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We revisited ab initio evaluations of the barrier energies along the possible diffusion paths of the defects in
rutile TiO2 by using diffusion Monte Carlo method. We found that Ti interstitials hopping along the c-axis
are identified as the major diffusion directing to (001) surface, contradicting any of the previous DFT studies.
Our finding reasonably explains recent experiments reporting that the photocatalytic activity in (001) surface
is superior to that in (110) surface: The faster Ti diffusion directing to (001) surface leads to the better self-
compensation ability and maintains its photocatalytic activity.

I. INTRODUCTION

TiO2 is a representative transition metal oxide with vari-
ous applications such as white paints, photovoltaic cells, and
rechargeable batteries. [1–5] Its photo-catalysis ability is es-
pecially useful for water splitting and anti-pollution/bacteria
coating. [6] During the photo-catalysis reaction, O ions are
easily detached from the surface, [7] and hence one may an-
ticipate the depression of the photo-catalysis ability. Yet in
reality, the surface gets O ions from the atmosphere, and the
photo-catalysis ability is maintained. [7]

One of the most useful properties is the reoxidization of ru-
tile surface state even in a vacuum keeping its stoichiometry.
The property is promising for such applications in space as a
coating over the solar panels of spaceships keeping its perfor-
mance of photo reactions.[8] The reoxidization in a vacuum
is explained to be caused by the possible ionic flows of Ti in-
terstitials (Tii) and/or Oxygen vacancies (VO) from within the
bulk toward the surface compensating the stoichiometry kept
unchanged. [7] However, a consensus on the diffusion process
of point defects has yet to be established and controversy re-
mains even for within a simple bulk structure. [9, 10]

Surveying over the controversy, the points to be clarified
here would be summarized into two simple questions: (a)
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which defect (Tii or VO) is the dominant, and (b) which diffu-
sion path is dominating. An experiment of the reoxidization
of the sputtered rutile TiO2 (110) surface annealed in ultrahigh
vacuum [11] reports a conclusion that Tii plays a major role in
the process. This is also supported from ab initio studies using
density functional theory (DFT), [9, 10] predicting lower en-
ergy barriers for Tii than VO diffused in any directions. Taking
Tii being superior to VO, the controversy exists on which path
gives faster diffusion, parallel (c‖) or perpendicular (c⊥) to the
c-direction [parallel to the Ti-chain in the crystal]. While two
old experiments [12, 13] report contradicting conclusions to
each other, both of the previous DFT works [9, 10] support c⊥
as the major diffusion process.

One of the major origin of the energy barrier required for
a defect to move beyond is the interaction between the sur-
rounding atoms. It is therefore sensitive to how the electronic
distribution of a defect spreads to contact with the neighbor-
ing atoms. Here we remind that such a spreading is poorly
estimated by the conventional type of DFT using LDA or
GGA type exchange-correlation (XC) functionals. In these
XCs, the cancellation of the self-interaction is incomplete,
leading to a spurious delocalization of the charge distribu-
tion. [14, 15] The shortcoming is known to be recovered to
some extent by using DFT+U methods [16, 17] mainly cur-
ing the self-interaction problem but also the description of
electronic correlations. [16, 17] The method is reported [17]
to achieve fairly well descriptions of the ground states in the
systems with transition metal elements, which have been re-
garded as a representative challenge for the electronic corre-
lations. The drawback for the method has been how to choose
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the adjustable parameters, U and J, by which the method is
known to be sensitive in its predictions. [17, 18] There have
been some advances on this matter by such approaches to de-
termine U by some variational scheme. [19] In the scheme,
however, J is practically fixed at zero while the choice of J

can seriously be affecting the prediction. [18] The remedy by
DFT+U would, therefore, be limited to some extent toward
the perfect descriptions of the problem.

We hence revisit the evaluation of the energy barriers
for defects diffusion applying diffusion Monte Carlo method
(DMC). [20] The method is based on the variational princi-
ples in which the delicate balance between the exchange and
correlation [21] can be handled satisfactorily without any ar-
bitrary modeling to be required. The method has success-
fully been applied to the present TiO2 system in previous
works. [4, 5, 22, 23] We confirmed that Tii is the dominant de-
fect to diffuse, contributing to the reoxidation process with an
energy barrier lower than that for VO, being consistent with
previous DFT works. [9, 10] A striking finding we made
is that the previous DFT prediction supporting c⊥ is reverted
into c‖ when the cancellation of the self-interaction is con-
sidered by using ’+U’ or DMC. The results support a better
reoxidation activity on (001) surface, consistent with experi-
ments [24, 25] reporting that the said surface has almost the
highest photocatalytic activity.

II. SYSTEM

The rutile structure of TiO2 is shown in Fig. 1. It consists
of Ti chains along the c-axis. Ti positions along the axis are
shifted by 1/2 period between the neighboring chains. Tii is
formed in the middle of Ti chains as shown in Fig. 1, [9] for
which two possible diffusion paths (c‖ and c⊥) are of inter-
est. [9] The hopping along c⊥ is described as the ’kick-out
mechanism’. [26] For VO, three paths, I-III in Fig. 1, are
considered. [9] We evaluated barrier energies along these five
paths for fully positively charged defects (Ti••••i , V••O ), as sum-
marized in Table I. Previous theoretical works [9, 27] predict
only the possibility of getting Ti×i ,Ti••••i ,V×O,V••O depending on
the Fermi level, where, for example, Ti••••i represents there are
+4 charges per Ti interstitial (less by 4 electrons per defect
than the neutral state) and V×O represents there are ±0 charges
per O vacancy. Experimentally, the charged defects are con-
firmed to be realized in surface, [28] and hence we took Ti••••i
and V••O as the defects to be investigated. The results by the
neutral defect, Ti×i , are also shown in Table I, which are re-
ferred only when we make further discussions. The descrip-
tions henceforth are therefore about the Ti••••i and V••O unless
noted otherwise.

III. CALCULATION DETAILS

We made a simulation cell by putting a point defect into
a 2×2×3 supercell of the ideal rutile TiO2 unit cell. We
optimized the crystal structures at the edge and the saddle

Ⅱ

ⅠⅢ

001[ ]
110[ ]

110 

!"#$%$&&'&"()"*+$,-.

!"/-*/+)0("1'*23

 
c
!

c
⊥

!b"

!a"

!c"

FIG. 1. Five possible paths for defect diffusions of Tii (blue and red
arrows) and VO (white arrows) in bulk rutile TiO2. The large blue
balls are Ti ions and the red small balls are oxygen ions. Ti atoms
are located along the c-axis ([001]-direction). In c⊥ diffusion (blue
arrow), a Tii kicks a Ti on the axis out to make another Tii in opposite
side (kick-out diffusion[26]), directing along [100] or [010] axis. The
diffusion along the path c‖ (red arrow) directs toward [001] surface
as shown by a hatched square.

points of the states along the diffusion paths using the PAW-
DFT method implemented on VASP.[29] The optimizations
are made to relax internal atomic positions within a cell under
the fixed lattice constants at experimental values.[30] The en-
ergy cutoff is 700 eV and the spacing of the k-mesh sampling
is denser than 0.50 Å−1. Atomic positions are relaxed until the
forces on any ions are suppressed less than 0.01 eV/Å. The
structures at the saddle states are determined by the climbing
nudged elastic band (c-NEB) method.[31] A diffusion path is
expressed with 5 or 15 intermediate states between the edge
states. Since one of the states must be converged to be the sad-
dle state in c-NEB, [31] the number of states does not affect
the barrier energy prediction but affect the convergence of the
relaxation.

We applied DMC to evaluate the energies at the edge and
saddle structures using QMCPACK. [32] We used Slater-
Jastrow type trial wave functions. [20, 33] Orbital functions
used in the Slater determinant are generated by LDA+U

method implemented in Quantum Espresso. [34] We used
a Hubbard correction value of U=4.86 eV from a previous
work, [22] giving the best accessible nodal surface within this
formalism, guaranteeing the lowest energy for TiO2 from the
variational principle. Core electrons in both Ti and O atoms
were described by the use of a hard norm-conserving pseu-
dopotentials developed to reproduce accurately all electrons
results with the context of many-body theory and as described
in previous works [22]. The orbitals are generated with a
300 Ry energy cutoff and the thermodynamic limit is reached
with a 2×2×2 k-mesh size. The Jastrow factor consists of one,
two, and three body terms amounting to 144 variational pa-
rameters in total, which are optimized by variational Monte
Carlo calculations. [20, 33] The parameters are optimized by
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TABLE I. Barrier energies of Tii (c‖ and c⊥) and VO (I, II, and
III) paths evaluated by various methods, including previous works.
[9, 10] All the predictions are made for fully positively charged de-
fects (Ti••••i , V••O ), except ’DMC (Ti×i ’ (neutral) which is shown for a
reference in discussions. The geometries to evaluate the barrier are
optimized each to neutral and charged states, independently.

Tii VO

c‖ c⊥ I II III
GGA-PW91[9] 0.37 0.225 1.77 0.69 1.1
GGA-PW91[10] 0.31 0.23 – – –

LDA+U 0.54 0.90 2.42 1.60 1.36
DMC 0.4(1) 0.9(1) 2.0(1) 0.9(2) 1.7(1)

DMC (Ti×i ) 2.6(4) 1.6(1) – – –

the scheme to minimize a hybridization of energy and vari-
ance in 7:3. Twist averaging over the boundary conditions are
taken into account with 2×2×2 grid. [35] We estimated a time-
step bias by a linear extrapolation of the energies obtained at
two time steps, dt = 0.020 and 0.005 a.u.−1. It is confirmed
that the time-step bias is proportional to dt in a range of dt

< 0.020 a.u.−1. We set a target population of walkers to be
4,000. Practically this size of target population is large enough
to suppress a population control error.

IV. RESULTS AND DISCUSSION

Table I summarizes the results of the barrier energies along
each path. Looking at the lowest barrier-energies (shown in
bold), all methods, consistent with each other, predict Tii as
the preferred diffusion carrier. The striking difference is found
between our current result and the previous ones regarding Tii
preferred diffusion path. Updated predictions by LDA+U and
DMC supports c‖ as the dominant flow, directing towards the
(001) surface while c⊥ directing towards the (100) or (010)
surface. The prediction here may explain the experimental
observation of the photocatalytic activity being enhanced at
(001) surface compared to the (100) surface. [24, 25] We note
that LDA+U and DMC give different predictions about the
fastest diffusion path for VO. Our final DMC prediction gives
path II as the fastest path for oxygen vacancy diffusion (VO).
However, path II alone cannot produce any diffusion flows
because sites in this path are disconnected from each other.
For VOs to diffuse globally in the bulk a combination of path I
/III with path II is needed, otherwise VOs will be constrained
to the isolated sites in path II.

When compared to our DMC results, previous GGA-DFT
calculations show a significant underestimation of barrier en-
ergies. Even using “the same fixed geometry relaxed with
DFT+U” in GGA and DFT+U calculations, the trend of un-
derestimation is confirmed. This can be attributed to that GGA
generally underestimates a cohesive energy [36], since a de-
fect is more weakly combined with the surrounding ions than
reality, making its hopping easier.

As can be seen in Table I, evaluating the diffusion path of

the neutral defect ’DMC (Ti×i )’, the most favorable diffusion
path is c⊥, opposite to what is found for a charged defect.
This might be a clue to understanding why the present re-
sult is contradicting to the previous DFT works, as well as
to understanding the contradiction in the earlier experiments:
[12, 13] One of the dominant factor to determine the preferred
diffusion path could be the ionic radius of the defects, which
is reduced when they are positively charged to reduce accom-
panying electrons. The sensitive dependence on the choice
of XC potentials in Table I could support this, because the
estimation of the radius is known to be sensitive to how the
self-interaction is carefully treated. [15] Poor treatments are
expected to give a spurious delocalization of distribution lead-
ing to a larger radius. [14] The Hubbard ’+U’ correction is in-
troduced to correct this, and hence corrects the radius smaller.
Previous GGAs are therefore suspected to give overestima-
tions of the radius, namely ’spuriously less positively charged

defects’. [14] Our Bader analyses using a scheme described
in ref.[37] actually showed that PBE has larger volume than
LDA+U, predicting 6.765 and 6.914 Å3 for LDA+U and
PBE, respectively.

An earlier experiment [13] supporting c⊥ as the preferred
path was performed at high temperatures raging from 1000
to 1500 K. It is shown through simulation that the electronic
distribution in the valence region is expanded with high tem-
peratures. [38] The high temperature experiment suggests a
less positively charged defect favoring the c⊥ path. This be-
havior is confirmed by our DMC (Ti×i ) calculation on a neutral
defect (see table I), which has larger Bader volume (7.690 Å3)
than Ti••••i (6.765 Å3).

The faster ionic flow, Tii, in [001] direction as our up-
dated prediction would explain the experimental facts fairly
reasonably as follows: In the photochemical reactions with-
out any oxygen compensations such as those with Ag+ ions
in an aqueous solution, the enhanced reactivities are actually
observed when using (001) surface [24, 25, 39]. Aiming to
recover desorbed oxygens by catalytic reduction processes, Ti
ions are required to flow from a surface into the bulk inside so
that the stoichiometry at the surface can be kept to support the
reactions. Having the surface being perpendicular to the faster
axis would enhance such ionic flows, and then the reactions
get to be accelerated. We also note that there are contradicting
reports that the (001) surface gives less reactivity in some sys-
tems [39, 40]. When the roughness gets reduced to the atomic
scale (∼ 1nm), the (001) surface turns into less reactive than
other surface directions. In this case, however, the reactivity
also gets suppressed by a couple of orders [39, 40]. Under
such a reduced reactivity, the desorptions of oxygen atoms
become reluctant, and hence the self-compensation process
would become a secondary factor not dominating the reaction
anymore, being not contradicting our prediction.

V. CONCLUSION

In conclusion, we performed ab initio evaluations of the
energy barriers for defects of Ti interstitials and Oxygen va-
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cancies using LDA+U and DMC methods. Ti interstitials
diffusing along the Ti-chains (c-axis) are predicted to give
the lowest energy barrier, being the most likely origin of the
atomic flow toward [001] surface supporting the surface re-
oxidizations. The result is consistent with the photocatalytic
activity in (001) surface being superior to (100) as experimen-
tally observed. [24, 25] The prediction is found to be sensi-
tive to how carefully the cancellation of self-interactions is
taken into account, not reproduced by the conventional DFT
with non-hybrid XC functionals. [9, 10] The cancellation crit-
ically changes the radius of the defects interacting surround-
ing atoms, which was overestimated by the previous DFT
works. [9, 10]
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