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Chiral magnets are of fundamental interest and have important technological ramifications. The
origin of chiral magnets lies in the Dzyaloshinskii-Moriya interaction (DMI), an interaction whose
experimental and theoretical determination is laborious. We derive an expression that identifies the
electric dipole moment as descriptor for the systematic design of chiral magnetic multilayers. Using
density functional theory calculations, we determine the DMI of (111)-oriented metallic ferromag-
netic Z/Co/Pt multilayers. The non-magnetic layer Z determines the DMI at the Co-Pt interface.
The results validate the electric and magnetic dipole moments as excellent descriptors.

I. INTRODUCTION

The Dzyaloshinskii-Moriya interaction (DMI) [1, 2] is
the origin of chiral magnetism, a modern and active
field of magnetism today. It is responsible for novel
static and dynamical magnetic properties. In particular
it drives the formation of chiral domain walls [3–5] and
skyrmions [6–13], which hold promise for applications in
future information storage, data processing and neuro-
morphic devices. It generally promotes the stabilization
of chiral non-collinear spin-textures.

A particularly important material class for applica-
tions are metallic films and multilayers of magnetic
and heavy transition metals [14–26], as they are com-
patible with current manufacturing processes in spin-
tronic devices. A particular example are the experimen-
tally vividly pursued (111) oriented Co/Pt-based mate-
rials [27–35]. The huge combinatorics of different multi-
layers arising from the chemical composition, layer thick-
nesses, stacking sequences or growth conditions, to name
a few, enables a detailed tuning of magnetic parameters,
such as the DMI, which allows a flexible design of multi-
layers with very specific properties.

Qualitative insights into the formation of the DMI have
been already gained by Moriya [2], or recently on the
level of a tight-binding model [36], but a simple model
to predict the interfacial DMI quantitatively is currently
unknown. Instead, the community relies either on exper-
iments or ab initio calculations to determine the DMI of
a specific system. In both approaches, the procedure is
rather involved and time-consuming, e.g., Brillouin light
scattering measurements need good statistics, or com-
puting time intensive ab initio calculations of typically
rather large length-scale non-collinear magnetic struc-
tures need to be performed. In light of these restric-
tions, a systematic investigation of the large combinato-
rial space of multilayers is currently unthinkable.

The quest is open for simple descriptors which are
faster to measure or calculate, but yet allow a reliable
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estimation of the DMI. Their application would allow for
a high-throughput screening of materials and narrow the
search-space considerably. Some quantities have already
been proposed as descriptors for DMI, mostly focusing
on the magnetic layer: Belabbes et al. [37] report on
a correlation between DMI and the spin magnetic mo-
ments of 3d atoms in 3d ultrathin films on 5d substrates.
Kim et al. [33] conclude on a correlation between DMI
and many other magnetic properties from temperature-
dependent studies on the same material, e.g., emphasiz-
ing on the anisotropy of the orbital magnetic moment and
the magnetic dipole moment of the ferromagnetic metal
in experiment. Modifying the interface dipole or Rashba
fields through charge transfer by oxidization of the mag-
netic layer was proposed as a way alter the DMI [38, 39].
Shifting the focus to the heavy-metal substrate, Ryu and
coworkers [5, 40] argue that the DMI is closely tied to
the induced magnetic moment at the 5d atom, whereas
other studies report that such a direct relation could not
be confirmed [28, 41–43]. Experimental observation of
the correlation between DMI and work function of non-
magnetic layers in metallic magnetic trilayers is reported
by Park et al. [44].

In this Letter, we explore possible descriptors, in par-
ticular the local electric and intra-atomic magnetic dipole
moment. By an analytic derivation in perturbation the-
ory, we identify a link in leading order between the DMI
and the electric dipole moment in the sense that both
quantities emerge from the same electronic states. We
confirm our finding by first-principles calculations based
on density-functional theory (DFT) on (111) oriented
magnetic multilayers (MMLs) composed of Z/Co/Pt,
where the layer Z is one of the 4d transition metals (Y–
Pd), the noble metals (Cu, Ag and Au), or one of the
post-transition metals Zn and Cd. This is a suitable
test-set, because, as we show below, the DMI is modi-
fied drastically as function of Z to positive and negative
values. We find the largest correlation between the DMI
and the electric dipole moment of either Co or Pt, and
the sign is predicted correctly in twelve out of 13 differ-
ent MMLs. To a lesser degree a correlation between the
DMI and the (induced) magnetic dipole moment on Pt
is found. We do not find a correlation between induced
spin- or orbital moments at Pt.



2

II. THEORETICAL RELATIONS BETWEEN
DMI AND DIPOLE MOMENTS

The micromagnetic energy functional describing the
DMI for (111)-oriented MMLs in terms of a continuous
magnetization field m(r) is given as

EDM[m] =

∫
d2r Ds [m(∇ ·m)− (m · ∇)m]z , (1)

and is usually termed interfacial DMI with an interface
DMI constant Ds.

1 The latter relates to the change of
spin-orbit energy upon twisting of the magnetization. It
can be determined from a microscopic model, e.g., a DFT
model, by the q-linear part of the energy change if a spi-
raling magnetic texture of wave-vector q||x̂ and rotation
axis êrot = ŷ is imposed [ẑ is the out-of-plane direction,
see Fig. 1(b)], [45]

Ds =
1

Ω

∂EDFT
DM (q x̂, ŷ)

∂q

∣∣∣∣
q=0

, (2)

with Ω the interface area per unit cell normal to MML.
We treat non-collinearity and spin-orbit coupling in per-
turbation theory and arrive at (Appendix A)

Ds =
1

Ω

occ.∑
kν

all∑
ν′

〈
ψ0
kν

∣∣Hso

∣∣ψ0
kν′

〉 〈
ψ0
kν′

∣∣ Tyx ∣∣ψ0
kν

〉
ε0kν − ε0kν′

+c.c.,

(3)
where ε0kν and ψ0

kν are the (unperturbed) band energy
and wavefunction, respectively, of state ν at crystal mo-
mentum k of the ferromagnetic state, Hso is the spin-
orbit Hamiltonian, T = −σ×B0

xc is the torque operator
and Bxc is the exchange field 2. The summations are
performed over occupied states (occ.) as well as occu-
pied and unoccupied (all) states.

The nominator is a product of spin-orbit and spin-
torque-moment matrix elements, respectively. They are
non-vanishing only if certain relations between the states∣∣ψ0

kν

〉
and

∣∣ψ0
kν′

〉
are fulfilled (selection rules), that we

discuss next. In what follows, we separate the spatial and
spin-parts, |ψν 〉 = |ϕn 〉⊗ |σ 〉, and drop the crystal mo-
mentum k and superscript “0” to simplify the notation.
ν = (n, σ) is a multi-index containing the band index n
and spin index σ.

For the nominator holds: (i) The spin-torque-moment
contains the Pauli-matrix σx which selects spin-flip con-
tributions, i.e. the two states must be of different spin-
character. An example that satisfies this condition is

1 The subscript s, derived from surface, denotes the interfacial
DMI constant. Typical values for Ds are in the order of a few
pJ/m for metallic interfaces, and a conversion to a DMI acting
on a volume of magnetic material reads D = Ds/t, where t is the
thickness of the magnetic volume.

2 A similar equation has been derived by Freimuth et al. [46],
where SOC was not treated in perturbation theory but entered
through the wave-functions.

TABLE I. Possible combinations of states |ϕ1 〉 and |ϕ2 〉 that
yield a finite contribution to the DMI, Eq. (3) and text for
details. We denote the states that also contribute to a finite
electric dipole moment, pelz , by an asterisk.

|ϕ1 〉 |ϕ2 〉
α | s 〉 + β | pz 〉 (*) | px 〉
α | py 〉 + β | dyz 〉 (*) | dxy 〉
α | pz 〉 + β | dz2 〉 (*) | px 〉 or | dxz 〉
α | pz 〉 + β

∣∣ dx2−y2

〉
| px 〉 or | dxz 〉

α | px 〉 + β | dxz 〉 (*) | pz 〉 or
∣∣ dx2−y2

〉
or | dz2 〉

|ψν 〉 = |ϕ1 〉 ⊗ | ↑ 〉 and |ψν′ 〉 = |ϕ2 〉 ⊗ | ↓ 〉. As-
suming in addition that the exchange field is con-
stant in space, the nominator in Eq. (3) simplifies to
Bxc 〈ϕ1|H↑↓so |ϕ2〉 〈ϕ2|x |ϕ1〉. (ii) The spin-flip part of
spin-orbit coupling, H↑↓so , selects transitions between
states where the angular momentum index does not
change, |` − `′| = 0. (iii) The x operator selects tran-
sitions where the angular momentum index changes by
one, |` − `′| = 1. The latter two conditions are mu-
tually excluding, and an overall non-vanishing DMI is
only possible if at least one of the states is a mixed state
of two orbital characters, say |ϕ1 〉 = α | s 〉 + β | pz 〉
and |ϕ2 〉 = | px 〉, so that above nominator turns into
αβ∗Bxc 〈pz|H↑↓so |px〉 〈px|x |s〉 6= 0.

In the next step, we analyze all possible combinations
of |ϕ1 〉 and |ϕ2 〉 assuming a basis of s, p, and d orbitals,
which contribute to the DMI, exploiting one basic sym-
metry operation of (111) oriented multilayers with C3v

symmetry, namely a mirror plane that we choose per-
pendicular to x. As a consequence, the wavefunctions of
the system are either even (+) or odd (−) under this sym-
metry operation, ψ(−x, y, z) = ±ψ(x, y, z). Accordingly
we classify the atomic orbitals to be either of even (s,
py, pz, dz2 , dyz, dx2−y2) or odd (px, dxz, dxy) symmetry,
and hence only superpositions among even or odd states,
respectively, are allowed candidates for |ϕ1 〉. In Table I
all possible transitions that yield a finite contribution to
the DMI are summarized.

It is interesting to note that if we additionally had a
mirror plane perpendicular to z present in the system, all
superpositions for |ϕ1 〉 in Table I would be prohibited by
symmetry and the DMI would vanish. This corresponds
to Moriya’s symmetry rules [2].

Our analysis shows that hybridization is the key to
obtaining a finite DMI. Eq. (3) represents an important
result and provides physical insights into the mechanism
of formation of DMI. For example, the appearance of the
position operator calls for a relation to the electric dipole
moment

pel = −e
∑
kν

〈ψkν | r |ψkν〉 =

∫
ΩMT

ρ(r) r dr , (4)

of which only the out-of-plane direction does not vanish
due to the symmetry of the system. e is the (positive)
elementary charge, ρ(r) is the electron charge density,
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the integration is performed over the volume of a sphere,
typically the muffin-tin (MT) sphere ΩMT, around the
considered atom and the real-space vector r is measured
with respect to the center of this sphere. Similarly to the
arguments presented above, the states ψν that contribute
must be a superposition of two states with ∆` = 1. Eval-
uation of these matrix elements reveals that four of the
five possible superpositions ϕ1 from Table I constitute
the finite pel

z . If we were able to change the superposi-
tions ϕ1 continuously by some external means, both, the
DMI and pel

z scale similarly, e.g., in leading order with
αβ∗.

Expressing the spin-torque-operator in (3) beyond the
constant exchange-correlation field approximation by in-
cluding in addition the spherically symmetric contribu-
tion around the atoms, Bxc(r), we obtain qualitatively
the same result as presented above (Appendix B).

III. COMPUTATIONAL DETAILS AND
METHOD

The experimental bulk lattice constant of Pt (392 pm)
corresponding to an (111) in-plane lattice constant of a =
277 pm was chosen and structural optimizations of all
interlayer distances were performed in scalar-relativistic
approximation using a mixed LDA/GGA spin-density-
functional [47] (LDA and GGA stand for local density
approximation and generalized gradient approximation,
respectively). Subsequent calculations of the electronic
and magnetic properties employed the LDA [48]. We con-
verged the charge- and spin-density in scalar-relativistic
approximation, sampling the full Brillouin zone (BZ) by
(24 × 24 × 10) k-points if not stated otherwise. For the
extraction of the DMI, we first performed self-consistent
calculations of homogeneous spin-spirals with a wave-
vector q along the Γ–M high-symmetry line of the BZ
and |q| ≤ 0.1 × 2π/a. The DMI was determined by in-
cluding SOC in first-order perturbation theory on top
of a scalar-relativistic spin-spiral calculation [49] using
(48 × 48 × 20) k-points (see Refs. [26, 43] for details).
The calculation of the magnetic dipole moment was per-
formed on a (35×35×18) k-point set which included the
Γ point, and SOC was either neglected or included in the
self-consistent calculations with collinear magnetization
along ẑ. In all calculations, the 4s and 4p states of Y, as
well as the 4p states of Zr, Nb and Mo were represented
by extending the conventional LAPW basis set with local
orbitals [50, 51].

IV. RESULTS

A. Correlation to electric dipoles

In order to test our derivation of the correlation
between pz and Ds on a realistic test-set, we per-
form density-functional theory (DFT) calculations us-

-a
x
is

FIG. 1. Properties of magnetic multilayers Z/Co/Pt for var-
ious chemical elements Z. (a) The total DMI, and broken
down into spin-orbit contributions of the different layers. (b)
Sketch of the MMLs. (c-e) Electric dipole moment pelz and
(f-h) magnetic dipole moment Tz against Z and the DMI. Tz

of Pt has been multiplied by a factor 10 for better visibility.
Lines in (a), (c) and (f) are guides to the eye. Solid lines in
(d,e,g,h) indicate least-squares fits, and the Pearson correla-
tion coefficient is displayed in the panels. Data where the sign
between DMI and the pelz , Tz is wrong is indicated by open
symbols.

ing the full-potential linearized augmented plane wave
(FLAPW) method, as implemented in the FLEUR
code [52]. The unit cell of our magnetic multilayer con-
sists of three monolayers, namely Co sandwiched between
Pt and Z [see Fig. 1(b)], where Z is a 4d transition metal
(Y–Pd), a noble metal (Cu, Ag and Au), or one of the
post-transition metals Zn or Cd. We assume a fcc stack-
ing of the layers and a ferromagnetic order of all Co mo-
ments for a better comparability of our results, although
also a synthetic antiferromagnetic coupling between ad-
jacent Co layers might be energetically favorable for some
of the here studied multilayers. See Sec. III for compu-
tational details.

From the analysis of the DMI as computed from ab
initio, we deduce a strong dependence of the magnitude
and even the sign of the total DMI on the chemical el-
ement of the third atomic layer, Z [see Fig. 1(a)]. In
particular, within the 4d series, the modification of the
DMI becomes evident: we obtain small negative values
when Z is an early transition metal (Ds = −1.11 pJ/m
for Z = Zr), followed by a rather continuous change to-
wards positive and large values when the d shell gets
filled (Ds = 3.93 pJ/m for Cd). We break up the total
DMI, Ds, of the system into contributions from the three
atomic layers, denoted as DZ

s , DCo
s , and DPt

s for Z, Co,
and Pt, respectively, by switching spin-orbit coupling on
only in a single layer at a time. Within first-order per-
turbation theory in spin-orbit coupling (SOC), that we
apply here, this decomposition is exact. The DMI origi-
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nating from SOC of the Pt layer constitutes the dominant
contribution [cf. Fig. 1(a)] due to its large atomic num-
ber. Remarkably, this contribution changes drastically
as the chemical type of the third layer is varied and, in
effect, determines the overall trend of the DMI of the
entire stack. This is surprising because it is commonly
believed that the DMI at the Co/Pt interface can merely
be changed by external means, e.g., by controlling the
interface quality [53, 54]. In contrast, the Co layer and
third layer Z only contribute little to the DMI. Au/Co/Pt
represents an exception, because Au gives a rather large
contribution (−1.90 pJ/m), but of opposite sign as com-
pared to Pt (3.34 pJ/m), hence reducing the total DMI
by more than a factor 2.

Overall, our results cannot be explained by a linear ad-
ditive superposition of a constant DMI from the Pt/Co
interface and a varying DMI from the Co/Z interface, as
most of the changes are originating from the former. It
is not surprising that the separation into two individual
interfaces breaks down for individual layers that are very
thin, i.e. one atomic layer in the present case. Interest-
ingly, the DMI from Pt can be even enhanced (e.g., by
approx. 40% in Pt/Co/Cd) as compared to the DMI of
a single Co/Pt interface (Ds ≈ 2.8 pJ/m [46]).

Next we investigate how this drastic change of the DMI
between Co and Pt correlates with our predicted descrip-
tor, the electric dipole moment. In Fig. 1(c), we present
the ab initio computed local electric dipole moments in
the spheres of Co and Pt, see (4). They are nearly of the
same magnitude and opposite sign and exhibit charac-
teristic sign-changes around Y and Rh, similarly to the
DMI. Indeed, as Figs. 1(d,e) show, there exists a linear
relationship between the DMI and pel

z of Co and Pt, re-
spectively. The overall correlation between the DMI and
pel
z is very large, as expressed by the Pearson’s coefficient
|R| = 0.89 and 0.88, respectively [see Figs. 1(d,e)]. Also
the sign of the DMI correlates with the sign of pel

z in all
cases except one (Y/Co/Pt). By means of a least-squares
fit we find

DPt
s ≈

(
−0.53

J

e m2

)
pel
z (Pt) + 0.96

pJ

m
(5)

≈
(

0.67
J

e m2

)
pel
z (Co) + 1.6

pJ

m
, (6)

where the electric dipole moment is given in units of e·m.

B. Relation to magnetic dipoles

Returning to our analysis of (3) and considering a non-
spherical contribution to Bxc(r) yields a correction term
for the spin-torque moment of the form δTyx ∼ Qzxσx
(Appendix B) and can be identified as a contribution to
the magnetic dipole moment [55],

T =
h̄

2

∑
kν

〈ψkν |Q · σ |ψkν〉 , (7)

that should thus contribute to the DMI. Here, Qij =
δij−3r̂ir̂j , i, j ∈ {x, y, z}, are the components of the (di-

mensionless) quadrupole tensor and σ = (σx, σy, σz)
T

is
the vector of Pauli matrices. The magnetic dipole T re-
flects the asphericity of the magnetization density in the
muffin-tin sphere around an atom, and has two contribu-
tions: one is induced by the crystal field and the other by
SOC [56]. Our correction term Qzxσx is related to the
latter.

We computed Tz for all multilayers with and without
SOC and find that the SOC induced changes in Tz are
of the order of 0.001 h̄, which is 1–2 orders of magnitude
smaller than the crystal field part, even for Pt. More-
over, we do not find a strong correlation to the DMI,
which renders the correction described above unimpor-
tant. Interestingly, we find a sizable correlation between
the crystal-field induced Tz and the DMI [|R| = 0.77 and
0.73 for Pt and Co, respectively; see Figs. 1(f-h)], with
the caveat that Tz of Co is not able to predict the sign
of the DMI with high fidelity: There is an offset in the
data, which is related to the fact that a free-standing Co
monolayer exhibits a finite Tz [57] due to the strong as-
phericity in the crystal field (i.e. x and z directions are
inequivalent), but the DMI vanishes due to the presence
of structure inversion symmetry (+z and −z directions
are equivalent). Instead, we find a better correlation with
Tz of Pt, which is an induced magnetic dipole moment
and the structure-inversion asymmetry is implicitly im-
printed in its existence in this case. However, this sizable
correlation between the crystal-field part of Tz and the
DMI cannot be explained by Eq. (3), and it might be
necessary to develop a non-local theory or, since the po-
sition operator r is not a proper operator in the Hilbert
space of periodic solids, turn to the corresponding Berry-
phase expressions [46], which is beyond the scope of this
Letter.

C. Relation to magnetic moments

To shed light on the controversial debate on the rela-
tionship between the induced spin moment of Pt and the
DMI, we investigate the magnetic spin and orbital mo-
ments of Pt. All moments are positive, meaning they are
parallel to the Co moments, and proportional to each

other with m
‖
`/ms = 0.14 and m⊥` /ms = 0.22, where

the magnetization lies in-plane or along the out-of-plane
direction, respectively (see Fig. 2). The correlation coef-
ficient (R = 0.74) between DMI and ms is rather high,
but we cannot deduce a causal relationship between these
two quantities. Our reasoning is underpinned by the fact
that the sign of the DMI cannot be correctly reproduced
by the magnetic moments in five out of 13 cases. Our
results also highlight that neither the orbital moments,
nor an anisotropy of the orbital moments is correlated
to the DMI. In addition, we also do not find a sizable
correlation between DMI and the electronic charge of Co
or Pt.
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DMI from Pt (pJ/m)
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FIG. 2. (a) Induced Pt spin-moments (ms), orbital moments

for in-plane (m
‖
` ) and out-of-plane (m⊥` ) magnetization di-

rections in Z/Co/Pt MMLs. (b) Induced Pt spin moments
against DMI with least-squares fit and Pearson’s correlation
coefficient R. A wrong sign between DMI and ms is indicated
by open symbols.

V. DISCUSSION AND CONCLUSION

An experimental investigation of DMI in metallic mag-
netic trilayers of X/Co/Pt(111) is reported by Park et al.
[44]. We compare the systems that have a ferromagnetic
ground state in our and their work: the total DMI is
1.42 (2.56) pJ/m, 0.44 (1.68) pJ/m, 0.26 (1.21) pJ/m for
Cu/Co/Pt, Pd/Co/Pt, and Au/Co/Pt, respectively, in
Ref. [44] (in this work). First, we find that the signs of
DMI in our theoretical results are the same as in exper-
iment. Second, the relative values are also consistent in
the two papers (DCu > DPd > DAu). The overall mag-
nitude is, however, up to a factor 5 higher in our work
as compared to experiment. One reason might be that
we focused on atomically sharp trilayers while in exper-
imentally produced multilayers the vertical texture will
certainly differ: slight intermixing effects at the interfaces
[54] and thicker layers of the individual chemical species
are met in these samples. Our values do not seem unrea-
sonably high if compared to the DMI of a single Co/Pt
interface (Ds = 1.7 pJ/m) [58]. Another reason is that
the non-magnetic spacer layer has hybridizations with
both Co and Pt layers in our work, but only influences
on Co layer in Ref. [44]. Our work points out a few im-
portant guidelines to realize the maximal impact on the
DMI:

- The layers adjacent to the heavy element (in our
case: Pt) should have a large difference in elec-
tronegativity to maximize the dipole pel

z at this el-
ement.

- The heavy (Pt) layer should be thin with sharp
interfaces in particular to the magnetic (Co) layer;
the second non-magnetic element might consist of
several atomic layers.

For the external manipulation of the dipole with an elec-
tric field our findings suggest that the field should act
mainly on the heavy atomic species. However, due to
the screening of the field by the conducting electrons,
it is usually limited for the external manipulation of the

dipole with an electric field. On the other hand, there are
experiments carried out with trilayers where one layer is
a simple oxide that acts as electrode, e.g., Au/Fe/MgO
[59]. A change of DMI could be detected upon appli-
cation of an electric field. Our findings suggest that an
optimal control could be achieved by reverting the po-
sition of Au and Fe, i.e. Fe/Au/MgO, to maximize the
field acting on the Au rather than the Fe.

In conclusion, we derived an analytic expression for the
Dzyaloshinskii-Moriya interaction (DMI) based on per-
turbation theory from the ferromagnetic state and pos-
tulated a relation to the electric dipole moment. Sub-
sequent ab initio calculations on magnetic multilayers
of the type Z/Co/Pt indeed showed that the interfa-
cial DMI, which takes values between −1 and 4 pJ/m,
strongly correlates to the electric dipole moment pel

z .
Since the electric dipole can be calculated rather quickly,
we propose the evaluation of this quantity for a screening
of chiral multilayer systems. In contrast, the intra-atomic
magnetic dipole moment Tz and induced spin-moments
correlate less and are, in the latter case, not able to pre-
dict the sign-change of DMI within the 4d series of Z.
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Appendix A: DMI in perturbation theory

Our aim is to derive (3) from the main text starting
with the well-established relation between the interface
DMI constant, Ds, and the change of the total energy
EDFT

DM [45], (2) from the main text, which we repeat here
for convenience:

Ds =
1

Ω

∂EDFT
DM (q x̂, ŷ)

∂q

∣∣∣∣
q=0

. (A1)

The latter is the SOC contribution to the total energy
relative to the collinear (ferromagnetic) state for a spin-
spiral state of a general wavevector q and rotation axis
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êrot, which is given in first-order perturbation theory as

EDM(q, êrot) =

occ.∑
k,ν

〈ψkν(q)|Hso |ψkν(q)〉 , (A2)

where ψkν is the unperturbed wavefunction of state ν
at crystal momentum k, Hso is the spin-orbit Hamil-
tonian, and the summation is performed over occupied
states. Since we are interested in the energy difference
due to the infinitesimal deviation of the magnetization
from the collinear state by introducing a long-wavelength
spin-spiral, we express the wavefunctions ψkν(q) of the
non-collinear state in terms of the ferromagnetic state
ψ0
kν in first-order perturbation theory,

ψkν(q, r) = ψ0
kν(r) + (A3)∑

k′ν′(6=kν)

〈
ψ0
k′ν′

∣∣Oxc(q)
∣∣ψ0

kν

〉
ε0kν − ε0k′ν′

ψ0
k′ν′(r)

where

Oxc(q) = σ ·
(
Bxc(q, r)−B0

xc

)
(A4)

denotes the change of the magnetic exchange-correlation
field relative to the ferromagnetic state magnetized along
direction ê0. Oxc is parallel to the local magnetization,
and we assume that it rotates continuously in real-space
and is of constant magnitude,

Bxc = BxcRẑ→êrot

x̂→ê0

cos(q · r)
sin(q · r)

0

 , (A5)

where R is a rotation matrix that turns the local z-axis
to êrot and the local x-axis to the direction of the fer-
romagnetic state, ê0. For our geometry as specified in
(2), we have two choices for ê0 (along z or x axis, in the
following called gauge I and gauge II, respectively) and
obtain

O(I)
xc (q)=Bxc[ sin(q x)σx + (cos(q x)− 1) σz] ,(A6)

O(II)
xc (q)=Bxc[− sin(q x)σz + (cos(q x)− 1) σx] .(A7)

The wave-vector derivative in (2) leads to a derivative of
the expectation value in (A2)

∂

∂q
〈ψkν |Hso |ψkν〉 =

〈
∂ψkν

∂q
|Hso|ψkν

〉
+ c.c. (A8)

and the wave function, respectively, which is evaluated
using (A3)

∂ψkν(q, r)

∂q
=

∑
k′ν′(6=kν)

〈
ψ0
k′ν′

∣∣ ∂Oxc/∂q
∣∣ψ0

kν

〉
ε0kν − ε0k′ν′

ψ0
k′ν′(r)

(A9)

with

∂O(I)
xc

∂q

∣∣∣∣∣
q=0

= Bxc σx x and
∂O(II)

xc

∂q

∣∣∣∣∣
q=0

= −Bxc σz x ,

(A10)
employing (A6, A7). For an arbitrary direction of ê0,
(A10) can be written in terms of the torque operator
T = −σ ×B0

xc,

∂Oxc

∂q

∣∣∣∣
q=0

= Ty x, (A11)

which has been termed DMI-operator in Ref. [60]. In-
serting everything leads to

Ds =
1

Ω

occ.∑
kν

all∑
ν′

〈
ψ0
kν

∣∣Hso

∣∣ψ0
kν′

〉 〈
ψ0
kν′

∣∣Bxc σx x
∣∣ψ0

kν

〉
ε0kν − ε0kν′

+ c.c., (A12)

where we restricted the analysis to gauge I. The states
ν′ run over occupied and unoccupied states. The sum
over k′ drops out due to

〈
ψ0
kν

∣∣Hso

∣∣ψ0
k′ν′

〉
∝ δk,k′ [49].

The nominator is a product of spin-orbit and spin-torque-
moment matrix elements and thus it is interpreted that
spin-orbit matrix elements are weighted by the spin-
torque strength. Let us recall that the states ψ0 are
eigenstates of the ferromagnet without SOC, hence they
are of pure spin-character and eigenstates of σz. The
Pauli-matrix σx in the second bra-ket selects states ν′

that have a different spin-character as compared to state
ν, i.e. it selects spin-flip contributions.

To analyze (A12) further, we brake up the state index
ν = (n, σ) into a band index n and spin-index σ ∈ {↑
, ↓} and express the wave function ψ0 in terms of spinor
components:

ψ0
kn↑ =

(
ψ̊↑kn

0

)
, ψ0

kn↓ =

(
0

ψ̊↓kn

)
(A13)

Assuming that Bxc is approximately constant across the
unit cell of the system, (A12) is transformed to

Ds =
Bxc

Ω

occ.∑
knσ

all∑
n′

〈
ψ̊σkn

∣∣∣Hσσ′

so

∣∣∣ψ̊σ′

kn′

〉〈
ψ̊σ

′

kn′

∣∣∣x ∣∣∣ψ̊σkn〉
ε0knσ − ε0kn′σ′

+ c.c., (with σ′ 6= σ), (A14)

which establishes a connection between the interfacial
DMI constant and the transition dipole moment on the
right-hand side.

We quickly discuss gauge II: In this case, the second
bra-ket in Eq. (A12) reads

〈
ψ0
kν′

∣∣σz x
∣∣ψ0

kν

〉
and now

spin-conserving terms seem to play a role. However,
now the ferromagnetic state is aligned along x and cor-
responding ψ0

kν are eigenstates of σx, so that σz actually
represents the spin-flip contributions with respect to the
eigenstates of σx in gauge II. Overall, we see that in both
gauges, the second bra-ket selects spin-flip contributions
with respect to the unperturbed eigenstates, and we may
restrict the following analysis to gauge I.
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Appendix B: Approximations to the spin-torque
moment and relation between DMI and Tz

In advancing from (3) in the Sec. II [and from (A12)
to (A14) in Appendix A], we made the approximation of
a uniform exchange-correlation field, Bxc, across the unit
cell. In the following we lift this model assumption. The
second bra-ket of (3) and (A12),

〈
ψ0
kν′

∣∣ Tyx ∣∣ψ0
kν

〉
, turns

into〈
ψ0
kν′

∣∣Bxc(r)σx x
∣∣ψ0

kν

〉
−→ 〈ϕ2|Bxc(r) x |ϕ1〉 , (B1)

with wavefunctions ϕ1 and ϕ2 defined in the main text.
To evaluate these integrals we assume a tessellation of
the solid in terms of muffin-tin spheres around atoms in
which we expand the wavefunctions and the exchange
field in spherical harmonics, YL(r̂), of unit vector r̂ and
angular moment L = (`,m),

ϕ1(2)(r) =
∑
L

ϕ
(1(2))
L (r) YL(r̂) (B2)

Bxc(r) =
∑
L

Bxc
L (r) YL(r̂) . (B3)

The spherical harmonics are orthonormal, 〈YL|YL′〉 =
δLL′ .

We first assume Bxc(r) to be spherically symmetric,
i.e. only the term with L = 0 in (B3) remains. Substi-
tuting Bxc(r) in (B1) and separating radial and angular
integrals yields

〈ϕ2|Bxc
0 (r)x |ϕ1〉 =

1√
4π

∑
L1,L2

〈ϕ(2)
L2
|Bxc

0 r|ϕ(1)
L1
〉|R

×〈L2| x̂ |L1〉 (B4)

with

〈α| f |γ〉|R :=

∫
r2dr α∗(r) f(r) γ(r) (B5)

and x̂ = x/r. The angular part is of the same form as in
the main text and hence the same transitions (cf. Table 1
of the main text) constitute the finite DMI. For the radial
part we consider the example of the main text taking
the radial representation of the state |ϕ1 〉, 〈 r |ϕ1 〉 =
α(r) | s 〉+β(r) | pz 〉, and state |ϕ2 〉, 〈 r |ϕ2 〉 = γ(r) | px 〉,
with proper normalization

∫
r2dr (|α|2 + |β|2) = 1 and∫

r2dr |γ|2 = 1, which transforms the prefactor Bxc αβ
∗

from the main text into

−→ 〈β|Vso |γ〉|R 〈γ|B
xc
0 r |α〉|R (B6)

where the spin-orbit operator has been rewritten as
Hso = Vso(r) L · S.

Going beyond the spherical approximation, the next
non-spherical term to consider is of order ` = 1.
Due to the uniaxial symmetry of the MMLs the terms
m ± 1 vanish and the remaining contribution reads
B(1,0)(r)Y(1,0)(r̂) ∝ B(1,0)(r)ẑ, which yields for (B1)

〈ϕ2|Bxc
(1,0)(r)ẑx |ϕ1〉 = 〈γ|Bxc

(1,0) r |α〉|R 〈L2| ẑx̂ |L1〉
(B7)

The operator acting on the angular part is of angular
momentum ` = 2, i.e. ẑx̂ ∼ Y2,−1 − Y2,1. Hence, the
determination of possible transitions is governed by the
symmetry of the Gaunt coefficients Gm1±1m2

`1 2 `2
, and only

s−d, p−p and d−d-transitions remain (neglecting tran-
sitions to f states and beyond) with the additional selec-
tion rule m1 = m2 ± 1.

On the other hand, we analyze the magnetic dipole
moment,

Tz =
h̄

2

∑
kν

〈ψkν |Qzxσx +Qzyσy +Qzzσz |ψkν〉 (B8)

∝
∑
kν

〈ψkν | ẑx̂ σx + ẑŷ σy + (ẑ2 − 1

3
)σz |ψkν〉 (B9)

∝
∑
kν

〈ψkν |Yxzσx + Yyzσy +
2√
3
Yz2σz |ψkν〉,(B10)

where Yxz etc. denote real spherical harmonics in Carte-
sian coordinates. Interestingly, the first term in (B9) is
exactly the same operator as the one that appears in
(B1) if the non-spherical correction to the exchange field
is considered (Bxc(r) → Bxc

(1,0)ẑ). However, if the mag-

netic system assumes the ferromagnetic state, and the
SOC is neglected, the state |ψν 〉 is eigenstate of σz, the
Tz reduces to the third term in (B9) proportional to Qzz
and the spin-flip terms ∝ σx, σy, or Qxz and Qyz, respec-
tively, which are the terms that contribute to the DMI,
disappear. This underlines, it is the spin-orbit contri-
bution to the wave functions that activates the spin-flip
contributions which relate Tz and the DMI.

Appendix C: Calculation of pel and T

In the FLAPW method, the charge density ρ(r) and
vector-spin density s(r) within the muffin-tin (MT)
spheres around each atom are naturally available in terms
of spherical harmonics expansions as

ρ(r) =
∑
L

ρL(r)YL(r̂), (C1)

s(r) =
∑
L

sL(r)YL(r̂), (C2)

where r is the position vector relative to the atomic nu-
cleus. These quantities are the starting point for the
calculation of the electric dipole moment pel and of the
intraatomic magnetic dipole moment T which are de-
fined in equations (4) and (5). A more practical formula-
tion of (5) for a numerical evaluation within the FLAPW
method is based on the vector-spin density s(r) and reads

T =

∫
ΩMT

[s(r)− 3r̂(r̂ · s(r))] dr , (C3)

where r̂ = r/|r| is the normalized position vector [57].
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By expressing the unit vector in terms of spherical har-
monics as

r̂ =

√
2π

3

 Y1,−1(r̂)− Y1,1(r̂)
iY1,−1(r̂) + iY1,1(r̂)√

2Y1,0(r̂)

 =:

1∑
m=−1

gmY1,m(r̂)

(C4)
and making use of the spherical harmonics expan-
sion (C1) the electric dipole moment can now be written
as

pel =

∫
ΩMT

∑
`,m

1∑
m′=−1

ρ`,m(r) r gm′Y1,m′(r̂)Y`,m(r̂) d3r

=

1∑
m=−1

(−1)mgm

∫ RMT

0

ρ1,−m(r) r3 dr . (C5)

The latter simplification was achieved by angular inte-
gration over the spherical harmonics, yielding δ1,` δm,m′ ,

where ΩMT and RMT are volume and radius of the MT
sphere centered at the respective atom, respectively.

Similarly the intra-atomic magnetic dipole moment
can be written as

T =
√

4π

∫ RMT

0

(s0,0(r)− 3A0,0(r)) r2 dr (C6)

where A0,0(r) =
∑
`,m

∑1
m′=−1 gm′B`,m(r)G0mm′

0`1 ,

B`,m(r) =
∑
`′,m′

∑1
m′′=−1 gm′′s`′,m′(r)Gmm

′m′′

``′1 , and

Gmm
′m′′

``′`′′ are the Gaunt coefficients.
It should be noted that the l = 1 character of the unit

vector, together with the rules for non-vanishing Gaunt
coefficients and cancellations in the equations, leads to
very few (`,m) combinations in the expansion of the
charge and vector-spin densities that are relevant for the
calculation of pel and T. For pel only the ` = 1 compo-
nents of the charge density are relevant and for T only
the ` = 2 components of the vector-spin density.
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Phys. Rev. B 90, 115427 (2014).

[27] A. Soumyanarayanan, M. Raju, A. L. G. Oyarce, A. K. C.
Tan, M.-Y. Im, A. P. Petrovic, P. Ho, K. H. Khoo,
M. Tran, C. K. Gan, F. Ernult, and C. Panagopoulos,
Nat. Mater. 16, 898 (2017).

[28] H. Yang, A. Thiaville, S. Rohart, A. Fert, and
M. Chshiev, Phys. Rev. Lett. 115, 267210 (2015).

[29] J. L. Grab, A. E. Rugar, and D. C. Ralph, Phys. Rev.
B 97, 184424 (2018).

[30] M. Perini, S. Meyer, B. Dupé, S. von Malottki, A. Kubet-
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