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We perform a systematic study of thermal resistance/conductance of tilt grain

boundaries (GBs) in Si using classical molecular dynamics. The GBs studied are

naturally divided into three groups according to the structural units forming the

GB core. We find that, within each group, the GB thermal conductivity strongly

correlates with the excess GB energy. All three groups predict nearly the same GB

conductivity extrapolated to the high-energy limit. This limiting value is close to

the thermal conductivity of amorphous Si, suggesting similar heat transport mech-

anisms. While the lattice thermal conductivity decreases with temperature, the GB

conductivity slightly increases. However, at high temperatures it turns over and

starts decreasing if the GB structure undergoes a premelting transformation. Anal-

ysis of vibrational spectra of GBs resolved along different directions sheds light on

the mechanisms of their thermal resistance. The existence of alternating tensile and

compressive atomic environments in the GB core gives rise to localized vibrational

modes, frequency gaps creating acoustic mismatch with lattice phonons, and anhar-

monic vibrations of loosely-bound atoms residing in open atomic environments.

Keywords:

I. INTRODUCTION

Thermal conductivity of dielectric materials plays an important role in many techno-

logical applications [1–8]. In nano- and micro-electronic devices, it is often desirable to

have a high thermal conductivity in order to quickly remove the Joule heat from critical

components. On the other hand, thermoelectric efficiency of energy conversion devices can

be improved by increasing the thermal resistance of the material without (or with as small

as possible) reduction in the electric carrier mobility.

In dielectric materials, the thermal conductivity is primarily due to atomic vibrations,

by contrast to metals where the electronic mechanism dominates. It is well-established

that the thermal resistance of semiconductor materials can be increased by creating a high
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density of internal interfaces, such as grain boundaries (GBs) and heterojunctions [1, 3–12].

This approach is especially efficient in thin films, where the film surfaces serve as additional

interfaces for phonon scattering. While high-frequency phonons scatter primarily at point

defects (such as vacancies and dopant atoms), it is the low-frequency (long-wavelength)

acoustic phonons that are scattered most effectively by interfaces. To be able to control the

thermal resistance of materials, it is important to understand the microscopic mechanisms

involved in the phonon scattering at interfaces. This work is focused on thermal resistance

of GBs, which is often referred to as the GB Kapitza resistance.

The nature of phonon scattering at GBs is poorly understood, especially with respect

to the relationship between the GB structure and the thermal resistance. It is recognized

that a GB is not simply a barrier that can either reflect of transmit phonons, but a layer of

matter that has its own structure, vibrational modes, and thus mechanisms of heat trans-

port. Unfortunately, experiments do not provide information detailed enough to understand

the role of the GB structure. The existing theories, such as the acoustic mismatch model

(AMM) [13] and the diffuse mismatch model (DMM) [9] capture the physics of the two

materials but not of the interface [14]. Both usually disagree with experiment on a quanti-

tative level. For symmetrical GBs, the AMM is not even applicable because the grains have

the same acoustic properties and the model predicts perfect transmission. The DMM treats

GBs as structurally amorphous, and even then, works only for high-frequency phonons [14].

Furthermore, it has been argued that phonon scattering by interfaces cannot be properly

described using only the vibrational modes that exist in the two bulk materials separated

by the interface [15]. Simulations based on the Boltzmann transport equation [16] and

other continuum approaches do not capture the role of the GB structure either. At best,

an average/effective thermal resistance of GBs in a polycrystalline sample can be treated

in the effective medium approximation [17].

At present, classical molecular dynamics (MD) simulations offer the most effective way

to establish the link between the bicrystallography and atomic structure of GBs, on one

hand, and the GB thermal resistance, on the other [14, 18–27]. Specifically for Si GBs,

which are the subject of this paper, the previous MD studies were focused on twist GBs

[14, 19, 20, 25, 28, 29] and were not very systematic. Tilt boundaries were recently studied

in SiC [30]. For pure silicon, however, we are only aware of two MD studies. One was

conducted by Maiti et al. [18] for [001] symmetrical tilt Σ5 and Σ13 boundaries (Σ being

the reciprocal density of coincident sites in the coincident site lattice theory [31]). In the

second, Chen et al. [32] investigated the heat resistance of three [011] symmetrical tilt GBs

(Σ3, Σ9 and Σ19) by heat pulse propagation from a point source.

It should be noted that all previous studies of Si GBs utilized the interatomic potential

developed by Stillinger and Weber (SW) [33]. As any interatomic potential, the SW poten-

tial has its strengths and weaknesses, which were discussed in detail in the recent literature

[34, 35]. While it reproduces the lattice thermal conductivity reasonably well, its ability to
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predict the correct GB structures is questionable. For this reason, in this work we chose to

use the recently developed generalized and optimized Tersoff-type potential [34], which we

consider more reliable for the modeling of Si GB structures.

The goal of this work was to conduct a systematic atomistic simulation study of thermal

resistance of Si GBs with the intention of (1) establishing the structure - thermal resis-

tance relationships, and (2) better understanding of the impact of the GB structure on

the phonon scattering. After introducing our simulation methodology in Sections II and

III, we present the equilibrium structures of a large set of [001] symmetrical tilt GBs with

misorientation angles spanning the entire range of symmetrically distinct bicrystallogra-

phies (Section IV A). We prefer to work with tilt GBs, rather than twist, because their

structures are generally simpler and experimental data is available for comparison. By

comparing the GB structures, energies, free volumes and other properties over a wide range

of temperatures up to the melting point, we find that all GBs studied here naturally break

into three categories/groups. These groups are characterized by different combinations of

properties and distinct structural units forming the GB core. We also find that some of

the boundaries remain structurally ordered up to the melting point, while others develop

a significant degree of structural disorder due to the premelting effect. In Section IV B we

report on the calculated thermal resistance/conductance of the GBs, showing that the three

structural groups mentioned above follow three different types of correlation between the

GB conductance, the GB thermal width, and the GB energy. The thermal conductance

also correlates with the GB disorder, showing a marked dip at high temperatures when

the structure begins to premelt. To gain insights into the physical mechanisms behind the

structure-conductance relationships, we compare the thermal conductivities and local vi-

brational spectra of the GB core regions with those of crystalline, amorphous and liquid Si

at different temperatures (Section IV C). In Section V we summarize our findings, point to

unresolved problems, and discuss possible future directions.

II. METHODS OF THERMAL CONDUCTIVITY CALCULATIONS

Two most common methods for computing the phononic thermal conductivity of bulk

phases via molecular dynamics (MD) simulations are the non-equilibrium MD (NEMD)

and the Green-Kubo (GK) method. Both methods have been previously applied to Si

using different interatomic potentials [36–40]. In the NEMD approach, a fixed temperature

differential is created across the material, which generates a heat flux J . This flux and the

temperature T initially vary in time and space. After the steady state is reached, both J

and the temperature gradient ∇T become constant in time and uniform across the system.

In the small ∇T limit, the heat transport follows the Fourier law

J = −κ∇T, (1)
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where κ is the thermal conductivity and ρ = 1/κ is the thermal resistivity of the material

(both are scalars for an isotropic material). Alternatively, a constant heat flux can be

imposed in the simulations, giving rise to a steady state temperature gradient. In either

case, κ can be extracted from Eq.(1) using the steady state values of J and ∇T . Variations

of the NEMD method include the approach to equilibrium method [41] and its sinusoidal

version [42].

The GK formalism [43, 44] tracks equilibrium fluctuations of the heat flux to compute

the ensemble-averaged heat current autocorrelation function (HCACF) 〈J(0) · J(t)〉 as a

function of time t. The method is based on the fluctuation-dissipation theorem [45] and

expresses the thermal conductivity as the integral

κ =
V

3kBT 2

∫ ∞
0

〈J(0) · J(t)〉 dt, (2)

where V is the system volume and kB is Boltzmann’s constant. This method is only applied

to homogenous systems and cannot be utilized to study GB phonon scattering.

Among other approaches, the phononic Boltzmann transport equation can be solved in

the mode-specific relaxation time approximation [39, 40, 46]. This method combines lattice

dynamics or classical MD to compute the phonon relaxation times with quantum-mechanical

treatment of the heat capacity. In addition to being applicable to temperatures below the

experimental Debye temperature, this methods has certain computational advantages over

the the NEMD and GK approaches and is capable of providing more detailed information

about the physics of phonon scattering. It has recently been applied to Si [39, 40] in

conjunction with the Tersoff [47, 48] and environment-dependent interatomic potentials

(EDIP) [49]. Ab-initio methods have also been used to extract the thermal conductivity

[50–53].

Heat transport across interfaces is best modeled by the NEMD method. Suppose the

material contains a planar interface of width w whose normal vector points in the heat flux

direction y. The steady state temperature profile T (y) across the material is expected to be

linear in the bulk regions on either side of the interface. However, the interface usually acts

as a thermal resistor to the heat flux, causing a sharp increase in the temperature gradient

within the interface region. On the length scale much larger than w, the temperature profile

appears to be discontinuous at the interface [14, 18]. By Fourier’s law, the magnitude of the

temperature discontinuity (jump) ∆T is proportional to the heat flux through the interface:

J = σK∆T =
κK
w

∆T. (3)

Here, σK is the Kapitza conductance of the interface, RK = 1/σK is the Kapitza resistance,

and κK is the average Kapitza conductivity in the interface region. (The Kapitza resistance

was first discovered in 1941 by Peter Kapitza while studying the superfluidity of helium

[54, 55].) Knowing J and ∆T , Eq.(3) can be used to extract the Kapitza conductance.
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The average interface conductivity can be then evaluated using a reasonable estimate of

the interface width w. This NEMD approach will be applied in this work.

Phonon scattering by interfaces has also been studied by simulating incident wave pack-

ets representing phonons [14]. Examining the packet scattering process it is possible to

compute the energy transmission coefficient as a function of phonon frequency, which pro-

vides information about the ability of different boundaries to inhibit the propagation of

different types of phonon. While the wave-packet simulations can provide physical insights

as well as input data to other models, extracting the Kapitza conductance directly from the

simulations is extremely challenging. Another approach to studying the boundary scatter-

ing is offered by the coherent phonon pulse method [56–58], in which a heat pulse generates

a flux of coherent and diffuse phonons scattered by GBs. This method leverages the regular

MD by introducing the concurrent atomistic-continuum approach [57]. The latter gives ac-

cess to larger length scales and thus helps overcome the wavelength truncation effect arising

in regular MD simulations due to the small computational model size. The method was

successfully applied to study the GB Kapitza resistance in Si [32] and a 2D Lennard-Jones

material [22]. These studies have demonstrated the role of the phonon frequency, ballis-

tic/diffusive character, GB structure, and other factors in the boundary resistance to heat

fluxes. Despite the advantages in gaining a more detailed understanding of the scattering

process, this method is not designed to deliver precise values of the Kapitza resistance.

III. SIMULATION METHODOLOGY

A. Computational methods

Atomic interactions in Si were modeled using an optimized Tersoff-type potential [34]

that was fitted to both experimental and first-principles data. The potential accurately

predicts many Si properties, including the elastic constants, the phonon density of states,

point defects, surfaces, and many other properties. The melting temperature predicted by

the potential is 1687 K, which perfectly matches the experimental value. This potential will

be denoted throughout this work as MOD2. For comparison, some of the simulations were

repeated with other potentials as will be discussed later. The software package LAMMPS

(Large-scale Atomic/Molecular Massively Parallel Simulator) [59] was utilized for both 0

K structural minimization and MD simulations at finite temperatures. We used some of

the built-in commands of LAMMPS, including the commands for computing the radial

distribution function, the heat flux J , the velocity autocorrelation function, the bond-

order parameter Q6, and for on-the-fly binning and averaging of the simulation results.

Visualization and structural analysis were performed with the OVITO software package

[60].

Unless otherwise stated, all simulations used periodic boundary conditions in all three



6

directions and a 1 fs integration time step. For simulation blocks containing a GB, such

boundary conditions imply the existence of two GBs in each block. To achieve a physically

accurate mechanical state during equilibrium GB simulations, we enforce a fixed cross

sectional area in the plane of the GB with zero stress in the GB normal direction. To this

end, we utilize a variant of the NPT ensemble, which we denote NPyT . In this ensemble,

the system temperature is regulated by a thermostat and the dimensions of the simulation

block in the x and z dimensions are held constant (constant GB cross sectional area), while

the y dimension (normal to the GB) is allowed to vary to ensure a zero y component of

stress (Py = 0). Most of the simulations were performed for crystalline Si with the diamond

cubic structure. This crystalline structure will be referred to as c-Si, or simply Si if no

confusion can arise. Before carrying out the c-Si simulations at elevated temperatures, the

temperature dependence of the equilibrium lattice constant was computed by stress-free

NPT MD simulations at temperatures ranging from 100 K up to the melting point at 50 K

increments. To eliminate thermal stresses in the lattice during MD simulations, the lattice

was pre-expanded to the equilibrium lattice constant at the respective temperature prior

to the simulation. This was done for all simulation runs that utilizes the NV T , NPyT , or

NV E ensembles.

B. Structure generation

1. Grain boundary structures

To conduct a systematic study of the effect of misorientation angle on the GB thermal

conduction, it was necessary to prepare a set of equilibrium GB structures by carefully

minimizing their energies. We chose to focus on the (hk0)[001] family of symmetrical tilt

GBs, where [001] is the tilt axis and (hk0) is the GB plane. For such boundaries, the tilt

angle θ is given by θ = 2 tan−1(k/h) and the reciprocal density of coincident lattice sites Σ

is obtained from the relations h2+k2 = Σ or h2+k2 = 2Σ [31]. The 31 tilt angles studied in

this work covered the entire interval 0◦ ≤ θ ≤ 90◦ of symmetrically distinct misorientations.

Since the tilt axis is fixed and the boundaries are symmetrical, we can refer to them by

the Miller indices of the respective GB plane. For example, the Σ5(210)[001] (θ = 53.1o)

GB can be referred to as simply (210) boundary. For clarity, we emphasize the difference

between the misorientation angle θ used in the present work and the disorientation angle

θ̃, which is often used in the GB literature. For the simple class of [001] tilt GBs, the

disorientation angle can easily be recovered from θ by θ̃ = θ for θ ≤ 45◦ and θ̃ = 90◦ − θ
for 45◦ < θ ≤ 90◦. The coordinate axes x, y, and z were aligned along the [kh0], [hk0] and

[001] crystallographic directions, respectively. Thus the y direction was normal to the GB

plane and the z direction was parallel to the tilt axis. The dimensions of the simulation

block varied according to the type of simulation as will be detailed below.
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The GBs were created by standard geometric constructions in which the lattice was

aligned relative to the coordinate system according to the crystallographic orientation of

the lower grain (y < 0), followed by 180◦ rotation of the upper half of the block (y > 0)

around the y axis. To equilibrate the GB structure, multiple rigid translations parallel

to the GB plane were applied to one of the grains and the total energy was minimized

with respect to atomic displacements by the conjugate gradient method. The GB structure

with the smallest excess energy γ was taken as closest to equilibrium. In some cases,

the translations were followed by heating the system to a high temperature and briefly

annealing it before the conjugate gradient minimization. The anneal temperature and time

were typically 1500 K and 25 ps, respectively, but could vary from one GB to another in

search of the lowest energy.

It has recently been demonstrated that adding or removing atoms to/from the GB region

can reveal new structures with even lower energies than those obtained by closed-system

simulations [61–67]. Motivated by these findings, we applied the atomic removal method-

ology developed in our recent work [67] to a subset of the Si GBs. The method computes

the GB energy as a function of the fraction λ of atoms removed from the GB core. The

function γ(λ) obtained can have local minima corresponding to stable or metastable GB

structures. The method is computationally expensive and could only be implemented for a

limited number of boundaries.

2. Liquid and amorphous structures

Liquid and amorphous Si structures, referred to as l-Si and a-Si, respectively, were in-

cluded for comparison with GBs. The l-Si structure was generated by carrying out a 20 ps

NPT MD run at 3000 K starting from c-Si, which produced a fully melted structure. This

structure was then equilibrated by longer NPT MD runs at several different temperatures,

before performing production runs to determine the thermal conductivity at respective

temperatures.

To obtain a-Si structure, a l-Si sample was cooled down by a 500 ps NPT MD run

in which the temperature was decreased from 3000 K to 300 K as a linear function of

time. This run was short enough to avoid re-crystallization but long enough to allow for

some local atomic relaxation. The structure obtained was further annealed in the NPT

ensemble for 2 ns at 300 K to allow for additional atomic relaxation. This structure was

used as the starting point for the subsequent simulations at several other temperatures.

At each chosen temperature, the equilibrium volume was determined by a stress-free NPT

simulation, followed by a production run in the NVT ensemble at the equilibrium volume.

To demonstrate that the amorphous structure was stable, the mean square displacement

(MSD) of atoms was determined during the simulations. At temperatures below 500 K,

the MSD was found to be small and time-independent, showing that long-range atomic
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diffusion was negligible. Above 500 K, MSD began to increase as a linear function of time,

signaling the onset of atomic diffusion. Based on this observation, the thermal conductivity

of a-Si was only computed below 500 K when the heat transport could be cleanly separated

from mass transport.

C. The structural disorder quantification

To quantify the emergence of structural disorder in some of the GBs at high temper-

atures, the Ql order parameters introduced by Steinhardt et al. [68] were computed as

functions of temperature. Specifically, it was found that the single parameter Q6 was suf-

ficient for our purposes, being close to zero inside the grains and positive in the GB. For

computational reasons, the block sizes for the disorder quantification runs were approxi-

mately 3.5nm× 10nm× 3.5nm with periodic boundary conditions in all dimensions. This

block size was sufficient for calculating the local structure within the core regions of the

various GBs, but is significantly smaller than the simulation blocks used in the thermal

conductivity calculations. At each temperature, the two GBs in the simulation block were

equilibrated by the usual procedures described above and subject to a 12 ns long MD

run using the NPyT ensemble. During the run, approximately 3000 snapshots containing

atomic positions and Q6 parameters of atoms were saved at regular time intervals. At the

post-processing stage, the order parameter profile Q6(y) was computer for each snapshot

by averaging over bins parallel to a given GB. The peak arising at the GB was fitted by

a Gaussian function and the Q6 value averaged over a 0.5 nm window at the center of

the Gaussian was taken as the GB order parameter. Such values were averaged across the

snapshots to obtain the order parameter of the GB. These order parameters were analyzed

as functions of temperature as will be discussed below. During the Q6 calculations, the

mean-square atomic displacements within the GB cores were also computed to determine

whether atomic diffusion was occurring.

D. Non-equilibrium molecular dynamics simulations

The NEMD simulations utilized the approach [38, 69, 70] in which a chosen heat flux was

imposed across the GB and the temperature jump ∆T was measured after the steady state

regime was confirmed. Prior to the simulation, the system, which was periodic in all di-

mensions, was pre-expanded according to the desired average temperature and thermalized

by running MD in the NPyT ensemble for 100 ps. The MD ensemble was then switched

to NPyH (fixed enthalpy and constant cross-sectional area defined by the x and z direc-

tions), so as to continue enforcing Py = 0 while allowing for a non-equilibrium temperature

distribution in the simulation block.

The heat flux normal to the GB was imposed by introducing hot and cold slabs (ther-
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mostats) parallel to the GB plane and artificially transferring a fixed increment of kinetic

energy, 2δK, between them by rescaling the atomic velocities at each time step ∆t of the

MD simulation. The number of atoms in the two slabs was equal to ensure that the en-

ergy exchanges were symmetric. These artificial exchanges of kinetic energy resulted in a

physical heat flux from the hot slab to the cold with the magnitude J = δK/A∆t, where

A is the GB area. In simulations with the average temperature below 1000 K, a J = 25

GW m−2 flux was imposed, which is comparable to fluxes commonly reported in the liter-

ature [14, 29]. In simulations above 1000 K, a flux of J = 50 GW m−2 was applied, which

is somewhat larger than in previous work. This increase in the flux was required to resolve

the temperature jump, which at high temperatures tended to be small. As a consistency

check, the actual flux was independently computed using the heat flux function built into

LAMMPS, and the results were found to be in excellent agreement with the flux predicted

from the kinetic energy transfers.

The temperature profile T (y, t) was computed by averaging the local kinetic energy of

atoms over an appropriate time scale and relating it to temperature through the equipar-

tition theorem. (It should be noted that care is needed when defining temperature in this

way, especially when dealing with short time intervals in which the concept of “instan-

taneous” temperature becomes ill-defined [71, 72].) This calculation utilized LAMMPS’

internal commands to partition the simulation block into narrow bins parallel to the GB

and average the local temperatures inside the bins to produce a smooth temperature curve.

Before carrying out the production runs, the local temperatures were allowed to reach the

steady state by running NEMD for 1 ns. The production run was 4 ns long and produced

a time-averaged temperature profile T (y) used to extract σK . To this end, the temperature

profile was fitted by the function

T±(y) = −J
κ

(y − y0)∓
∆T

2
tanh

(
y − y0

2w

)
+ T0, (4)

where the two sign choices reflect the fact that the simulation block has two GBs exposed to

heat flowing in opposite directions (Fig. 1). Here, κ is the bulk thermal conductivity, y0 is

the location of the center of the GB, T0 is the local temperature at the GB location (which

is close to the average temperature in the simulation block), ∆T is the temperature jump,

and w controls the width of the hyperbolic tangent and has the meaning of the thermal

width of the GB. The flux J is known. The remaining variables κ, y0, T0, ∆T and w were

treated as fitting parameter and were determined by minimizing the mean-square deviation

of the actual temperature profile from Eq.(4). This fit did not include the nonlinear regions

close to the thermostats where the temperature profile was distorted by boundary effects.

An example of the fit is shown in Fig. 1. An advantage of this method is that the single fit

allows us to extract the temperature jump required for computing the Kapitza conductance

σK , the GB width w that can be used to evaluate the GB conductivity

κK = σKw, (5)
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and the lattice thermal conductivity κ. In the limits of y � y0 and y � y0, Eq.(4) reduces

to two linear functions offset from each other by ∆T ,

T1(y) =

(
−J
κ

(y − y0) + T0

)
+

∆T

2
(6)

and

T2(y) =

(
−J
κ

(y − y0) + T0

)
− ∆T

2
. (7)

These functions represent the steady state temperature profiles inside the grain on either

side of GB-2 (Fig. 1). Their slopes give the temperature gradients in the grains and thus

−J/κ. The values of σK and κ obtained from the fit were further averaged over the two

GBs present in the simulation block due to periodic boundary conditions. At temperatures

above 750 K when thermal fluctuations were large, the calculation was repeated several

times starting from different initial conditions and the results were averaged.

To verify the system size convergence of the NEMD Kapitza conduction results, we varied

the GB area and the length of the simulation block in the y directions using the Σ5[210]

GB as a test case. Previous studies have indicated that the converged dimensions depend

on the interatomic potential [37, 39, 73, 74]. For the present interatomic potential, it was

found that the system dimensions of roughly 4.4nm × 100nm × 5nm ensured reasonably

converged Kapitza conductance values. Details of the convergence tests can be found in

the Supplemental Material file [75].

E. The Green Kubo method

To demonstrate the consistency of the simulation methodology, κ was also computed

at several temperatures for c-Si, l-Si and a-Si samples using equilibrium MD and the GK

relation (2). The simulation block was pre-expanded according to the equilibrium volume

at the chosen temperature and thermally equilibrated by an NVT run for 100 ps. A 10

ns long production run was carried out in the microcanonical (NVE) ensemble to compute

the HCACF 〈J(0) · J(t)〉. The entire MD time was partitioned into intervals of length τ

and the product J(ti) ·J(ti + t) was averaged over all atoms and all MD integration points

ti within each interval to obtain the HCACF. Examples of the HCACF’s obtained in this

work are shown in Fig. 2.

To obtain the thermal conductivity from Eq.(2), the HCACF was numerically integrated

from zero to τ . The choice of the correlation time τ is an important step in the procedure

and is known to affect the accuracy of the results [37, 39, 40, 73, 74]. It should be emphasized

that this time depends on the interatomic potential used. To put our results in perspective

with the literature, the calculations were repeated with several alternate potentials. For the

SW [33] and 1989 Tersoff (T89) [76] potentials, the correlation time in c-Si was found to be

on the order of 100 ps [39, 40, 73, 74]. With the MOD2 potential [34], τ was significantly
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shorter, approximately 8 to 12 ps, depending on the temperature (Fig. 2). The MOD1

potential [77] presented an intermediate case. To assert the convergence with respect to

τ , the thermal conductivity as a function of τ and extrapolated to infinity by fitting it

with the function κ(τ) = κ∞ tanh(τ − τ0), τ0 and κ∞ (extrapolated value of κ) being the

fitting parameters. A typical example of fitting is shown in Fig. 3. For l-Si and a-Si, the

correlation time was relatively short (1 to 5 ps) and the converged values were readily

obtained by setting τ = 10 ps. Convergence with respect to the system size was also

investigated and the results were in excellent agreement with the literature [36, 39, 40, 74].

It was found that the system dimensions of 6.5nm× 6.5nm× 6.5nm (13,824 atoms) were

sufficient for obtaining well-converged conductivity values.

Table I summarizes the thermal conductivity values at representative temperatures com-

puted in this work with four different interatomic potentials. (It should be mentioned that

the l-Si and a-Si structures were prepared with the MOD2 potential and were rescaled to

the new equilibrium volumes when switching to other potentials.) Predictions of the SW

and T89 potentials overestimate the experimental data, whereas the MOD1 and especially

MOD2 potentials significantly under-predict the experiment. The reasons for choosing the

MOD2 potential for this work over other existing potentials was mentioned in Section I and

will be discussed again in Section V. For a-Si, all four potentials predict very similar val-

ues in good agreement with experiment. While experimental data for l-Si is available [78],

comparison with classical MD simulations has little significance since the heat transport in

l-Si is dominated by the electronic contribution. It should be noted, however, that the four

potentials predict similar values of κl on the order of 1 W mK−1.

F. The vibrational density of states

Vibrational spectra of various atomic environments were computed using the velocity

autocorrelation function (VACF) method [79]. One advantage of this method is that it can

be applied to selected atomic groups or even an individual atom. The VACF of an atom is

defined by

Cv(t) =
〈v(0) · v(t)〉
〈v(0) · v(0)〉

, (8)

where v(t) is the atom’s velocity. In practice, the ensemble average 〈...〉 is replaced by

averaging over multiple initial conditions v(0) and across atoms with identical local envi-

ronments. In anisotropic environments, it is useful to examine the VACF projected along

specific directions. For example, the VACF projected along the Cartesian axis x is defined

by

Cvx(t) =
〈vx(0) · vx(t)〉
〈vx(0) · vx(0)〉

, (9)

and similarly for the Cvy(t) and Cvz(t) projections. The vibrational density of states (DOS)

g(ω) is obtained by taking the Fourier transform of Cv(t). The projected DOS gx(ω) is
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defined as the Fourier transform of Cvx(t) (accordingly, of Cvy(t) and Cvz(t) for gy(ω) and

gz(ω)).

For l-Si and a-Si, only Cv(t) and g(ω) were computed. The averaging in Eq.(8) was

performed over all atoms in the simulation block. The time averaging was performed by

repeating a 15 ps long NVE MD simulation 25 times starting from different initial conditions

(15 ps exceeds the correlation time). The averaged VACF was then transformed to the

frequency domain.

To probe the dynamic properties of GBs, their density of states (DOS) was computed

for atoms within the cores of the (210) and (650) GBs at the temperatures of 300 K

and 1600 K. To gather better statistics, the simulation blocks constructed for the Kapitza

conductance calculations (see above) were replicated several times in x and z dimensions.

The c-Si lattice DOS was computed from about 200,000 atoms residing in a region chosen

inside one of the grains as shown in green in Figure 4. The lattice DOS was validated

by independent calculations based on the dynamical matrix method [80] and excellent

agreement was obtained. For the GBs, the VACF was averaged over around 50,000 atoms

identified as belonging to the GB core using the excess energy criterion. In Figure 4, such

atoms are shown in red. They form a continuous layer in the high-angle (210) GB and

decorate individual dislocation cores in the low-angle (650) GB. The projected VACF in

all three coordinate directions was computed to differentiate between vibrational effects

in the GB normal direction and in the GB plane directions. It should be noted that, in

the highly non-homogeneous structure of a GB, each atoms has its own, distinct density of

states. Thus the GB DOSs characterize averaged dynamical properties of all atoms residing

in the GB core. The local DOSs of individual GB atoms can differ from each other very

significantly. To probe this difference, we calculated DOS for several representative atomic

sites chosen within the GB core. The results will be discussed below.

IV. RESULTS

A. Grain boundary structures

Figure 5 shows the GB energy γ as a function of the tilt angle θ, along with several

representative GB structures and the fundamental structural units found in this work and

in the previous literature [81, 82]. A complete catalog of the GB structures obtained in this

work can be found in the Supplemental Material [75].

The shape of the energy-angle curve is qualitatively similar to the one reported previously

[81–84]. Most of the GB structures are also in good agreement with literature reports when

available [81–83, 85, 86]. The (320) and (310) GB structures are additionally consistent

with the high-resolution electron microscopy observations [87]. One discrepancy with the

literature is our structure of the (510) boundary. This boundary has been extensively
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studied and at least twelve different structures have been reported [81, 85]. In Ref. [85], our

lowest-energy structure of this boundary [75] was found to have the second lowest energy

out of eight structures tested. This minor difference is likely to be related to the different

interatomic potentials used in the two studies. The agreement between the simulated and

experimentally known structures gives us confidence that other predicted GB structures are

also reliable.

As mentioned in Section III B 1, some of the GBs were additionally equilibrated by

varying the atomic density λ in the GB core using the methodology developed in [67]. By

contrast to metallic GBs, where variations in λ revealed new stable or metastable structures

(GB phases) [61–65, 67], no new structures were found in the Si GBs whose energies would

be lower than those obtained by the standard method (λ = 0). Figure 6 shows GB energy

versus λ plots for a set of GBs tested by this method. In all cases, the energy has a single

minimum at λ = 0 (and λ = 1 by periodicity), showing that there are no additional GB

phases present. The only exception is the (520) boundary, which has a local minimum

at λ = 0.5 corresponding to a metastable GB phase. For all other values of λ, this GB

represents distorted, vacancy riddled forms of the lowest-energy structure obtained at λ = 0.

By examining all GB structures and energies obtained in this work, it was found that

they could be divided into three groups. Group 1 includes low-angle GBs with θ <∼ 7◦.

Such boundaries are composed of A-type structural units (Fig. 5) forming the cores of the

edge dislocations separated by elastically distorted lattice regions. An example of Group

1 structures is given by the (20 1 0) boundary with θ = 5.73◦ shown in Fig. 5. Group 2 is

more inclusive and encompasses the GBs over the angular range 7◦ <∼ θ <∼ 65◦. They are

characterized by densely packed structural units with little or no lattice gaps between them.

The structural units are mostly B-type arranged in linear or zigzag patterns. Examples are

given by the (610), (310) and (520) GBs shown in Fig. 5. Finally, the GBs assigned to

Group 3 have the tilt angles in the range 65◦ <∼ θ <∼ 90◦ (i.e., disorientation 0◦ <∼ θ̃ <∼ 25◦).

They are composed of discrete dislocations whose cores are formed of B-type structural

units separated by lattice regions. It should be noted that the choice of the bounding

angles between the groups is somewhat subjective, but it is consistent with the natural

grouping of the GBs according to their Kapitza conductance as will be discussed below.

The foregoing discussion was focused on GB structures at zero temperature. To evaluate

the temperature effect, a set of representative GBs was selected to examine their structural

evolution with increasing temperature. For some of them, such as the (310) and (210)

GBs, the atomic structure remained practically unchanged up to temperatures close to

the melting point, except for thermal displacements of atoms from the average positions.

Other GBs developed a significant atomic disorder at high temperatures. The disordering

of core regions of crystalline defects at high temperatures falls in the category of premelting

phenomena, which for metallic GBs have been throughly studied by theoretical models

and atomistic simulations [88–90]. A similar GB disordering at high temperatures was
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previously observed in Si, specifically in the Σ25(710) tilt boundary [91] and several twist

boundaries [92]. In this work, this effect has been demonstrated for a larger set of tilt GBs,

including low-angle boundaries such as (20 1 0) 5.73◦ and (650) 79.6◦. The latter case is

illustrated in Fig. 7 for the (650) GB whose structure is composed of discrete dislocations

running parallel to the tilt axis and normal to the page. As temperature increases, the

dislocation cores become increasingly disordered and eventually turn into liquid pipes at

temperatures approaching the melting point (1687 K).

To quantitatively demonstrate the accumulation of disorder in the GBs, the order pa-

rameter Q6 was computed as discussed in Sec. III C. The results obtained for a set of six

GBs are summarized in Fig. 8. The order parameters in the crystalline and liquid phases

of Si are shown for comparison. As expected, the order parameter in the GBs is lower

than in the perfect crystal but higher than in the liquid. In the (310) and (210) GBs, the

order parameter decreases linearly with temperature with approximately the same rate as

in c-Si (Fig. 8a). This behavior is consistent with the fact the structure of these boundaries

is preserved at all temperatures. The decrease in their order parameter is solely due to

the increased amplitude of atomic vibrations. In the remaining GBs (Fig. 8b), the order

parameter decreases linearly at low temperatures but deviates down from this trend at tem-

peratures above 1250 K. This deviation signals the onset of additional disordering, which

becomes especially pronounced near the meting point. This accelerated disordering reflects

the GB premelting behavior affecting these boundaries.

B. Grain boundary thermal conductance

1. Simulation details

A typical steady state temperature profile T (y) obtained by NEMD simulations is shown

in Fig. 1. The profile consists of linear segments inside the grains and a temperature jump

∆T arising at the GB due to its Kapitza resistance. The non-linear regions near the hot and

cold thermostats are caused by increased phonon scattering and were commonly observed

in previous studies [14, 18, 27]. In the present simulations, the temperature difference

between the thermostats was around 150 K at low temperatures and as high as several

hundred Kelvin at high temperatures. The values of ∆T were typically around 10 K to 20

K.

To demonstrate the robustness of our simulation methodology and insensitivity of the

main conclusions with respect to the choice of the interatomic potential, the Kapitza con-

ductance of three GBs was computed at 500 K and 1000 K using four different potentials.

The results were compared with literature data when available. The Σ5(210) and Σ5(310)

GB structures were created with the MOD2 potential and scaled according to the thermal

expansion coefficients of other potentials. For the Σ5(310) GB, a metastable structure was
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used to facilitate comparison with previous calculations [14]. The Σ101(10 1 0) 11.42◦ twist

boundary was equilibrated with the SW potential [33] to ensure full consistency with the

previous work [14]. The 0 K energy of this boundary was found to be 0.91 J m−2, which is

exactly the number reported in [14]. The results are summarized in Table II. The Kapitza

conductance obtained in this work compares well with the previous reports [14, 18] and

shows relatively small variations across the four potentials. The latter observation is in

contrast with the results for the lattice thermal conductivity of c-Si, which was shown to

be much more sensitive to the choice of the potential (Table I).

2. Tilt angle dependence

We will first present the results obtained by fixing the average temperature at 750 K and

studying a set of GBs over the entire range of tilt angles. The goal was to elucidate the effects

of GB energy, GB structure and the lattice misorientation on the Kapitza conductance. The

temperature of 750 K is above the experimental Debye temperature of Si (658 K [93]) but

low enough that even the lowest-angle GBs produced a temperature jump that could be

reliably determined to extract the Kapitza conductance.

As an example, Fig. 9a presents a collection of temperature profiles for several low-

angle (relative to a misorientation of 90◦) GBs. Note that the lowest-angle GB has a very

small temperature jump due to its relatively large conductance σK , and that generally ∆T

grows (σK decreases) as the tilt angle deviates down from 90◦ (increased disorientation

θ̃). Figure 9b summarizes the conductance of all GBs studied in this work plotted as

a function of the GB energy γ. An important observation is that the results fall into

three categories distinguished by different colors. These categories correspond to the three

structural groups discussed in Sec. IV A, specifically Group 1 (blue), Group 2 (black) and

Group 3 (red). Within each group, the conductance follows a linear dependence on γ. The

linear correlation lines are shifted relative to each other and have different slopes. A similar

trend was previously observed for Si twist boundaries [19] as well as symmetric tilt GBs

in MgO [94]. The low-angle GBs of Group 1 have the highest conductance and are closely

followed by Group 3 GBs. The Group 2 GBs with intermediate tilt angles have the lowest

conductance. It is interesting to note that in all three groups, σK approaches the same,

universal value of approximately 1.75 GW m−2 K−1 in the high energy limit. This value is

generally consistent with GB conductances reported in the literature, which range from as

low as 0.56 GW m−2 K−1 [14, 26] or as high as 17.6 GW m−2 K−1 [27], depending on the

GB and the material in question.

The inlay in Fig.9b shows the conductance plotted as a function of the tilt angle with

the structural groups differentiated by color. Note that the shape of the curve is similar to

the inverted function γ(θ) shown in Fig. 5. This similarity highlights a strong correlation

between the Kapitza conductance and the GB energy, which appears to be a rather general
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trend. This correlation was previously observed for GBs in Si [20, 29], diamond-cubic carbon

[27], silicon carbide [21], MgO [94], CeO2 [95], Al2O3 [96] and other materials. Furthermore,

a decrease of the GB conductance with the tilt angle was found for low-angle (θ < 30◦) tilt

GBs in graphene [97, 98], suggesting that this trend extends to 2D materials as well.

Figure 10a shows that the thermal GB width w follows a similar correlation with the GB

energy as the thermal conductance. In particular, all w values break into three groups corre-

sponding to the structural groups (Sec. IV A). In the high-energy limit, all three correlation

lines converge to the same, universal width of about 0.25 nm, which is fittingly close to the

interatomic distance. Knowing σK and w, the GB conductivity κK was evaluated from the

relation κK = σKw. As expected, κK closely follows the same trends as σK and w, showing

a strong correlation with the GB energy. It is interesting to note that, for the Group 2

GBs (black symbols), σK decreases with GB energy while w increases. The two trends

partially compensate each other, resulting in a relatively small slope (weaker dependence

on the energy) for the conductivity correlation line. Each structural group follows its own

correlation line, but all three lines converge to nearly the same, universal GB conductivity

of about 0.4 W m−1 K−1 (Fig.10b). This value can be viewed as thermal conductivity of

typical atomic structures existing in the cores of high-energy, high-angle GBs in Si.

The recent simulations of MgO GBs [94] revealed a strong correlation between the GB

thermal conductance and the GB excess volume, while correlation with GB energy was

much weaker. To compare these findings with the situation in Si, we have plotted the

GB conductance at 750 K against the 0 K excess volume [V ]N per the GB area. The

excess volume is computed as [V ]N = V − vN , where V is the volume of a region with

N atoms containing the GB and v is the volume per atom in an unperturbed reference

grain. As illustrated in Figure 11, the data points do separate into “clouds” corresponding

to the structural groups. However, the slopes are either vertical or horizontal, which makes

this correlation less informative than the correlation with energy. Figure 11 only serves to

demonstrate the clustering behavior associated with the GB structural units rather than

any meaningful statistical correlation. The preference for the GB conductance to correlate

with the excess volume rather than energy is apparently a specific feature of the MgO GBs.

3. Temperature dependence

Six GBs were selected to examine the temperature dependence of the GB thermal con-

ductance. Figure 12a reports the results for the (310) and (210) boundaries, which remain

ordered up to high temperatures (cf. Fig. 8). In both boundaries, σK increases with tem-

perature in more or less linear fashion. The trend for interface thermal conductance to

slightly increase with temperature was observed in previous studies of GBs in Si and car-

bon [14, 19, 20, 27, 29, 99], GBs in 2D graphene [97], and Si-Ge solid-solid interfaces [100].

For GBs, the likely reason is the existence of localized vibrational modes, which can ex-
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change energy more easily as the anharmonicity increases at high temperatures.

The remaining four GBs exhibit the same trend at low temperatures (Fig. 12b) but

deviate from this behavior at high temperatures. Namely, σK starts to decrease with

temperature above about 1300 K. This change in the temperature dependence correlates

with the onset of atomic disorder in these boundaries as was discussed in Section IV A

(cf. Figs. 7 and 8). The effect can be explained by noting that the disordered GB structures

begin to resemble a-Si, which is known to have a much lower thermal conductivity than

ordered structures. A similar decrease was observed in simulations of the Σ29 43.6◦ twist

boundary in diamond carbon [27]. The observation of this effect in several GBs in Si

suggests that the decrease in the GB conductance at premelting temperatures is a general

trend common to most GBs in covalent materials.

To put these results in perspective, the temperature dependence of the GB conductivity

κK was compared with that of the lattice conductivity κ. The latter was extracted from

the linear portions of the temperature profiles during the NEMD simulations as discussed

in Sec. III D. As a consistency check, κ was also computed by equilibrium MD simulations

using the GK relation (Sec. III E). The GK method was also applied to compute κ of a-Si

at several temperatures. The results are summarized in Fig. 13, where the low-angle (650)

GB and the high-angle (210) GB have been chosen as representative cases. We find that the

lattice conductivities obtained by the NEMD and GK methods are in good agreement with

each other. The lattice conductivity rapidly decreases with temperature, following the 1/T

relation predicted by the standard three-phonon scattering model [101]. In comparison, the

GB conductivities increase with temperature very slowly and remain in the same ballpark

as a-Si. The latter trend is consistent with the notion that the heat transport across GBs is

likely to be dominated by localized vibrations rather than collective displacement waves as

in the crystalline state. As a result, κK is not much different from that in the amorphous

state. Both conductivities are expected to be close to the lower bond predicted by the

Cahill-Pohl theory [102–104]. A rough estimate of this lower bound for Si, 0.4 W m−1 K−1,

is provided by the high-energy extrapolation in Fig. 10b.

C. Vibrational density of states

The vibrational DOS of GBs computed at different temperatures was compared with

the DOS of the bulk Si phases in the effort to better understand the nature of the Kapitza

resistance. As a reference point, Figure 14 shows the DOS of c-Si computed with the

present interatomic potential. The first, rather broad peak (band) represents the acous-

tic modes, whereas the sharp peak near the cutoff frequency originates from the optical

branches. In the context of thermal conductivity, we are most interested in the acoustic

modes. As temperature increases, the acoustic band shifts toward lower frequencies and

becomes somewhat narrower and higher. The increased density of the medium-frequency



18

acoustic phonons enhances their scattering rate, which is consistent with the observed de-

crease in thermal conductivity with temperature. The optical peak also initially shifts to

lower frequencies, but this shift stops at higher temperatures.

Figure 15 displays the local DOS in the core regions of the (210) and (650) GBs in com-

parison with the DOS of c-Si and a-Si. Note that the a-Si DOS is qualitatively similar to

the one seen experimentally by inelastic neutron scattering and in independent simulations

[105–108]. At 300 K, the vibrational spectra of the (210) and (650) GBs tend to be inter-

mediate in shape between the spectra of c-Si and a-Si. Similar to the amorphous structure,

the acoustic band of both boundaries is shifted toward lower frequencies relative to c-Si.

Furthermore, it additionally exhibits many localized peaks and looks more jagged than the

a-Si DOS. In particular, the (210) GB DOS has a well-pronounced localized peak at about

3 THz. This peak suggests the existence of localized (non-dispersive) vibrations in the GB

core. Note that the frequency of this peak lies inside the acoustic frequency range that

is most important for phonon scattering. As temperature increases to 1600 K, the 3 THz

peak smooths out, as do other sharp peaks seen at 300 K. Except for the suppressed optical

peak, the GB DOS becomes quite similar in shape to that of c-Si, and to some extent,

to the a-Si DOS. This similarity is consistent with the convergence of thermal conductivi-

ties of the three structures at high temperatures. This convergence is illustrated in Figure

13, where the c-Si thermal conductivity rapidly decreases with temperature while the GB

conductivity slightly increases, so the two conductivities become close to each other.

More detailed information can be obtained by examining the vibrational spectra of in-

dividual GB sites. Figures 16 and 17 show site-specific DOSs of the two GBs at 300 K

resolved in the x, y and z directions. The GB sites are labeled by letters A through F

starting from the GB center and moving away in the y direction normal to the GB plane.

The energies of the sites are indicated in the plot. The icons show a fragment of the GB

structure with the chosen atoms colored in green. Recall that, whenever we show a GB

structure, the x-direction is horizontal, the y-direction is vertical, and the z-direction is

normal to the page (parallel to the tilt axis).

In the (210) GB (Fig. 16), the 3 THz peak mentioned above features most prominently

in vibrations along the x and z directions lying in the GB plane. This suggests that the

peak is caused by localized in-plane vibrations. While this peak extends through two layers

on ether side of the central layer A, it is highest for the vibrations of atom A sitting next to

the open space existing at the center of the kite-shape structural unit. Thus, the localized

vibrations occur by displacements of atom A toward this open space as well as parallel to

the tilt axis. Another notable feature is that the acoustic band of the atoms B (located in

the compressed region near the tip of the kite) is relatively narrow and is separated from

the optical modes by a wide frequency range where the DOS is rather small. This frequency

“gap” creates an acoustic mismatch between the vibrations of atoms B in the GB and the

medium-frequency phonons in the lattice.
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A similar frequency mismatch with lattice phonons exists for atoms B in the (650) GB

(Fig. 17). Furthermore, a sharp peak occurs inside the acoustic band at about 5 THz

for vibrations in all three directions. By contrast to the (210) GB, the atom A does not

contribute much to this peak. Instead, the 5 THz peak is largely caused by vibrations of

atoms B in the y-direction. Another sharp peak at about 5 THz is produced by vibrations

of atoms C in the z-direction. Since atoms B and C are spatially separated from each

other and have different local environments (relatively open and compressed, respectively),

these two peaks represent different local modes and their frequency match is likely to be

coincidental.

The Supplemental Material file [75] presents the results of similar site-specific DOS

calculations at 1600 K. Some of the features mentioned above can still be discerned, but

in general the spectra look much smoother. The local peaks within the acoustic band are

barely noticeable, but atoms B still exhibit a wide “gap” separating the acoustic and optical

bands and thus creating a mismatch with the acoustic phonons in the lattice.

V. SUMMARY AND CONCLUSIONS

We have conducted a systematic study of thermal (Kapitza) resistance of GBs in Si,

focusing on a set of [001] symmetrical tilt GBs spanning the entire misorientation range. The

simulations are based on classical MD and utilize a recently developed interatomic potential

[34]. Careful equilibration of the GBs ensured that their structures are representative of

the equilibrium GBs occurring under experimental conditions. The thermal conductance

of the GBs was determined by the NEMD method (also known as the direct method)

over a wide range of temperatures. In this method, the GB conductance is extracted

from the temperature jump across the GB measured in the presence of heat flux normal

to the boundary (Fig. 1). The method also yields the GB thermal width, which can be

used to find the effective GB conductivity from the GB conductance. For comparison,

thermal conductivity of bulk Si phases (crystalline, amorphous and liquid) was computed

by equilibrium MD simulations using the GK method.

Two limitations of our methodology should be mentioned. First, we rely on a classical

interatomic potential [34]. While this potential presents a significant improvement over

the popular potentials such as SW [33] and T89 [76], we find that it underestimates the

lattice thermal conductivity of c-Si with respect to those potentials, as well as experimental

data and first-principles calculations. On the other hand, the tests reported in this paper

show the GB conductance and the thermal conductivity of a-Si predicted by this potential

are very similar values to those obtained with other potentials. Given that the present

potential is likely to be more reliable for the modeling of defect structures such as GBs

[34], we consider it a reasonable choice for this study. The second limitation is that the

classical MD simulations are not expected to accurately represent the actual behavior of
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the thermal conductivity at low temperatures dominated by quantum effects. Given that

many of the results reported here refer to temperatures below the experimental Debye

temperature of c-Si, we only expect that they capture the main qualitative trends of the

GB structure-conductivity relationships.

One of the main results of this work is the established correlation between the GB

excess energy and the GB thermal resistance. Specifically, all GBs studied here naturally

break into three groups according to the type of elementary structural units forming their

core (Fig. 5). Within each group, the GB conductivity strongly correlates with the GB

energy (Figs. 9 and 10). While the correlation relations are different within each group, the

remarkable fact is that all three correlations predict the same upper bound of the thermal

conductivity achieved in the high-energy limit. This limiting values is close to thermal

conductivity of a-Si, suggesting that the heat transport mechanisms are similar. In fact,

the GB and a-Si conductivities remain in the same ballpark at all temperatures (Fig. 13).

While the lattice thermal conductivity decreases with increasing temperature, the GB

conductivity slightly increases. The latter effect can be explained by the enhanced energy

transfer between the localized vibrational modes in the GB core as the anharmonicity of

vibrations increases with temperature. In some of the GBs, however, this trend reverses and

the conductivity starts decreasing at high temperatures (Fig. 8b). It has been shown that

this effect is caused by structural disordering of such GBs when approaching the melting

temperature (premelting phenomenon, Fig. 7).

To gain a better microscopic understanding of the Kapitza resistance, we have analyzed

the vibrational spectra of the GBs extracted from the velocity autocorrelation function.

Using this method, the vibrational DOS can be computed specifically for atoms located

within the GB core region, or even for individual atoms. Furthermore, the DOS can be

resolved along the three Cartesian axes. Such directional vibrational spectra carry valuable

information about the atomic vibrations parallel and normal to the tilt axis as well as

in the direction normal to the GB plane. One of the important findings is the existence

of sharp peaks in the acoustic frequency range of the vibrational spectra (Figs. 15, 16

and 17). Such peaks are usually caused by non-propagating modes, such as resonances

and Einstein-like localized vibrations. The origin of these peaks has been traced back to

the strong inhomogeneity of the atomic environments featured by the GB core, including

alternating regions of tension and compression. The tensile environments exist in relatively

open locations near the centers of the structural units. Atoms in such environments are

loosely bound and vibrate anharmonically, especially at high temperatures. This behavior

is somewhat reminiscent of the “rattling” of caged atoms in phonon-glass systems [109].

One more prominent feature is the existence of low-density regions (“gaps”) between the

acoustic and optical bands in the spectra of some GB atoms (Figs. 16 and 17). Such “gaps”

give rise to a mismatch with the medium-frequency lattice phonons, which are important

for thermal conductivity.
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Further progress in the understanding of Kapitza resistance can be made by specifically

analyzing the atomic displacements in the normal modes of a bicrystal containing a GB, as

was recently done for a model system composed of two lattice-mismatching Lennard-Jones

solids [15]. This analysis should permit separation of the lattice modes from the modes

localized in the GB core, and among the latter, identification of the local modes and reso-

nances. The relaxation times of individual modes in the GB region can also be computed,

along with other measures anharmonicity and localization, and the results can be correlated

with the local structural environments. Improving the accuracy of the interatomic potential

is another important task for the future. One possible path toward this goal is utilizing one

of the machine-learning potentials, such as the physically-informed neural network potential

proposed in [110]. Such potential prove access to large-scale simulations while predicting

the energies of atomic configurations on a nearly first-principles level.
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Table I: Comparison of thermal conductivities (in W m−1K−1) computed with four interatomic

potentials for c-Si, l-Si and a-Si at different temperatures. The potentials tested: SW [33], T89

[76], MOD1 [77] and MOD2 [34]. Tm is the melting temperature computed with the respective

potential.

c-Si l-Si a-Si Tm

500 K 1000 K 2000 K 300K K

MOD1 28.6 14.7 0.7 0.84 1682d

MOD2 13.0 5.4 1.0 1.1 1687d

SW 157.4 43.5 1.4 1.2 1677d

T89 103.5 58.7 1.1 1.6 –

Experiment 75.2a 25.1a * 1.8b, 1.1c 1687d

a Predicted from the polynomial fit κ−1[W−1mK] = 1.33× 10−5T + 2.66× 10−8T 2 to

experimental data for 28Si [111].
b Ref. [112].
c Ref. [113].
d Ref. [34].

* Comparison is meaningless because thermal conductivity of liquid Si is dominated by the

electronic contribution [78].
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Table II: Thermal conductance σK of selected GBs (in GW m−2 K−1) computed with different

interatomic potentials. The results are compared with literature data when available [14, 18].

The potentials tested: SW [33], T89 [76], MOD1 [77] and MOD2 [34].

Σ5(310)[001] tilt Σ5(210)[001] tilt Σ101(10 1 0) twist

500 K 1000 K 500 K 1000 K 500 K 1000 K

MOD1 1.25 1.92 1.54 2.10 1.58 2.03

MOD2 1.36 1.97 1.94 2.47 1.65 2.03

SW 1.21, 0.9a 1.80 1.38 1.94 1.53, 1.63± 0.2b 1.92, 1.95b

T89 1.41 2.03 1.71 2.14 1.66 2.43

a Ref. [18].
b Ref. [14].
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Figure 1: (a) Typical temperature profile for the (210) GB with the mean temperature of 500 K.

The hot and cold thermostats are located at y = 0 and y = ±50 nm, respectively. GB-1 and GB-2

are two GBs existing in the simulation block due to periodic boundary conditions. (b) Zoom into

the encircled region showing the procedure for computing the temperature jump ∆T . The black

line is the fit by Eq.(4). The blue lines are the linear portions of the fitted function given by

Eqs.(6) and (7).
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Figure 2: The HCACF computed for c-Si using four interatomic potentials at 500 K (a) and 1000

K (b), for l-Si at 2000 K (c) and for a-Si at 300 K (d). Note the difference in the time scales

between (a),(b) and (c),(d). The potentials tested: SW [33], T89 [76], MOD1 [77] and MOD2 [34].
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Figure 3: Thermal conductivity computed using the GK method with the T89 potential [76]

plotted as a function of the upper integration limit τ . The solid line is a fit with the function

κ(τ) = κ∞ tanh(τ − τ0) discussed in the text. The dashed blue line indicates the converged value.
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(a)

(b)

Figure 4: Groups of atoms selected for the calculation of local vibrational DOS of crystalline lattice

(green) and GB atoms (red) in the (a) (210) GB and (b) (650) GB. The GB plane is horizontal

and the tilt axis is normal to the page.
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Figure 5: GB energy γ as a function of tilt angle θ. The inlayed figures represent typical GB

structures with fundamental structural units A, B and C shown on the right. The structures are

projected along the [001] tilt axis normal to the page. The blue atoms have a diamond-like local

environment whereas the orange atoms have local environments deviated from diamond. The

square symbols represent the GBs used for the systematic study of Kapitza conductance at the

fixed temperature of 750 K. The green circles represent GBs selected for a less systematic study

at different temperatures. The color of the squares reflects the different structural categories

discussed in the text. The solid red and blue lines were obtained by Read-Shockley fits [114]. The

dashed black lines serve as a guide for the eye.
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Figure 6: Energy of selected GBs as a function of the number λ of atoms removed from the GB

(fraction of atomic plane). (a) Tilt angle θ ≤ 43.6◦, (b) Tilt angle θ ≥ 53.1◦. The lines are drawn

to guide the eye.
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Figure 7: Atomic structure of the (650) GB at different temperatures. The atoms with diamond-

like local environment are shown in blue, while atoms with distorted environments are shown in

orange. Note the high level of disordering in the dislocation cores forming the boundary at the

highest temperature (1600 K).
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Figure 8: The GB order parameter as a function of temperature. (a) (310) and (210) GBs show

a linear decrease in the order parameter due to atomic vibrations. (b) GBs show an accelerated

decrease of order at high temperatures approaching the melting point (1687 K) caused by pre-

melting. The order parameters in c-Si and l-Si (at 1690 K) are shown for comparison.
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Figure 9: (a) Temperature profiles for low-angle (relative to 90◦) GBs at 750 K. The profiles were

fitted by Eq.(4) and shifted to zero by subtracting the average temperature of the simulation block.

(b) Kapitza conductance of all GBs studied in this work as a function of GB energy at 750 K. Note

that the results naturally break into three groups as discussed in the text. The lines represent

linear fits intended to highlight the trends. The inlays show the plots of the GB conductance σK

versus the tilt angle.
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Figure 10: Thermal width w (a) and GB conductivity κK (b) as functions GB energy at 750 K.

The lines are drawn to highlight the trends. The inlays show the plots of w and κK versus the tilt

angle.
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Figure 11: GB conductance of Si GBs at 750 K plotted against the GB excess volume per unit

GB area. The color of the points represents the structural groups as in Figures 9 and 10.
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Figure 12: The thermal conductance of GBs plotted as a function of temperature. (a) GBs

remaining ordered up to the melting point. (b) GBs undergoing structural disordering at high

temperatures. The lines are included as a guide to the eye.
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Figure 13: Temperature dependence of thermal conductivity of c-Si (computed by two methods),

a-Si, and two representative GBs. The line is a 1/T fit of the c-Si data.
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Figure 14: Vibrational density of states for diamond silicon at several temperatures.
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Figure 15: Atomic vibrational spectra of (210) and (650) GBs in Si in comparison with DOS in

c-Si, l-Si and a-Si at (a) 300 K and (b) 1600 K.
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Figure 16: (a) Selected atomic sites (shown in green and labeled A through F) in the (210) GB

at 300 K. The sites are ranked according to the distance from the GB center and their energy is

plotted as a function of this distance. The lines are drawn to highlight the trends. Panels (b), (c)

and (d) show the vibrational density of states of the selected GB sites in the x, y and z directions,

respectively. The projection on the DOS-frequency plane shows the overall DOS of the GB core

in the respective direction in comparison with that of diamond cubic (DC) Si.
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Figure 17: (a) Selected atomic sites (shown in green and labeled A through F) in the (650) GB

at 300 K. The sites are ranked according to the distance from the GB center and their energy is

plotted as a function of this distance. The lines are drawn to highlight the trends. Panels (b), (c)

and (d) show the vibrational density of states of the selected GB sites in the x, y and z directions,

respectively. The projection on the DOS-frequency plane shows the overall DOS of the GB core

in the respective direction in comparison with that of diamond cubic (DC) Si.


