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The Materials Genome Initiative calls for a dramatic increase in the rate of materials discovery
and development. High-throughput (HT) calculations can advance this goal by efficiently screening
a large search space for candidate materials to study in more depth. Thermoelectric materials (TEs)
are prime candidates for such HT calculations: the properties required to achieve good performance
are known, but systematic ways of improving these properties are scarce. Furthermore, known HT
methods for TEs only address bulk crystals—screening realistic multicomponent alloys for their TE
properties has yet to be accomplished. In this work, we use a density functional theory driven HT
screening-and-sorting procedure to search for new multicomponent bulk-nanostructured thermoelec-
tric materials. We make maximum use of minimal calculations to obtain eight descriptors of the
thermodynamics and TE performance of 5-element semiconductor alloy systems from combinations
of ternary additions in binary compounds. We use these descriptors to reduce a search space of
29,700 5-element systems to a set of 130 candidates. We screen these candidates using TE descrip-
tors to identify several existing high-performance thermoelectrics as well as promising new material
systems awaiting further experimental verification.
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I. INTRODUCTION

First-principles calculations of materials have advanced to the point where high-throughput calculations can be
performed on a wide variety of systems to calculate a diverse variety of properties.1–7 Such high-throughput calculations
form a cornerstone of the Materials Genome Initiative,8 which has a goal of accelerating the rate of materials discovery
and decreasing the time from materials discovery to product deployment. Thermoelectric devices are one materials
application where first-principles calculations can provide considerable support, and there have been several high-
throughput efforts to identify new promising compounds with favorable thermoelectric properties.9–16 However, the
best thermoelectric materials are multicomponent semiconductor alloys that would never be identified in these studies.

Thermoelectric materials generate electricity from waste heat and have the potential to improve the efficiency
of heat-generating power sources such as power plants and car engines. In order to make thermoelectric devices
economically viable, the energy conversion efficiency of thermoelectric materials, characterized by the figure of merit

ZT (= S2σ
κe+κl

T ), need to be increased from typical values around 1 to 4.17 Recently, thermoelectric materials with

ZT above 2 have been synthesized using a variety of techniques to reduce the lattice thermal conductivity (κl) while
simultaneously increasing the electrical conductivity (σ) and Seebeck coefficient (S).18

These techniques to increase ZT include (i) precipitating (semi)coherent nanostructures out of the bulk, reducing
κl;

19–30 (ii) finding nanostructures that have a valence band closely aligned with that of the bulk matrix phase,
increasing the carrier mobility across the nanostructures and thereby σ;23,26,29 (iii) adding alloying elements to the
bulk which shift the energy level of a second valence band closer to the valence band maximum (VBM) of the matrix
phase, increasing the band degeneracy, and through it S;29,31 and (iv) refining the grain size through spark-plasma
sintering (SPS), scattering long-wavelength phonons and reducing κl.

27,29,32–34 Of these methods of improving ZT ,
(i), (ii), and (iii) involve altering the chemistry of the material to achieve the desired properties.35

Exploration of this variation in chemistry has largely been performed through an Edisonian process of trial and
error. In this work, we use first-principles calculations to systematically explore the chemical space available to
alloys of the IV–VI compounds. We calculate descriptors related to the thermodynamics and desired thermoelectric
property changes for 5-element alloys with constituent elements chosen from a set of ten cations and three anions in
AX rocksalt compounds (a total of 29,700 systems), screen these systems based on their thermodynamics, and sort
the screened systems based on their thermoelectric performance. We identify materials systems which have already
received attention as promising thermoelectric alloys as well as several new systems of interest for further experimental
study.

II. RESULTS

A computational search for new alloy systems with improved thermoelectric properties must consider two aspects
of the problem: identifying systems which can be prepared in the lab and identifying systems with enhanced ther-
moelectric properties. To address the first aspect of this problem, identifying alloy systems which will form desired
nanostructures (which will give enhanced thermoelectric properties), we must identify descriptors related to the ther-
modynamics required to achieve the desired nanostructures. To address the second aspect of this problem, identifying
alloy systems which can take advantage of the ZT -enhancing techniques (i)–(iii) described above, we must identify
descriptors related to the properties being enhanced which can be calculated readily within density functional theory
(DFT). Once we have these descriptors, we can screen out systems with unfavorable thermodynamics and electronic
structures before sorting the remaining systems and identifying the most-promising candidates. Figure 1 shows the
desired nanostructure, composition space we will search, and our screening work flow which will be described in the
next sections.

A. Descriptors/Search Strategy

The nanostructure shown schematically in Fig. 1(a) consists of a rocksalt matrix phase AX alloyed with an element
C, in which rocksalt nanostructures BX or AY (for brevity we will use BX in the following descriptions) alloyed with
an element D are embedded. This type of nanostructure can be created through phase separation within the bulk
of an alloy thermoelectric19 and has been shown to enhance ZT of thermoelectric systems by reducing the lattice
thermal conductivity.19–30 In order for this type of phase-separated nanostructure to form, there must be a (positive)
thermodynamic driving force for the nanostructure to phase separate from the matrix. In addition, for C to alloy the
matrix and not the nanostructure, C must be soluble in the matrix and C must have a thermodynamic preference for
the matrix over the nanostructure. The opposite considerations apply for the element D to alloy the nanostructure and
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FIG. 1. Nanostructured thermoelectric alloy design and high-throughput work flow. a Schematic diagram of thermoelectric alloy
consisting of a matrix compound (AX), a nanostructured compound (BX), matrix-alloying element (C), and nanostructure-
alloying element (D). b Set of cations (blue) and anions (red) defining our search space. c Flowchart for screening 29,700
systems down to 130 systems for sorting.

not the matrix—D must be soluble in the nanostructure and have a thermodynamic preference for the nanostructure
over the matrix. Elements A and B are cations taken from the list of +2 elements shown in blue in Fig. 1(b). Elements
X and Y are anions taken from the list of −2 elements shown in red in Fig. 1(b). Elements C and D can be cations or
anions and are taken from the combined list. We require the matrix phase to be rocksalt in its equilibrium structure,
but the nanostructures can form rocksalt as a metastable, constrained phase.26 These thermodynamic considerations
lead us to identify the following descriptors, which can be obtained directly from DFT total energies as described in
Sec. IV:
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FIG. 2. Thermodynamic properties used to screen and sort alloy systems. Points correspond to DFT formation energies
relative to the end-member compounds. Solid lines indicate equilibrium between two rocksalt phases. Dashed red lines indicate
equilibrium between a rocksalt and non-rocksalt phase. Arcs indicate the difference in slope between two lines on a plot.
Thermodynamic descriptors are shown for three cases. (a) matrix AX and nanostructure BX are rocksalt in their groundstates.
(b) matrix AX is rocksalt and nanostructure CX is metastable in rocksalt or matrix alloy C does not form rocksalt with X.
(c) nanostructure BX is metastable in rocksalt and nanostructure alloy D does not form rocksalt with X. The driving force
for forming nanostructures ∆EAX-B

rs is the difference in slope between a dilute amount of B in AX and equilibrium between
AX and BX, both in the rocksalt phase. The driving force for precipitation of CX from AX ∆EAX-C

eq is the difference in slope
between a dilute amount of C in AX and equilibrium between AX and CX, AX in rocksalt and CX in its equilibrium structure.
The partitioning energy of A between BX and CX is given by the difference in ∆EBX-A

eq and ∆ECX-A
eq . We define the formation

energy of 0.01 eV about the hull as metastable phase.

1. a positive thermodynamic driving force for the formation of BX nanostructures from the AX matrix ∆EAX-B
rs > 0,

2. a high solubility of C in AX (i.e. low driving force for precipitation of CX or AC ∆EAX-C
eq ),

3. a similarly high solubility of D in BX,

4. an energetic preference for C to go into AX over BX (partitioning of C to AX over BX) (∆E
C,AX/BX
part < 0), and

5. partitioning of D to BX over AX (∆E
D,BX/AX
part < 0).

These thermodynamic descriptors are shown schematically in Fig. 2.
The desired ZT -enhancing techniques are to:

1. form coherent nanostructures to scatter phonons and hence lower thermal conductivity,

2. alloy the matrix and nanostructure to minimize the valence band offset between the matrix and nanostructure,
hence keeping carrier mobility high, and

3. alloy the matrix to bring the valence bands at L and Σ in the rocksalt Brillouin Zone (BZ) closer in energy,
hence increasing the Seebeck coefficient.

The descriptors corresponding to the above techniques (with the number of the descriptor corresponding to the number
of the ZT -enhancing technique) are:

1a. the lattice mismatch between AX and BX/AY a
AX/BX
mis ,

1b. the thermodynamic driving force for the formation of nanostructures ∆EAX-B
rs ,

2. the valence band alignment (assuming p-type semiconductors) between the matrix and nanostructure |∆εBX-D/AX-C
VBM |,

and

3. the energy difference between the valence band (VB) at L and Σ, ∆εAX-C
V,L−Σ.
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FIG. 3. Electronic-structure properties used to sort alloy systems. The valence band structures of 54-atom supercells of rocksalt
systems are shown schematically for a A27X27, b A26C1X27, c B26D1X27, and d B27X27, all relative to the VBM of A27X27.
The valence band structure of b is aligned to the valence band structure of a through the electrostatic potentials of the two
calculations. The valence band structures of c and d are aligned similarly. The valence band structures of a and d are aligned
to the universal hydrogen +/- transition level. By combining these three band alignments, we can directly compare the valence

band energies of b and c, |∆ε
BX-D/AX-C
VBM |. By comparing the difference in valence band energies at L and along Σ in b and a

(εAX-C
V,L−Σ and εAX

V,L−Σ, respectively) we obtain ∆εAX-C
V,L−Σ. Note that Σ is along the high-symmetry Γ-K direction.

These electronic structure descriptors are shown schematically in Fig. 3.
All of these descriptors can be obtained from DFT calculations of supercells of a rocksalt compound with a single

cation, anion, or hydrogen impurity. There are a total of 360 ways of choosing AX-C from our list of ten cations and
three anions (including the pure AX compound where C=A or C=X), and so there are 360 calculations required to
obtain thermodynamic and electronic structure data for each of these systems. In addition, 60 calculations of +/−
charged interstitial hydrogen defects in the 30 AX compounds are required to obtain the universal band alignment
of the pure rocksalt phases.36 (See Sec. IV for details of our computational methodology.) We combine these 420
calculations to obtain descriptors for the 29,700 combinations of AX, BX/AY, C, and D.

B. Screening

To search our set of 29,700 candidate alloy systems for promising thermoelectric alloys, we first screen out the
systems which have unfavorable descriptors using the screens illustrated in Fig. 1(c). First, we remove systems where
the AX matrix phase is not a good bulk thermoelectric material in its own right (accounting for the favorable values
of σ, S, and κe which we have not calculated directly). We take as ‘good bulk thermoelectrics’ the compounds PbTe,
PbSe, PbS, SnTe, and GeTe. These are the IV-VI compounds which form in the rocksalt structure at operating
temperatures. This first screen reduces our search space from 29,700 systems to 4,950 systems. We next screen out
systems where the (metastable) BX or AY rocksalt nanostructure is a metal within DFT. This is the case for ZnTe,
CdTe, HgS, HgSe, and HgTe. Removing systems with these compounds as nanostructures leaves us with 3,960 systems
in our search space. Our third and final screen removes systems with thermodynamics which are unfavorable for the
formation of the nanostructure of Fig. 1(a). The conditions for favorable thermodynamics are:

1. a positive driving force for forming a BX nanostructure ∆EAX-B
rs > 0,

2. a low driving force for precipitation of the alloying element C from the matrix AX 0 < ∆EAX-C
eq < 0.2 eV/solute,

3. a low driving force for precipitation of the alloying element D from the nanostructure BX 0 < ∆EBX-D
eq < 0.2

eV/solute,
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4. partitioning of C to AX over BX ∆E
C,AX/BX
part < 0, and

5. partitioning of D to BX over AX ∆E
D,BX/AX
part < 0.

In 2. and 3. we choose an upper bound of 0.2 eV/solute for the driving force which corresponds to a lower limit of
2% solubility for the alloying elements C and D at 600 K. These thermodynamic screens leave us with 130 systems
for potential thermoelectric alloys. This 130 5-element screened search space is still much too large to be of practical
use. In the following section we sort this space using thermodynamic and electronic structure descriptors to identify
the most promising of these 130 candidate systems.

C. Sorting

We use two techniques to sort the remaining 130 systems based on their electronic-structure descriptors: Pareto set
identification37 and rank aggregation38 (see Sec. IV). Pareto analysis provides a method to obtain all of the systems
which optimize a multi-dimensional objective function. Pareto analysis has been applied to several materials design
and selection problems, including some of the first high-throughput DFT calculation analyses.1,39,40 In this work the
multi-dimensional objective function is the combination of lattice mismatch, driving force for nanostructures, valence
band alignment, and valence band shifting. In addition to Pareto analysis, we use rank aggregation to combine the
lists of systems sorted by each of the four descriptors above into one sorted master list which incorporates each of the
individual rankings.

The results of our screening and sorting are shown in Fig. 4 through cross-plots of the six possible pairs of the four
sorting descriptors above. In each panel of Fig. 4, the full set of 29,700 systems are shown as open green circles, the
set of 130 screened systems are shown as closed blue circles, the Pareto front for each of the 2-D cross-plots are shown
as orange circles connected by lines, and the top-10 rank-aggregated systems are shown as red circles. The axes of
each panel are chosen so that more optimal systems are found closer to the lower-left corner of each plot. The first

panel of the plot, ∆EAX-B
rs vs. a

AX/BX
mis shows a clear functional relationship: ∆EAX-B

rs ∝ (a
AX/BX
mis )2. This relationship

has been noted previously for the (IV,IV)–VI and IV–(VI,VI) alloys,41 and the dashed line in this panel shows a fit

to all of the data. Because ∆EAX-B
rs vs. a

AX/BX
mis has a strong functional relationship and because this relationship

opposes our design goals (minimize a
AX/BX
mis while maximizing ∆EAX-B

rs ), this cross-plot seems to be the most limiting

and therefore important. The systems which deviate most from this trend of ∆EAX-B
rs ∝ (a

AX/BX
mis )2 are SnTe/CaTe,

SnTe/SrTe, and GeTe/CaTe. These systems are denoted on all cross-plots of Fig. 4. In addition, two well-studied
systems, PbTe/PbS19 and PbTe/SrTe,23,27 are also shown on each of the cross-plots. These systems also tend to have
good VBM alignment but lie towards the higher range of the VB shift ∆εAX-C

V,L−Σ.
There are 31 systems which lie on the 4-D Pareto front of these descriptors, which are listed in Table II. In-

cluded among these systems on the Pareto front are eight already engineered thermoelectric materials including
PbTe–SrTe,23,27 PbTe–PbS,19,32 and PbSe–CdSe.29 The experimental systems have been nanostructured, but not
simultaneously nanostructured and alloyed, so further enhancement in ZT should be feasible for these systems. In
addition to Pareto analysis we use rank aggregation to combine the lists of systems sorted by each of the four descrip-
tors above into one sorted master list which incorporates each of the individual rankings. The top-10 ranked systems
shown in red in Fig. 4 are listed in Table I. Seven of the top-10 ranked systems lie on the Pareto front. From our
list of top-10 systems and systems on the Pareto front, we identify several systems that have not been investigated
experimentally, but which show promise as potential thermoelectric materials. SnTe/CaTe has the lowest lattice
mismatch of the screened systems and both SnTe-Pb/CaTe-Se and SnTe-Pb/CaTe-Sr are in the top-10 list. Another

promising candidate is PbSe-Sr/SnSe-Ge, which does not deviate from the ∆EAX-B
rs ∝ (a

AX/BX
mis )2 curve, but lies on

the Pareto front for |∆εAX-C/BX-D
VBM | vs. a

AX/BX
mis .

III. CONCLUSIONS

In this work we used high-throughput DFT-based descriptors to evaluate semiconductor alloy systems for their
thermoelectric performance. These descriptors were based on experimental design heuristics for how alloying affects
ZT . This approach avoids problems with calculating ZT using DFT: underestimated band gaps give poor S values,
the unrealistic constant relaxation time approximation is required to obtain any σ values, and ZT can only be
calculated for pure compounds. We searched through an extremely large combinatorial space, screening out over
29,000 potential thermoelectric material systems as having unfavorable thermodynamics for synthesis. We sorted the
remaining 130 candidate systems based on their electronic-structure properties, found several existing thermoelectric
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FIG. 4. High-throughput screening and sorting. Data for each set of AX, BX, C, and D elements relevant to thermoelectric
performance are projected onto pairs of axes of the four-dimensional descriptor space. Data for all 29,700 unscreened systems
are shown as open green circles. Data for the 130 screened systems are shown as closed blue circles. Pareto fronts for each
two-dimensional subset of screened data are shown as connected orange circles in each plot. Top-10 ranked systems of the
screened data are shown as closed red circles.

alloys with our analysis, and identified new promising thermoelectric material systems, including SnTe-Pb/CaTe-Se,
SnTe-Pb/SrTe-Ba, and GeTe-Sn/CaTe-Pb. These materials systems are ideal candidates for future experimental
investigation and validation. As can be seen, we have considered isoelectronic dopants to tune the band alignment
and degeneracy between matrix and host materials. However, the charged dopants are becoming more and more
important, since the charged dopants are on the one hand adjusting the carrier concentration and on the other hand
decreasing lattice thermal conductivities. So, it will be very interesting to examine the charged alloying materials for
enhanced thermoelectric systems in the future.
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TABLE I. Top-10 rank-aggregated systems. These systems simultaneously (i) maximize the driving force for nanostructures

∆EAX-B
rs , (ii) minimize the lattice mismatch a

AX/BX
mis , (iii) minimize the energy difference between VB at L and Σ, ∆εAX-C

V,L−Σ,

and (iv) minimize the valence band offset |∆ε
BX-D/AX-C
VBM | between matrix and nanostructure. The possible formation of ternary

phases is not considered in the driving force calculations.

Matrix Nanostructure Mat-Alloy Nano-Alloy Exp. System ZT @ T (K) Ref.
AX BX/AY C D
PbS PbTe Ba Sn PbS0.97Te0.03–0.1% PbCl2 0.8 @ 900 25
GeTe BaTe Sn Se - - -
SnTe CaTe Pb Se - - -
SnTe CaTe Pb Sr - - -
PbTe PbS Sn Sr Pb1−xSnxTe–PbS 1.5 @ 642 19

- - - - PbTe0.7S0.3–2.5% K 2.2 @ 923 32
PbS PbSe Ba Te - - -
PbS PbSe Ba Sn - - -
PbS PbTe Sr Sn PbS0.97Te0.03–0.1% PbCl2 0.8 @ 900 25
PbSe SnSe Sr Ge - - -
GeTe BaTe Sn Sr - - -

IV. METHODS

A. Computational Methodology

DFT42,43 calculations were performed with the Vienna Ab initio Simulation Package (VASP)44 using the exchange-
correlation functional of Perdew, Burke, and Ernzerhoff (PBE)45 and projector-augmented wave (PAW)46 potentials.
Total energies of 54-atom rocksalt supercells (perfect crystals and crystals containing one substitutional defect) were
calculated using 520 eV energy cutoffs and 5× 5× 5 Γ-centered k-point meshes. Further calculation details, including
automation methods, can be found in Ref.

DFT-calculated properties were analyzed using Pareto analysis and rank aggregation. Pareto analysis determines
the set of ‘best compromises’ for a multi-objective function optimization problem—the Pareto front.37 Each of the
points on the Pareto front is not strictly worse than any other point in the dataset with regards to the multi-
dimensional objective function. Rank aggregation reduces a multi-objective function optimization problem down to
a single-objective-function optimization problem by combining multiple ranked lists (objective functions) into one
ranked list which tries to incorporate the rank of each entry in the input lists. We perform rank aggregation using
a weighted Spearman’s footrule measure47 as our objective function, which is optimized using cross-entropy Monte
Carlo with the RankAggreg R package.38

B. Calculation of Descriptors

The descriptors presented in Sec. II A are obtained from our 54-atom DFT supercell calculations using (a) the
DFT volume of the rocksalt compounds, (b) the DFT total energies, (c) the DFT valence band structures along the

path L—Γ—K in the rocksalt BZ, (d) the VBM relative to the hydrogen transition level ε
+/−
H , and (e) the average

electrostatic potential difference between AX-C and AX calculations ∆V AX-C
PA .

1. Lattice mismatch

The lattice misfit, or lattice parameter mismatch, between an AX matrix and a BX nanostructure, is determined
from the relaxed DFT volumes of the supercells of the pure matrix and nanostructure phases. The lattice parameter

of each compound, a, is found from the total volume of the 54-atom supercell, V , using a = 3

√
4
27V . The lattice misfit

between the matrix and nanostructure is then

a
AX/BX
mis =

|aAX − aBX|
aAX

. (1)
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2. Thermodynamic descriptors

The thermodynamic driving force for precipitation of a rocksalt phase BX from a rocksalt matrix AX can be
estimated from the dilute-limit energy of B in AX (and similarly for anion-mixing systems AX and AY), constrained
to the rocksalt structure, calculated using

∆EAX-B
rs = EAX-B

tot − 26

27
EAX

tot −
1

27
EBX

tot , (2)

where EAX-B
tot , EAX

tot , and EBX
tot are the DFT total energies of the 54-atom rocksalt supercells of A26B1X27, A27X27,

and B27X27, respectively.
The thermodynamic driving force for the precipitation of the equilibrium phase CX from a rocksalt matrix AX can

be estimated by the dilute-limit energy of C in AX relative to the equilibrium compound CX, calculated using

∆EAX-C
eq = EAX-C

tot − EAX
tot − µC + µA. (3)

The chemical potentials µA and µC are found by solving

EAX
rs =

1

2
µA +

1

2
µX, (4)

ECX
eq =

1

2
µC +

1

2
µX, (5)

where ECX
eq is the DFT total energy of the equilibrium phase CX obtained from the Open Quantum Materials Database

(OQMD).3 and 7
The partitioning energy of a solute C between a matrix AX and nanostructure BX is obtained from the DFT total

energies using

∆E
C,AX/BX
part =

(
EAX-C

tot − 26

27
EAX

tot

)
−
(
EBX-C

tot − 26

27
EBX

tot

)
, (6)

∆E
C,AX/BX
part =

(
EAX-C

tot − EAX
tot

)
−
(
EBX-C

tot − EBX
tot

)
, (7)

if C is a cation or anion, respectively. Similarly, the partitioning of an element C between a matrix AX and nanos-
tructure AY are given by Eqs. (7) and (6), respectively.

3. Electronic-structure descriptors

The change in the valence band (VB) energies of a compound AX at L and Σ upon alloying with an element C is
given by

∆εAX-C
V,L−Σ =

(
εAX-C

V,L − εAX-C
V,Σ

)
−
(
εAX

V,L − εAX
V,Σ

)
, (8)

where εAX
V,i and εAX-C

V,i are the VB energies of the pure and defected phases at the BZ point i, respectively.
The VBM alignment of AX-C and BX-D is obtained by combining the VBM alignment between the pure compounds

BX/AX with the alignment between the alloyed phases AX-C/AX and BX-D/BX. The VBM alignment of BX/AX
is given by

∆ε
BX/AX
VBM = ε̃BX

VBM − ε̃AX
VBM, (9)

where ε̃iVBM is the energy of the VBM of compound i relative to the universal H +/- transition level. The change in
the VBM of AX-C relative to AX can be calculated using an electrostatic alignment correction, ∆V AX-C

PA following
Ref. 48. Using this correction, we put the VBM of the AX-C supercell on the same energy scale as the VBM of the
pure AX phase using

∆ε
AX-C/AX
VBM = εAX-C

VBM − εAX
VBM −∆V AX-C

PA , (10)

where εiVBM is the VBM of system i (and similarly for BX-D). The VBM alignment of BX-D/AX-C is then

∆ε
BX-D/AX-C
VBM = ∆ε

BX-D/BX
VBM −∆ε

AX-C/AX
VBM + ∆ε

BX/AX
VBM . (11)

Eqs. (8)–(11) hold for systems with AX matrix and AY nanostructure with no loss of generality.
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TABLE II. Total 31 systems lie on the 4-D Pareto front of the descriptors.

Matrix Nanostructure Mat-Alloy Nano-Alloy Exp. System ZT @ T (K) Ref.
AX BX C D

SnTe CaTe Pb Se
PbSe SrSe Ba S
PbTe SrTe Sn Ba PbTe–2% SrTe–1% Na2Te 1.7 @ 815 23

PbTe–4% SrTe–2% Na 2.2 @ 915 27
PbTe SnTe Ca Ge
PbTe SnTe Sr Ge
PbSe SnSe Sr Ge
PbSe SnSe Ba Ge
PbS SnS Ba Se
PbS PbSe Ca Te
PbS PbSe Sr Te
PbS PbSe Ba Te
PbSe CaSe Ba S
SnTe SrTe Pb Ba
PbSe PbTe Ba Sn
GeTe GeSe Sn S
GeTe CaTe Sn Pb
PbSe CdSe Sr Ca Pb0.98Na0.02Se–3% CdSe 1.4 @ 900 29
PbSe CdSe Ba Ca
PbSe CdSe Te Ca
PbTe BaTe Ca Se
PbS CdS Ba Mg Pb0.975Na0.025–3% CdS 1.3 @ 900 26
PbTe PbS Sn Sr PbTe0.7S0.3–2.5% K 2.2 @ 923 32
PbSe GeSe Ba Te
PbS PbTe Sr Sn PbS0.97Te0.03–0.1% PbCl2 0.8 @ 900 25
PbS PbTe Ba Sn
GeTe GeS Sn Se
SnTe BaTe Pb Se
PbSe MgSe Ba Ge
GeTe SrTe Sn Pb
PbS ZnS Ba Mg Pb0.975Na0.025S–3% ZnS 1.2 @ 900 26
GeTe BaTe Sn Se
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