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Abstract

A method suitable for computing the ideal strength of random substitutional alloys is introduced.

The method relies on nonlinear continuum elasticity theory, and allows for the high throughput

computation of ideal strength. The method also allows for the high throughput computation of

an intrinsic ductility parameter defined for a given applied stress state as the ratio of the strain

associated with the cleavage instability to the strain associated with the first shear instability. The

intrinsic ductility parameter is shown to correlate well with the measured elongations to failure for

elemental body-centered-cubic and hexagonal close-packed metals. Application to four high entropy

alloys indicate that the intrinsic ductility parameter describes their experimental compressions to

failure well. The method is used to argue that the brittle refractory high entropy alloy Ta-Nb-V-

W-Mo could be made much more ductile through replacement of Mo with Nb. The potential for

the high throughput optimization of high entropy and chemically complex alloys is discussed.
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I. INTRODUCTION

The ideal strength (IS) provides the theoretical upper limit to the strength of a material

and is one of the few mechanical properties that can be calculated easily using first-principles

methods1–3 as well as measured experimentally.4–8 While a perfectly crystalline material

does not exist in any engineering application, ideal strength calculations have been shown

to be useful in numerous areas: IS has been applied to understanding the homogeneous

nucleation of dislocations under nanoindentation,9–11 the intrinsic ductility of a crystal (the

preference of a crystal to undergo a shear instability under a tensile load)12–14 and the

preferred cleavage plane of transition metal aluminides.15 Perhaps most famously, Frenkel’s

simple ideal strength model16 helped lead to the theory of defect-mediated plasticity.17–19

Wang and Li have used ideal strength calculations to connect the correlation length of

atomic motion with the strength of bulk metallic glasses.20 While defect-mediated plasticity

is the predominant deformation mechanism in structural alloys, it is becoming clear that IS

can play an integral role in understanding certain aspects of the mechanical properties of

structural materials.

Compositionally complex alloys, i.e. those without a single dominant base-element, in-

cluding high entropy alloys (HEAs), have generated much enthusiasm in the field of metal-

lurgy over the past decade.21–24 For example, many HEAs have been developed with inter-

esting properties including high wear-resistance,25 high-temperature strength,26 and a com-

bination of high strength and ductility.27 These remarkable properties can be engineered

into HEAs because the design space for these alloys is very large.28,29 At the same time,

however, the size of the design space poses challenges for alloy designers: How does one

rapidly identify useful alloys to synthesize, and once synthesized, how can the properties of

the alloy be optimized?

Miracle et al. developed an approach to exploring this large phase space that incor-

porates empirical rules for alloy design regarding density, computational analysis of phase

stability using CALPHAD, and high throughput experiments to identify alloys with promis-

ing properties.29 Singh et al. used the coherent potential approximation (CPA) and density

functional theory (DFT) to compute the relative phase stability and elastic constants of com-

plex solid-solution alloys.30 Singh et al. stop short of predicting the mechanical properties

of the alloys using CPA, and instead, use empirical interatomic potentials and quasistatic
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loading conditions within a molecular dynamics simulation to assess the relative ductility

of the alloys. This analysis, of course, requires the development of suitable interatomic

potentials, and these potentials introduce substantial uncertainty into the conclusions. So

while phase stability is becoming more accessible to DFT-based methods, the assessment of

the ductility of the stable alloys using DFT, particularly in a high-throughput computing

context, remains as a ongoing theoretical challenge.

In what follows, an easily computed parameter that is shown to correlate well with experi-

mental measurements of elongation to fracture of body-centered cubic (BCC) and hexagonal

close-packed (HCP) metals is introduced. The parameter, dubbed the intrinsic ductility pa-

rameter, is derived from IS calculations, and is similar to the previously defined brittleness

parameter of the alloy,31 but more convenient to compute, particularly for compositionally

complex alloys.

While IS calculations for elemental or ordered crystals can be performed with relative

ease, the calculation of the IS of a random solid solution (including HEAs and composition-

ally complex alloys) using DFT continues to be problematic for several reasons. Perhaps

most importantly, IS calculations rely on crystalline symmetry. However, random solid so-

lution alloys are crystalline only in an average sense. The implication is that most supercells

suitable for first principles based calculations will not have a crystalline symmetry equivalent

to the average symmetry of the alloy, and this confounds computation of IS. To circumvent

this difficulty, previous studies have used methods such as the virtual crystal approximation

(VCA)32 or coherent potential approximation (CPA)33,34 to compute the ideal strength of

solid solutions. These approaches provide substantial insight. However, each has its limi-

tations. For example, VCA is only applicable when very similar atoms are involved in the

alloy. CPA is more broadly applicable, but typically requires the use of basis states more

complicated than plane waves, and thus is not compatible with the most commonly available

DFT codes.

In the following, a method for computing IS of random substitutional alloys that is rooted

in nonlinear continuum elasticity theory is introduced. The method enables exploration of all

applied stress states, direct investigation of elastic stability at both infinitesimal and small,

but finite, strains, and is easily employed with any modern electronic structure method,

including CPA. The method also enables the definition of an intrinsic ductility parameter

that can be used to discover and optimize ductile chemically complex alloys. The method is
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applied to elemental body centered cubic (BCC) and hexagonal close packed (HCP) metals

where it is demonstrated that experimentally measured elongations vary systematically and

monotonically with the intrinsic ductility parameter. Application to four HEAs (in which

every component appears with the same concentration): Hf-Zr-Ti-Nb-V, Ta-Nb-V-W-Mo,

Ta-Nb-V-W, and Ti-Ta-Nb-V, shows that the method works in more complicated systems as

well. Finally, the method is used to argue that ductility of Ta-Nb-V-W-Mo can be improved

substantially by replacing Mo with Nb.

II. METHOD

A. Elastic Stability

Begin by noting that the symmetric Wallace tensor (SWT), Λ, that governs the elastic

stability of an anisotropic solid, is35,36

Λklmn = C ′klmn +
1

2
(τkmδln + τknδlm + τlmδkn + τlnδkm − τklδmn − τmnδkl) . (1)

Here δln is the Kronecker-delta function, τkm the Second Piola-Kirchhoff stress tensor, and

C ′klmn the second-order elastic constants of the solid under finite deformation (ECFD). C ′klmn

is defined:

C ′klmn =
1

V (η)

(
∂2E

∂βkl∂βmn

)
η

, (2)

with V (η) being the volume at a finite (Lagrangian) strain (η), E the elastic energy, and

β an infinitesimal strain applied in addition to the finite strain. A material is elastically

unstable if det Λ ≤ 0, and is said to be intrinsically ductile if under an applied uniaxial load

the eigenstrain associated with the instability breaks the symmetry of the crystal in the

current strain state; the material fails in a manner other than the Young’s modulus along

the loading direction going to zero.

The elastic energy at an unstrained volume (V0) is approximated using a Taylor series

expansion up to the third order in Lagrangian strain. (It should be noted, however, that

this method can be generalized to any order.)

∆E ≈ 1

2!
Cklmnηklηmn +

1

3!
Cklmnpqηklηmnηpq + ..., (3)
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with the second- and third-order elastic constants (SOECs and TOECs) defined as

Cklmn =
1

V0

(
∂2E

∂ηkl∂ηmn

)
η=0

, (4a)

Cklmnpq =
1

V0

(
∂3E

∂ηkl∂ηmn∂ηpq

)
η=0

. (4b)

By combining equations (2) and (3)37 ECFD can be determined entirely in terms of the

elastic constants at zero strain and the (presumed known) finite strain.

B. Derivation of Elastic Constants under Finite Deformation

Three configurations are considered in deriving the ECFD: the zero strain reference con-

figuration (X), configuration under a finite strain of η (x), and a configuration under a

combined finite and infinitesimal strain (x̄), see FIG. 1 for a graphical representation. These

configurations can be mapped to each other by the use of deformation gradients, which are

defined as

FIG. 1. Illustration of the three strain states considered in the derivation of C ′klmn. F is the

deformation gradient mapping the reference configuration (X) to the finite strain state (x). F̄ is

the deformation gradient mapping X to the configuration (x̄) associated with the combined finite

and infinitesimal strain. f maps x to x̄, which is under a combined finite and infinitesimal strain.
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Fkm =
∂xk
∂Xm

, (5a)

F̄km =
∂x̄k
∂Xm

, (5b)

fkm =
∂x̄k
∂xm

. (5c)

The deformation gradient is related to the Lagrangian strain by

ηkm =
1

2
(FpkFpm − δkm) , (6)

and can be solved for analytically entirely in terms of the strain. Due to the definition of

the Lagrangian strain in equation (14) (see Appendix A) it can be shown that there is no

one-to-one mapping between F and η. This is due to the fact that η is not affected by any

rotations of F . As a result, F can be assumed to be upper-triangular, which enables one to

write F = F (η) directly by solving for F in terms of η using equation (14).

With F = F (η) in hand we can define all configurations in terms of the applied strains38

using equation (5) and assuming that f can be expressed in terms of the infinitesimal strain

(β) as

fkm = δkm + βkm. (7)

By substituting the Taylor series expansion of the elastic energy in terms of the combined

infinitesimal and finite strain state (η̄) into the definition of the ECFD, C ′klmn, and then

evaluating the equation at η̄. C ′klmn is expressed as

C ′ijkl =
1

J(η)

[
(Cmnpq + Cmnpqrsηrs)

(
∂η̄mn
∂βkl

∂η̄pq
∂βij

)
η̄=η

+

(
Cmnpq +

1

2
Cmnpqrsηrs

)(
∂2η̄mn
∂βij∂βkl

)
η̄=η

ηpq

]
,

(8)

where J(η) = detF . It should be noted that equation (8) is similar to that determined by

Wang and Li37, but includes the term ∂2η̄mn

βijβkl
η̄pq. As F̄ can be determined entirely in terms

of η and β, equation (8) is completely defined in term of η and the elastic constants. A

derivation of
(
∂η̄mn

∂βij

)
η̄=η

and
(

∂2η̄mn

∂βij∂βkl

)
η̄=η

can be found in VI A.

For the on-average body-centered-cubic (BCC) materials considered in this work, ideal

tensile strength calculations are performed along the 〈001〉 direction. This orientation is
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considered due to the fact that it is considered to be the weakest orientation in BCC

and links between these calculations and fracture behavior of BCC crystals have been

demonstrated.12–14,39–44

For a uniaxial load applied along the [001] direction ECFD are:44

C ′11 = C11 + (3C11 + C12 + C111 + C112) ζ + (−C11 + C12 + C112) ξ, (9a)

C ′12 = C12 + (2C12 + 2C112)ζ + (−C12 + C123)ξ, (9b)

C ′13 = C12 + (C112 + C123)ζ + (C12 + C112)ξ, (9c)

C ′33 = C11 + (−2C11 + 2C12 + 2C112)ζ + (4C11 + C111)ξ, (9d)

C ′44 = C44 +
1

4
(C11 + 3C12 + 4C144 + 4C166)ζ +

1

4
(C11 + C12 + 4C44 + 4C166)ξ, (9e)

C ′66 = C44 +
1

2
(C11 + C12 + 4C44 + 4C166)ζ +

1

2
(C12 − 2C44 + 2C144)ξ. (9f)

Here ζ and ξ are components of the Lagrangian strain tensor such that the tensor has the

form in Voigt notation η = (ζ, ζ, ξ, 0, 0, 0). Using the expansion of τ in terms of η and

knowing that τ11 = 0 for a uniaxial load applied along [001], both η and τ can be defined

entirely by ξ.44 It should be noted that the strain range at which equation (9) remains valid

has not been specifically tested in this work. Instead, it is assumed that the equation is

valid for the strains considered in this work (unless otherwise stated), and the predictions

are then analyzed. The estimate of the strain ranges over which equation (9) is valid can be

tested following an approach similar to that introduced by Tromp et al.45

The approach also allows identification of an intrinsic ductility parameter, χ, defined

using SWT. Specifically, one computes the eigenvalues of SWT as a function of uniaxial

strain along the elastically softest direction of the crystal. The crystal becomes elastically

unstable when one of these eigenvalues, λ, becomes equal to zero. This event marks elastic

instability for the crystal, and the Lagrangian strain at which this happens is defined to

be ξ. Continuing to strain the crystal along the initial strain path, one often finds that

additional eigenvalues of SWT may go to zero at their respective finite strains. Given this

list of imposed strains and eigenvalues one can characterize the type of elastic instability

associated with each by examining the eigenstrain of the SWT corresponding to each of

the eigenvalues. These eigenstrains represent the local infinitesimal strain about the crystal

in its macroscopically strained state. Eigenstrains that leave the symmetry of the crystal
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unaltered from that associated with the strain path are associated with cleavage. Those

that result in a symmetry change for the strained crystal are deemed to be shear failure

modes. After the eigenstrains of the unstable modes are categorized, the intrinsic ductility

parameter, χ, can be defined as:

χ =
ξC
ξS
, (10)

where ξC is the strain associated with the first cleavage mode that becomes unstable, and

ξS is the strain associated with the first shear mode to become unstable. It is apparent

how this parameter can be related to crack propagation: a shear instability at the crack tip

would prevent further cleavage and possibly lead to the nucleation of dislocations. Thus,

the further the shear and cleavage instabilities are apart, the more likely that a shear or

cleavage event should occur, assuming the cleavage instability occurs at larger strains.

Our formalism has been implemented in the elasticity analysis module of the open-source

pymatgen46 software package. Given the second and third-order elastic constants for a given

material, the SWT, eigenstrain profile (e. g. in 4), and intrinsic ductility parameter as

defined above may all be determined. Previously reported47 values for the DFT-calculated

third-order elastic constants have also been made available via the Materials Project API48.

C. Intrinsic Ductility for Alloys

This formalism allows for SWT to be efficiently approximated for a solid solution. One

can do this by calculating the SOECs and TOECs44 of a special quasi-random structure

(SQS).49,50 These SQS cells typically display triclinic symmetry. The elastic constants for

these cells are computed using the methods in references,44,51 and then symmetrized to

match the point group of the macroscopic crystal using

Cklmn =
1

nG

nG∑
α=1

a
(α)
kp a

(α)
lq a

(α)
mra

(α)
ns C

SQS
pqrs , (11a)

Cklmnpq =
1

nG

nG∑
α=1

a
(α)
kr a

(α)
ls a

(α)
mt a

(α)
nu a

(α)
pv a

(α)
qwC

SQS
rstuvw, (11b)

with nG being the number of elements in the point group and Einstein summation notation

implied for all Latin subscripts. The a
(α)
ij ’s are the matrix elements of the transformation

matrix linking the transformed coordinate system to the original coordinate system by the
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crystalline point group operation α. The solid solution can be better approximated for a

given property by doing a weighted average over several SQS using the small set of ordered

structures method (SSOS).52 In this method the predicted value for a general material

property (f) of an alloy can be expressed as

〈f〉 ≈
nSQS∑
γ=1

wγf
(
σSQSγ

)
, (12)

with σSQSγ being the configuration of the γth SQS structure and wγ being the weight for the

γth configuration. The final elastic constants are found by performing a weighted averaging

of the highest performing SQS structures (those with correlations that best match a random

alloy).

Pair correlation functions are considered, which correspond to a cut-off distance r of

r < 1.7a0, where a0 represents the lattice constant of the BCC conventional cell. In addition,

triplet correlation functions are used. These are selected such that no triplets contain pairs

longer than 1.42a0. The atomic correlation functions of a large collections of SQS cells are

computed using the alloy theoretic automated toolkit (ATAT)53–55. The weights associated

with each SQS structure used in eqn. (12) are shown in TABLE I. For information on the

SSOS cells generated see VI D.

TABLE I. List of the weights used in SSOS average for alloys as shown in eqn. (12). The weights

used for the 5-component equiatomic system are those used for Hf-Zr-Ti-Nb-V and Ta-Nb-V-W-

Mo, and were taken from reference52. The weights for the 4-component equiatomic system are

those used for Ta-Nb-V-W and Ti-Ta-Nb-V.

System w1 w2 w3 w4

5 components52 0.200 0.400 0.400

4 components 0.108 0.408 0.373 0.111

Ta0.2Nb0.4V0.2W0.2 0.150 0.296 0.390 0.164
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III. RESULTS

A. Second Order Elastic Constants

Experimental studies have examined the compressive stress-strain curves of four HEAs

of interest: Hf-Zr-Ti-Nb-V, Ta-Nb-V-W-Mo, Ti-Ta-Nb-V, and Ta-Nb-V-W. Hf-Zr-Ti-Nb-V

values for compression to fracture at room temperature are found to be 30% engineering

strain (ES),56 while this number for Ta-Nb-V-W-Mo is approximately 1.7% ES.26 In the

case of Ti-Ta-Nb-V and Ta-Nb-V-W the measured compression to failures are greater than

40% and 14% strain respectively.57 It is of interest then to see if the method discussed in

this paper agrees in general with these experimental findings. As a first step and test of

the SSOS method, the poly-crystalline elastic constants of Hf-Zr-Ti-Nb-V and Ta-Nb-V-W-

Mo are compared between SSOS, CPA, and experiment. The SSOS and their weights used

for the equiatomic HEAs were the same as those used by Jiang and Uberuaga.52 In the

case of SSOS, the isotropic elastic constants are estimated using self-consistent bounds.58–61

SSOS and CPA isotropic elastic constants appear to be in good agreement (see Table II).

This result is not altogether surprising considering previous works comparing SQS and CPA

found good agreement between the two methods when calculating elastic constants.62–64 The

difference in Young’s modulus between the theoretical approaches and experiment could be

in part explained by the presence of a second phase present in the Hf-Zr-Ti-Nb-V samples

used for measuring Young’s modulus.56

TABLE II. Poly-crystalline elastic constants computed using SSOS compared to CPA and theory.

All units are in GPa. In the case of SSOS the isotropic Young’s modulus was calculed using

self-consistent bounds.58–61

HEA YSSOS YCPA YExp GSSOS GCPA

Hf-Zr-Ti-Nb-V 93.4 97.134 12856 34.2 35.034

Ta-Nb-V-W-Mo 185 18026 67.7
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B. Intrinsic Ductility of Elements

Consider first the value of χ (calculated using SOECs and TOECs from DFT44,47) for

BCC and HCP elemental metals. Figure 2 plots the computed value of χ vs. typical exper-

imentally measured elongations to failure of 16 elemental metals. Often, the experimentally

measured elongations to failure are reported within a range, as these can depend on mi-

crostructure, purity, etc. In these cases, the midpoint of the reported range of elongation

is used for the analysis. Empirically, the correlation can be represented by the red dashed

line in Fig. 2. The Pearson and Spearman correlation coefficients are both 0.84. This result

is particularly promising, as the Spearman correlation is quite strong, suggesting that the

ordering predicted by χ is robust. The implication is that χ can be used to predict the

effects of alloying additions or compositional changes on the ductility of a specific alloy. The

strong correlation is somewhat unexpected considering the great complexity of plasticity in

metals. Elongation is determined by mechanisms operating on length scales on the order

of ångströms to millimeters, and yet its value is highly correlated with a simple analytical

elasticity model, the inputs of which can be obtained from first principles. Note that χ

differs from the brittleness parameter defined by Ogata et al.31,65 which they applied to a

different set of materials. However, the level of correlation between experimentally measured

elongations and χ is comparable to that between the brittleness parameter of reference31

and measured fracture toughness’s.

To check the sensitivity of the χ parameter to changes in the elastic constants all SOECs

and TOECs for each system were allowed to vary by 20% of the reported values. χ was then

calculated 1000 times using elastic constants randomly assigned within the specified error

range. The error in χ for each system was taken to be the standard deviation of the 1000 χ

values. In viewing the results the error in χ shown in Table V it is clear that higher values

of χ tend to have higher associated errors.

To ascertain the spread in the correlation between the experimentally-measured elonga-

tion to fracture and χ, the average of the range of elongation to fracture for each element

and χ were fit to a line. From this linear statistical model the predicted 95% confidence

interval was estimated and is shown in Table IV. Assuming that the the data shown in Fig.

2 can be fit to a linear statistical model (using Mathematica’s statistical model analysis

tools71) the predicted 95% confidence interval was estimated. For almost all elements con-
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(a) (b)

FIG. 2. Comparison of the calculated intrinsic ductility χ and an average of experimental values

of elongation to fracture at room temperature for commercially pure metals66–70. The SOECs and

TOECs of all elements used in the calculation of χ were taken from reference44 with the exception

of V, which was taken from Winter et al.47. Fig. a contains the plot without error bars, but with

labels of the plot, while Fig. b is the same plot, but includes error bars.

sidered the predicted confidence interval is approximately 10 − 15% elongation to failure.

While this number is large enough to make quantitative predictions of elongation inaccessi-

ble, the ability to qualitatively estimate a material’s ductility could have significant impacts

on structural materials design. Further, it appears that this qualitative correlation between

elongation to fracture and χ remains intact even when errors as large as 20% in the elastic

constants are introduced.

To better evaluate the ability of the χ parameter to assess elongation to fracture, the

Pearson and Spearman correlation between χ and experimentally measured elongation to

fracture was compared to the correlation between the Pugh ratio (the ratio of the isotropic

bulk modulus and shear modulus, or B/G)69 and elongation to fracture, which is plotted

in Fig. 3. The Pugh ratio was computed using the same SOECs that were employed in

the calculation of χ shown in Table V. B and G were then estimated using self-consistent

bounds58–61. The Pugh ratio correlates with the elongations to fracture with Pearson and

Spearman correlation coefficients of 0.84 and 0.76 respectively, which is less than for χ in

the case of Spearman correlation.
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TABLE III. List of experimental values of elongation to fracture and their references as well as

the χ parameter computed with nonlinear elasticity theory and an estimate of the χ parameter’s

error.

System Elongation (%) Reference χ

W 2 66 0.78± 0.32

Mo 5-25 66 0.88± 0.24

Nb 50 66 2.52± 0.85

Ta 35-50 66 3.84± 0.41

V 35-60 66 3.49± 1.77

Ti 16-37 66 1.22± 0.24

Zr 23-31,40-45 66 1.70± 0.31

Hf 25 66 1.68± 0.25

Re 25-28 68 0.85± 0.05

Mg 2-15 66,69 0.95± 0.08

Be 1-5 66,69 0.74± 0.13

Co 10-25 66 1.68± 0.13

Os 0 69 0.85± 0.06

Sc 1-8 67 1.16± 0.20

Ru 0 70 0.85± 0.07

Y 6-34 67 1.64± 0.34

C. Intrinsic Ductility of Alloys

The elastic stability, and intrinsic ductility, of a random solid solution alloy is determined

by constructing SWT as a function of applied uniaxial strain along the known weakest

direction of the crystal (see Methods II). To estimate the intrinsic ductility of Ta-Nb-V-W-

Mo, Hf-Zr-Ti-Nb-V, Ta-Nb-V-W, and Ti-Ta-Nb-V the SOECs and TOECs for the alloys

were computed by utilizing the SSOS method to compute SOECs and TOECs (see for VI B

for computational details), though any electronic structure method suitable for computing

elastic constants of alloys could be used. (See VI C for the computed values the SOECs

and TOECs.) The resulting eigenvalues of SWT as a function of applied strain in tension
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TABLE IV. Displaying the results of standard error and mean predicted 95% confidence interval

of elongation to failure from linear model. All numbers are in % elongation.

System Observed Elongation Predicted Elongation Standard Error Confidence Interval

W 2 8.5 3.1 1.8− 15.2

Mo 15.0 9.8 3.0 3.4− 16.2

Nb 50.0 33.2 3.3 26.2− 40.2

Ta 42.5 53.8 6.3 40.4− 67.3

V 47.5 48.7 5.5 37.0− 60.4

Ti 26.5 25.0 2.5 19.6− 30.4

Zr 34.8 21.5 2.4 16.4− 26.7

Hf 25.0 21.3 2.4 16.1− 26.4

Re 26.5 9.2 3.0 2.7− 15.7

Mg 8.5 10.6 2.9 4.4− 16.8

Be 3.0 7.6 3.2 0.7− 14.5

Co 17.5 21.3 2.4 16.1− 26.4

Os 0 9.2 3.0 2.7− 15.7

Sc 4.5 13.7 2.6 8.0− 19.3

Ru 0 9.2 3.0 2.7− 15.7

Y 20.0 20.7 2.4 15.6− 25.8

(uniaxial load applied along 〈001〉) are shown in Fig. 4. It should be noted that due to the

high symmetry that still exists in the crystal when loading along the 〈001〉 axis only four

unique eigenvalues need to be considered. Experimental compression loading is considered

for these alloy systems as a judge of ductility, as there is no experimental data available for

elongations to failure under tension.

It should be noted that we also attempted to apply our model to estimating χ for the

alloys under consideration in compression, as this would be ideal for comparing our model

to the available experimental evidence. In this case, uniaxial compression along the 〈110〉

axis was applied, as this is thought to be the weakest loading axis under compression for

BCC metals.43 Uniaxial loading under 〈110〉 results in a strain state respresented in Voigt
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FIG. 3. Plot of Pugh ratio vs. elongation to fracture. The position of the points on the y-axis

refers to their mean elongation to fracture.

notation as η = (η11, η22, ξ, 0, 0, 0). As a condition of uniaxial loading is that σ11 = 0 and

σ22 = 0, η11 and η22 can be determined as a function of ξ. Under uniaxial compression along

〈110〉 the alloys considered appear to reach instability at high strains (ξ > 20%). This is

problematic, because the derived relations for η11 = η11(ξ) and η22 = η22(ξ) have no solution

at strains greater than ξ ≈ 10− 20%, displaying one limitation to the method described in

this work. As a result, only χ values for the alloys loaded in tension will be shown.

Our model predicts Ta-Nb-V-W-Mo fails in a brittle manner (the Young’s modulus goes

to zero) at approximately 16% strain in tension with χ = 0.60. The calculation is in

agreement with the brittle behavior (compression to fracture of 1.7% engineering strain)

observed experimentally.26 This implies elongations to failure less than those observed for

W, and comparable to that of Os, which is known to be extremely brittle.69 In the case

of tension the linear model, generated from the elemental data, predicts an elongation to

fracture of 5.6% with the 95% confidence bands for mean prediction being 0− 13%.

The same approach shows that Hf-Zr-Ti-Nb-V reaches elastic instability via a shear in-

stability tension at 22% as shown in Fig. 4b. χ = 1.07, indicating that a shear instability

is encountered before the cleavage instability for the given loading condition. This sug-

gests elongations to failure larger than those of Mo. In the case of tension the linear model

generated from the elemental data predicts an elongation to fracture of 12% with the 95%

confidence bands for mean prediction being 7− 18%. A value of χ ≈ 1 does not necessarily
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(a)

(b)

(c)

(d)

FIG. 4. Eigenvalues of the symmetric Wallace tensor for the four alloys considered in this work.

Fig. 4a, 4b, 4c, 4d represent Ta-Nb-V-W-Mo, Hf-Zr-Ti-Nb-V, Ta-Nb-V-W, and Ti-Ta-Nb-V re-

spectively. An eigenvalue less than or equal to zero corresponds to elastic instability. In the legend

C corresponds to cleavage (or brittle) failure and S corresponds to shear failure. The numbers in

the legend label the individual modes associated with ductile or brittle failure.

disagree with the findings of Li et al.’s ideal tensile strength calculations of Hf-Zr-Ti-Nb-V

using CPA, which found the material to fail elastically at approximately 12% strain via
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cleavage (which, for the approach used here, implies χ < 1).34

In the case of the four component alloys Ti-Ta-Nb-V is found to have a χ value of 1.38,

which is the highest of the four alloys considered in this work, and corresponds to by far the

most ductile behavior of the alloys considered (compression to failure of > 40%). Ta-Nb-V-

W has a predicted χ value of 1.29, which does not exactly agree with experimental findings

of a compression to failure of 14%. This highlights that this χ parameter is not considered a

quantitative predictor of ductility. Instead it is seen as a qualitative indicator of the relative

ductilities of alloys.

As was done earlier in the case of the elemental systems it is worthwhile to compare

the results of the χ calculations to that of the Pugh ratio. The Pugh ratio of the four

equiatomic alloys was calculated using the isotropic bulk and shear modulus estimated using

self-consistent bounds from the anisotropic elastic constants calculated using SSOS (Table

VI). The Pugh ratios for Hf-Zr-Ti-Nb-V, Ta-Nb-V-W-Mo, Ta-Nb-V-W, and Ti-Ta-Nb-V are

3.4, 3.2, 4.0, and 3.9 respectively (as shown in Table VI). Thus, the Pugh ratio predicts that

all of these equiatomic alloys should be highly ductile; all four systems would be predicted to

have a similar ductility to Nb (it is helpful to compare these results Fig. 3). This prediction

obviously does not concur with the experimental evidence shown in Table IV. While one

must be careful in reading too much into the results from these four systems, in the case of

these systems the χ parameter appears to be a much better predictor of ductility than the

Pugh ratio.

TABLE V. Displaying the results of standard error and mean predicted 95% confidence interval

of elongation to failure from linear model.

System χ Observed Compression (%) Predicted Elongation (%) Confidence Interval (%)

Ta-Nb-V-W-Mo 0.60 1.726 5.6 0-13.0

Hf-Zr-Ti-Nb-V 1.07 3056 12.4 6.5-18.0

Ta-Nb-V-W 1.29 1457 15.6 10.2-21.0

Ti-Ta-Nb-V 1.38 > 4057 16.8 11.6-22.1

The intrinsic ductility parameter is now used to explore the influence of deviations in

composition on the intrinsic ductility of Ta-Nb-V-W-Mo. Ta-Nb-V-W-Mo is of practical

interest due to the high melting temperature of its constitutive elements.26,72 This alloy
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shows good ductility (strains of 7.5 − 19% under compression) at high temperatures (1073

- 1473 K),73 but the brittleness of the alloy at room temperature limits its its applications.

Based on the observation that Nb additions are expected to increase the ductility of Mo,40,74

it is interesting to explore the replacement of Mo with Nb to create the quarternary alloy

Ta0.2Nb0.4V0.2W0.2. Nb is also an attractive replacement for Mo considering that the melting

temperatures of the two elements are 2741 and 2895 K respectively.66 The computed elastic

constants (see VI C) predict a highly ductile alloy with χ = 2.21 (for tensile loading), which is

approximately the same value as that found for Nb (see Fig. 2). The linear model generated

from the elemental data predicts an elongation to fracture of 29 % with the 95% confidence

bands for mean prediction being 23 − 35%. This should be compared to χ = 0.60 for the

Ta-Nb-V-W-Mo alloy.

IV. DISCUSSION

It is likely that replacing Mo with Nb will still yield a single-phase BCC alloy considering

that both the atomic size difference and valence electron concentration (VEC), two parame-

ters often used to assess the phase stability of HEAs, hardly change. VEC would be reduced

from 3.4 to 3.2 e−/atom, while the atomic size difference75 (calculated using the formula

δ =
√∑N

i=1 ci(1− ri/r̄)2, with N being the number of elements, ci and ri the concentration

and atomic radius of the ith element, obtained from reference,76 and r̄ the average atomic

radius) would go from 3.7% to 3.9%, which is within the empirically determined range of

single phase stability.77 Even if this specific alloy does not exist as a single phase, its high

ductility strongly suggests that manipulating the relative concentrations of Mo and Nb in

the alloy could be a successful strategy in increasing the ductility of the alloy, without greatly

reducing the melting temperature.

The benchmarking calculations done for both elemental metals and high entropy alloys

suggest that the calculation of SOECs and TOECs using the SSOS method, in concert

with a nonlinear elasticity model for SWT, can be used effectively to order the intrinsic

ductility of real systems. While it is true that direct ideal tensile strength calculations

could be carried out with the SSOS method, these calculations would require a great deal

more computational resources than the current approach. For instance, to calculate the

ideal tensile strength of a BCC alloy, the strain path for a uniaxial load applied along
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the [100], [010], and [001] direction must be computed. Then, the elastic constants as a

function of strain for each of these strain paths must be computed, and then averaged to

estimate the ideal strength. Moreover, to understand the details of the controlling elastic

instability, one needs to compute SWT at (or very near) to the instabilies. This requires

the computation of the elastic constants at each instability. For a general tensile direction

in a cubic material, the problem increases in complexity. A nominally BCC compositionally

complex alloy would require 24 different ideal tensile strength computations. Similarly, a

direct ideal shear strength calculation would entail a much higher cost. The determination of

the ideal shear strength for a load in the {1̄1̄2}〈111〉 orientation would require calculating the

strain path for all 12 symmetrically equivalent orientations. This is in direct contrast to the

nonlinear elasticity estimate of the SWT, which only requires the second- and third-order

elastic constants to construct an ideal yield surface associated with an arbitrary loading

configuration. This could enable the calculation of other ideal-strength-based estimations

of mechanical properties, such as the ratio of the ideal tensile and shear strengths, which is

shown to correlate with toughness.31,65

Based on the comparison of χ with the measured elongation of commercially-pure metals

and compression of refractory high-entropy alloys, we believe that this simple model has

great potential as a tool for computer-aided materials design. Ductility is one of the most

basic and important metrics used in evaluating a structural material, and the ability to

assess it from first principles can do much to accelerate the design of structural materials.

It is noted, however, that materials may fail by a phonon instability, which will not be

captured by SWT if the soft phonon is not near the Γ-point. This is a common mode of

instability in face-centered cubic (FCC) metals.78,79 As a result, FCC metals have not been

included in the benchmark calculations presented here. Note, however, that the calculation

of χ is not relegated to the nonlinear elasticity model presented in this work, but can be

used in any ideal strength calculation, as χ is defined as the ratio of strains at which cleavage

and shear instabilities first occur (be they elastic or dynamical instabilities).

V. CONCLUSION

An intrinsic ductility parameter, that can be calculated from first principles, is introduced

and appears to show good qualitative correlation with the experimentally measured elon-
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gation to fracture of a range of elemental body-centered-cubic and hexagonal close-packed

metals. It is shown how this intrinsic ductility parameter can be applied to alloys through

the application of the small set of ordered structures model. Further, the intrinsic duc-

tility parameter is utilized to predict a path for increasing the ductility of the refractory

high-entropy alloy Ta-Nb-V-W-Mo, while maintaining its high melting temperature.
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VI. APPENDIX

A. Derivation of Strain Derivatives

This appendix shows how equation (8) can be derived such that ∂η̄pq
βij

and ∂2η̄mn

βijβkl
are defined

explicitly in terms of η and η only. The derivation begins by noting that the chain rule on

F̄ such that

F̄ij =
∂x̄i
∂Xj

=
∂x̄i
∂xk

∂xk
∂Xj

= fikFkj. (13)

Taking the definition of the Lagrangian strain,η̄, to be

2η̄ = F̄ T · F̄ − I, (14)

with T representing the transpose of a given matrix, and substituting (13) into (14) results

in
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2η̄ = (f · F )T · (f · F )− I (15a)

2η̄ = F T · fT · f · F − I. (15b)

where I is the identity. Because f is within the linear elastic regime, it can be expressed as

f = I + β, (16)

with β being the infinitesimal strain, this means that f is a symmetric tensor and as a result

the η̄ can be written as

2η̄ = F T · (I + β) · (I + β) · F − I, (17a)

2η̄ = F T · (I · I + I · β + β · I + β · β) · F − I, (17b)

2η̄ = F T · (I + 2β + β · β) · F − I. (17c)

Using index notation equation (17c) is expressed as

2η̄ij = Fki (δkm + 2βkm + βknβnm)Fmj − δij. (18)

As described in section II B, F is not a function of β. As such the first derivative of η

with respect to β can be taken quite easily using equation (18):

∂η̄ij
∂βpq

=
1

2
FkiFmj

(
2
∂βkm
∂βpq

+ βkn
∂βnm
∂βpq

+ βnm
∂βkn
∂βpq

)
. (19)

β is a symmetric tensor, meaning that

∂βkm
∂βpq

= Ikmpq =
1

2
(δkpδmq + δkqδmp) , (20)

where Ikmpq is the fourth rank identity tensor. If the first derivative of η̄ is evaluated at

β = 0, then

(
∂η̄ij
∂βpq

)
η̄=η

= FkiFmjIkmpq. (21)

To calculate ∂2η̄mn

βijβkl
it is helpful to substitute the symmetric fourth-rank identity tensor

into equation (20), giving:
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∂η̄ij
∂βpq

=
1

2
FkiFmj (2Ikmpq + βknInmpq + βnmIknpq) . (22)

Taking the second derivative with respect to β results in:

∂2η̄ij
∂βpq∂βrs

=
1

2
FkiFmj (IknrsInmpq + InmrsIknpq) , (23)

which is only dependent on F . F and η can be related to each other as described in II.

B. Computational Details

Elastic constants calculations were performed using DFT as implemented in the Vienna

Ab initio Simulation Package80,81. The Perdew, Burke, and Ernzerhof Generalized Gradient

Approximation exchange-correlation functional was employed82. A plane-wave cutoff of

600 eV was used with a first-order Methfessel-Paxton smearing83 employing a smearing

parameter of 0.05 eV. Ionic relaxations were performed until all forces were less than 5

meV/Å. The total energy was converged to within 10−8 eV. For the equiatomic 5-component

alloys elastic constants 10 × 10 × 40, 16 × 16 × 16, and 11 × 11 × 28 Γ-centered k-point

meshes were employed for the first, second, and third SQS respectively. For the equiatomic

4-component alloys elastic constants 20× 20× 20, 24× 24× 12, 18× 18× 25, and 20× 20×

20 Γ-centered k-point meshes were employed for the first, second, third, and fourth SQS

respectively. The SOEC and TOEC were calculated following the approaches outlined by de

Jong et al.44,51. The k-point meshes used for the Ta0.2Nb0.4V0.2W0.2 alloy were: 16× 16× 16

Γ-centered for the first, second, and fourth SSOS; and 12× 12× 30 Γ-centered for the third

SSOS.

C. Elastic Constants of Alloys

The SOECs and TOECs were calculated following the approach outlined by de Jong et

al.44,51. The method for determining the TOECs works by applying a number of different

strain states written in terms of the strain parameter, η, applying a finite difference approach

to find the second derivative of the second Piola-Kirchhoff stress values and then using

pseudoinversion to determine the TOEC. It was found that instead of the 21 strain states

used to approximate the TOECs in reference44, only 14 are needed to completely determine
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the 56 unique TOECs of an unsymmetrized crystal. The 14 unique strains are listed using

Voigt notation as

η1 =
(
η 0 0 0 0 0

)
, (24a)

η2 =
(

0 η 0 0 0 0
)
, (24b)

η3 =
(

0 0 η 0 0 0
)
, (24c)

η4 =
(

0 0 0 2η 0 0
)
, (24d)

η5 =
(

0 0 0 0 2η 0
)
, (24e)

η6 =
(

0 0 0 0 0 2η
)
, (24f)

η7 =
(
η η 0 0 0 0

)
, (24g)

η8 =
(
η 0 η 0 0 0

)
, (24h)

η9 =
(
η 0 0 2η 0 0

)
, (24i)

η10 =
(
η 0 0 0 2η 0

)
, (24j)

η11 =
(

0 η η 0 0 0
)
, (24k)

η12 =
(

0 0 0 2η 2η 0
)
, (24l)

η13 =
(

0 0 0 2η 0 2η
)
, (24m)

η14 =
(

0 0 0 0 2η 2η
)
. (24n)

D. Special Quasirandom Structures

In Tables VIII and IX the SQS cells used for calculating the elastic constants of the

4-component equiatomic alloys and Ta0.2Nb0.4V0.2W0.2 are displayed.

E. Assessment of Crystallinity

In order to ensure that the SQS cells considered in this work remained BCC after struc-

tural relaxation, adaptive common neighbor analysis (a-cna) was applied to all relaxed cells84

using the open visualization tool (OVITO)85,86. In the case of Ta-Nb-V-W-Mo all three cells
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TABLE VI. List of the SOECs (and the isotropic Pugh ratio: B/G) for all SQS of the two

HEA considered in this study plus the ductile alloy Ta0.2Nb0.4V0.2W0.2. The numbering of each

compound corresponds to its rank with respect to approximating a random solution. All elastic

constants values are in units of GPa.

SSOS C11 C12 C44 B/G

Hf-Zr-Ti-Nb-V

(1) 153 94.4 32.0

(2) 167 89.6 36.7

(3) 145 103 38.0

(weighted average) 156 96.0 36.3 3.4

Ta-Nb-V-W-Mo

(1) 340 156 65.6

(2) 331 159 54.0

(3) 325 164 56.2

(weighted average) 331 160 57.2 3.2

Ta-Nb-V-W

(1) 308 159 50.0

(2) 290 164 34.4

(3) 301 160 45.7

(4) 308 157 54.5

(weighted average) 298 161 42.6 4.0

Ti-Ta-Nb-V

(1) 202 134 27.3

(2) 213 127 44.3

(3) 220 129 40.8

(4) 221 126 35.0

(weighted average) 215 129 40.1 3.9

Ta0.2Nb0.4V0.2W0.2

(1) 340 119 29.4

(2) 275 155 35.3

(3) 288 154 43.7

(4) 296 150 44.0

(weighted average) 294 148 39.1 3.9
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TABLE VII. List of the TOECs for all SQS of the HEA considered in this study. The numbering

of each compound corresponds to its rank with respect to approximating a random solution. All

elastic constants values are in units of GPa.

SSOS C111 C112 C123 C144 C166 C456

Hf-Zr-Ti-Nb-V

(1) -1460 -327 -135 -208 -164 -120

(2) -1180 -393 -195 -229 -173 -59.3

(3) -1350 -366 -167 -229 -204 50.1

(weighted average) -1310 -369 -172 -225 -184 -27.7

Ta-Nb-V-W-Mo

(1) -3030 -770 -36.8 -404 -519 -512

(2) -3760 -574 -230 -328 -482 -521

(3) -3410 -767 78.6 -334 -568 -478

(weighted average) -3480 -691 -68.0 -345 -524 -502

Ta-Nb-V-W

(1) -1490 -791 -766 -321 -363 185

(2) -1430 -808 -490 -230 -379 -143

(3) -1710 -807 -654 -328 -406 -50.1

(4) -1710 -821 -859 -415 -340 -61.7

(weighted average) -1570 -807 -622 -297 -383 -63.8

Ti-Ta-Nb-V

(1) -1610 -924 -631 -436 -566 110

(2) -1320 -710 -412 -272 -225 129

(3) -895 -575 -373 -158 -263 -44.5

(4) -1390 -490 -679 -241 -86.6 -10.2

(weighted average) -1200 -659 -451 -244 -260 46.8

Ta0.2Nb0.4V0.2W0.2

(1) -2970 -278 -607 -740 -739 257

(2) -1820 -1140 180 -329 -294 47.9

(3) -1710 -711 -806 -342 -336 151

(4) -1740 -887 -489 -360 -314 111

(weighted average) -1950 -816 -438 -414 -395 113
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TABLE VIII. Definition of SQS cells used for calculating the elastic constants of Ta-Nb-V-W and

Ti-Ta-Nb-V.

SQS a0 (Å) Lattice Vectors (a0) Atomic Positions

atom 1 - (0.75, 0.75, 0.75)

Ta-Nb-V-W: 3.20 a =( 0.0, 1.0, 1.0) atom 2 - (0.50, 0.50, 0.50)

1 Ti-Ta-Nb-V: 3.22 b =( 1.0, 0.0, 1.0) atom 3 - (0.00, 0.00, 0.00)

c =( 1.0, 1.0, 0.0) atom 4 - (0.25, 0.25, 0.25)

atom 1 - (0.50, 0.50, 0.75)

Ta-Nb-V-W: 3.20 a =(-1.0, 0.0, 0.0) atom 2 - (0.00, 0.00, 0.00)

2 Ti-Ta-Nb-V: 3.23 b =( 0.0, 0.0, 1.0) atom 3 - (0.00, 0.00, 0.50)

c =( 0.0, 2.0, 0.0) atom 4 - (0.50, 0.50, 0.25)

atom 1 - (0.00, 0.00, 0.00)

Ta-Nb-V-W: 3.21 a =( 0.0,-1.0, 1.0) atom 2 - (0.00, 0.50, 0.50)

3 Ti-Ta-Nb-V: 3.22 b =( 0.0, 1.0, 1.0) atom 3 - (0.50, 0.00, 0.50)

c =(-1.0, 0.0, 0.0) atom 4 - (0.50, 0.50, 0.00)

atom 1 - (0.75, 0.25, 0.50)

Ta-Nb-V-W: 3.21 a =( 0.5, 0.5, 1.5) atom 2 - (0.50, 0.50, 0.00)

4 Ti-Ta-Nb-V: 3.22 b =(-0.5, 1.5, 0.5) atom 3 - (0.25, 0.75, 0.50)

c =(-0.5,-1.5, 0.5) atom 4 - (0.00, 0.00, 0.00)

were found to be 100% BCC. The second and third SQS were determined to be completely

BCC for Hf-Zr-Ti-Nb-V, but the first SQS was 80% BCC. To test if this large relaxation

had an effect on the results presented in this paper, the first SQS was excluded from the

calculation of the symmetrized elastic constants. This resulted in the failure strains be-

ing ξS = 21.9%, ξC = 25.7%, and χ = 1.17 as compared to ξS = 21.7%, ξC = 23.2%,

and χ = 1.07 when all three structures were considered. All cells considered for the two

4-component equiatomic alloys and Ta0.2Nb0.4V0.2W0.2 system were found to be BCC.
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TABLE IX. Definition of SQS cells used for calculating the elastic constants of Ta0.2Nb0.4V0.2W0.2.

SQS a0 (Å) Lattice Vectors (a0) Atomic Positions

Nb - (0.4, 0.4, 0.0)

a =(-0.5, 2.5,-0.5) Nb - (0.8, 0.8, 0.0)

1 3.22 b =( 0.5, 2.5, 0.5) Ta - (0.0, 0.0, 0.0)

c =( 0.5,-2.5,-0.5) V - (0.6, 0.6, 0.0)

W - (0.2, 0.2, 0.0)

Nb - (0.8, 0.4, 0.2)

a =(-0.5,-1.5,-0.5) Nb - (0.2, 0.6, 0.8)

2 3.23 b =(-0.5, 1.5, 0.5) Ta - (0.6, 0.8, 0.4)

c =( 0.5, 0.5,-1.5) V - (0.4, 0.2, 0.6)

W - (0.0, 0.0, 0.0)

Nb - (0.8, 0.8, 0.2)

a =(-0.5,-1.5,-1.5) Nb - (0.2, 0.2, 0.8)

3 3.23 b =(-1.5,-0.5,-1.5) Ta - (0.6, 0.6, 0.4)

c =( 0.5, 0.5,-0.5) V - (0.0, 0.0, 0.0)

W - (0.4, 0.4, 0.6)

Nb - (0.4, 0.4, 0.4)

a =(-1.5, 0.5, 0.5) Nb - (0.6, 0.6, 0.6)

4 3.22 b =(-0.5, 0.5, 1.5) Ta - (0.0, 0.0, 0.0)

c =(-0.5, 1.5, 0.5) V - (0.8, 0.8, 0.8)

W - (0.2, 0.2, 0.2)
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