of set {xi/c} by the aver-
age linkage method with the Euclidean distance, where
xi is the standardized descriptor of the i-th candidate,
c =

√
2 Γ((d + 1)/2)/Γ(d/2), and Γ( · ) is the gamma

function. The scaling factor, c, is the expectation value
of
∥∥(X1 · · · Xd)

T
∥∥
2

in the case that X1, . . . , Xd are in-
dependent standard normal random variables. Figure 9
presents typical examples of the dendrogram for three
values of parameter σ in the descriptor for Si16. Leaves
under the same branch point are a set of similar crystal
structures within the distance determined by the height
of the branch point in the dendrogram. The tree struc-
ture of the dendrogram depends strongly on the value
of parameter σ. The branch point decreases on average
as the parameter values increases, meaning that the dis-
tance between structures is smaller, and the branch point
is distributed in a narrower range with small and large
parameter values, meaning that the distances between
structures are almost identical. These features are also
found in the cumulative distribution function (CDF) in
the right-hand panels of Fig. 9.

BO is expected to work efficiently when the distance
between a pair of structures in the pool varies from short
to long, as mentioned in Sec. III A. As a measure of ran-
domness of the branch point, we define the dendrogram-
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Structure
0

2

4

6

8

10

H
ei

gh
t

σ = 20 Å
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FIG. 9. Dendrograms for Si16 at typical σs. The right-hand panels shows the cumulative distribution function (CDF) as a
function of the height of the branch point. Other parameters are set as rmin = 0.5 Å, rmax = 20 Å, and ∆r = 0.2 Å.

based information measure (DIM) as

D({xi}) = E [{hk}], (B1)

which is CRE of height hk of a branch point. As shown
in Fig. 10, DIMs reaches their maximum around which
the efficiencies of crystal structure searches are highest.
DIM, as well as SIM discussed in Sec. III B, can also be
used as a measure of efficiency.

The agglomerative hierarchical clustering relies on the
linkage method and distance metric, which affect the re-
sulting dendrogram. Consequently, the value of DIM and
its maximum depend on the details of the linkage method
and the metric employed. Furthermore, DIM also de-
pends on dimension d of the descriptors. Thus, when the
parameter in the descriptor changes d, an appropriate
scaling of the descriptor is necessary to compare DIM for
different parameter values. Consequently, scaling factor
c defined above is introduced. This is in sharp contrast
to SIM. Therefore, we recommend that SIM rather than
DIM is used as a measure of efficiency.

Appendix C: ZRL potential

The ZRL potential [19] is an empirical interatomic po-
tential for the Si–N–O–H system derived from the Tersoff

potential. The energy is expressed as

E =
1

2

unit cell∑
i

∑
j ( 6=i)

Vij +
∑
I

NIE
0
I +

∑
i

Ec
i , (C1)

where i and j are the indices of atoms, I is the index for
the chemical element of the i-th atom, Vij is the gener-
alized Morse potential, E0

I is the core energy of the I-th
element, NI is the number of atoms of the I-th element,
and Ec

i is the penalty for under- and over-coordination
of the i-th atom. Ec

i is given by

Ec
i = c

(1)
I ∆zi + c

(2)
I (∆zi)

2, (C2)

where c
(1)
I and c

(2)
I are parameters,

∆zi =
zi − z0I
|zi − z0I |

fs
(
|zi − z0I |

)
(C3)

is the deviation from the expected coordination number
z0I , and fs( · ) is the switching function. Definitions not
shown here and values of parameters are given in Ref. 19.

We modify the original definition of the switching func-
tion given in Eq. (17) of Ref. 19 to remove discontinuity
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FIG. 10. Dendrogram-based information measure (DIM) for (a) (b) Si16, (c) Si6O12, and (d) Y2Co17. Setups are the same as
those in the main text.

and non-monotonicity. Our definition is given by

fs(z) =



bzc if {z} ≤ zT − zB

bzc+
1

2

[
1 + sin

(
π

2

{z} − zT
zB

)]
if zT − zB < {z} ≤ zT + zB

bzc+ 1 if zT + zB < {z},
(C4)

where z ≥ 0, zT and zB are parameters depending on the

chemical element, b · c is the floor function, and {z} =
z − bzc is the fractional part of z. The original form
of fs(z) is not continuous at z = zT ± zB, 1, 2, . . . and
monotonically decreases over z ∈ (zT−zB, zT−zB/2) and
(zT + zB/2, zT + zB), which causes discontinuity for the
potential energy surface in some situations. In contrast,
Eq. (C4) is continuous and monotonically increases for
all z, resulting in a continuous potential energy surface
even for the case in which the original form produces
discontinuity.
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