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We have studied low-energy configurations in two-dimensional arrays consisting of Ising-type
dipolar coupled nanomagnets lithographically defined onto a two-dimensional Cairo lattice, thus
dubbed the dipolar Cairo lattice. Employing synchrotron-based photoemission electron microscopy
(PEEM), we perform real-space imaging of moment configurations achieved after thermal annealing.
These states are then characterized in terms of vertex populations, spin- and emergent magnetic
charge correlations, and a topology-enforced emergent ice rule. The results reveal a strong domi-
nance of short-range correlations and the absence of long-range order, reflecting the high degree of
geometrical spin frustration present in this example of an artificial frustrated spin system.

I. INTRODUCTION

Artificial spin ice systems [1–16], initially introduced
as two-dimensional analogues to pyrochlore spin ice [17],
enabled the direct visualization of the consequences of
geometrical frustration using appropriate magnetic imag-
ing techniques. In particular, the introduction of ar-
tificial spin ices that exhibit thermally induced mo-
ment fluctuations paved the way to explore the statis-
tical physics of geometrical frustration [3–6], emergent
magnetic monopoles and macroscopic spin ice degener-
acy [18, 19], in addition to first attempts in achieving
artificial spin glasses [20]. Furthermore, this newly ac-
quired possibility lead to a whole new line of research,
where novel two-dimensional lattices comprising Ising-
type nanomagnets are being designed, that would ex-
hibit exotic emergent phenomena that go beyond spin
ice physics. Prominent examples are the observation
of emergent magnetic charge screening and polaronic
states in systems with mixed coordination numbers [21–
23], field-induced phase coexistence in a quadrupole lat-
tice [24], in addition to systems exhibiting topological
frustration [25–28] and the ability to directly control
the degree of spin frustration at the nanoscale [29, 30].
All these artificial frustrated systems have also shown
promise in potential applications in the field of spintron-
ics and magnonics [31–35]. With regard to systems with
mixed coordination numbers, the systems investigated,
so far [21–23], while exhibiting high degeneracy levels,
have been shown to exhibit long-range charge-ordered
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states at lower temperatures. This raises the question
whether another system with mixed coordination num-
bers can be proposed, which exhibits a high degree of spin
frustration and remains in a state that is dominated by
short-range spin correlations, thus adding an additional
system to the family of artificial frustrated systems [36].

In this paper we address this question, by exploring
geometrical frustration achieved in a two-dimensional ar-
tificial spin system, where Ising-type nanomagnets are
placed onto the sites of a so-called Cairo lattice (see Fig.
1). The Cairo lattice geometry has risen to prominence
as an alternative approach in achieving geometrical spin
frustration leading to a variety of new properties and
ground state configurations [37–40].

The manuscript is organized as follows: in the meth-
ods section, we describe the process of sample fabrica-
tion and the magnetic imaging technique. Micromag-
netic simulations of relevant coupling strengths are also
described. This is followed by a report on thermal an-
nealing and magnetic imaging experiments including a
quantitative analysis of all observations. The data ob-
tained are discussed in terms of short-range spin corre-
lations, highlighting the high degree of geometrical spin-
and vertex frustration achieved in this artificial spin sys-
tem, together with the observation of polaronic states.
We conclude with a summary and outlook on potential
future investigations featuring the dipolar Cairo lattice.

II. METHODS

We used electron beam lithography to fabricate dipolar
Cairo lattices. Following e-beam exposure and develop-
ment of a 70-nm-thick polymethylmethacrylate (PMMA)
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FIG. 1. (a) Dipolar Cairo lattice. Dipolar-coupled Ising-
type nanomagnets (stadium-shaped islands) occupy the sites
of the pentagonal Cairo lattice (lines the background). Lattice
parameters a = 472 nm and b = 344 nm are kept constant,
while the lattice parameter c = 376 nm, 450 nm, 500 nm and
600 nm is varied, to tune the coupling strengths between the
nanomagnets. (b) Scanning electron microscopy (SEM) image
of one of the dipolar Cairo lattices consisting of nanomagnets
with lengths and widths of 300 nm and 100 nm, respectively.
The lattice parameter c is varied, so that the balance between
the coupling strengths J1, J2, J3 and J4 can be tuned at the
nanoscale. The yellow scale bar indicates a length of 300 nm.

resist layer on a silicon (100) substrate, a 2.6 nm thick
Permalloy (Ni80Fe20) thin film was deposited (base pres-
sure: 2× 10−7 Torr), along with a 2 nm thick aluminum
capping layer to avoid fast oxidation of the sample. Next,
a lift off process in acetone removed all unwanted mag-
netic material. The resulting patterned nanomagnets
have a length of 300 nm and a width of 100 nm and
they are arranged onto a Cairo lattice with lattice pa-
rameters a = 472 nm and b = 344 nm (see Fig. 1a). The
coupling strengths Ji (see Fig. 1b) are directly tuned by
varying the lattice parameter c (see Fig. 1a), which is
given values of 376 nm, 450 nm, 500 nm and 600 nm.
Each array covered an area of 60× 60 µm2.

Magnetic imaging was performed by synchrotron-
based photoemission electron microscopy (PEEM) [41],
employing x-ray magnetic circular dichroism (XMCD) at
the Fe L3 edge [42]. XMCD images were obtained by
pixelwise division of images recorded with circular right
and left polarized light. The resulting dark and bright
contrast provides a direct measure of the orientation of
the local magnetization. Magnetic moments pointing to-
wards the incoming X-rays appear dark and moments
opposing the X-ray direction appear bright. If a mag-
netic moment is oriented 90◦ with respect to the X-ray
direction, it does not show contrast and appears grey.
Because the nanomagnets of the dipolar Cairo lattice are
patterned along different directions, deterministic imag-
ing of all magnetic moments is challenging (see Fig. 1b).
To ensure that all magnetic moments have a non-zero
projection onto the incoming X-rays, we rotated the sam-
ple by 15◦.

We performed micromagnetic simulations using Mu-
Max3 [44] to determine the coupling energies in the
dipolar Cairo geometry. In the simulations, nanomag-

nets with a size of 300 × 100 × 3 nm3 were discretized
into 1.95 × 1.95 × 3 nm3 cells. Typical material pa-
rameters for Permalloy were used: Ms = 790 kA/m,
A = 13 × 10−12 J/m. The magnetic anisotropy was
set to zero. As the Gilbert damping parameter we used
α = 1.0 to allow the simulations to relax quickly. The
coupling energies were derived from simulating different
nearest-neighbour nanomagnet pairs. To do this, we first
determined the low and high energy states E1 and E2,
which are given by E1 = 2Enanomagnet − Ecoupling and
E2 = 2Enanomagnet + Ecoupling. Here, only the coupling
energy Ecoupling depends on the orientation and distance
between the nanomagnets. The coupling energy is then
given by Ecoupling = (E2 − E1) /2. The simulations were
performed for a lattice parameter c varying from 350 nm
to 600 nm in 12.5 nm steps. The same approach was
applied in calculating vertex type energies as a function
of lattice parameter c.

III. RESULTS

A. Energy landscape and micromagnetic
simulations of coupling strengths

Before we summarize the experimental observations, it
is important to understand and characterize the dipolar
Cairo lattice energetically. As in other artificial spin ice
systems [1, 21, 22, 29, 30], the magnetic configurations
can be categorized into vertex types (see Fig. 2). The
dipolar Cairo lattice exhibits four- and three-nanomagnet
vertices similar to those observed in the square- and
Kagome spin ice geometry, respectively [1, 4]. The four-
nanomagnet vertex types are listed with increasing dipo-
lar energy in Fig. 2a, going from Type I to Type IV. Type
I and Type II obey the so-called ice rules, which dictate
two moments to point into the vertex and two moments
to point out of the vertex (see Fig. 2a). In an emergent
magnetic charge picture [18, 19, 45, 46], these vertices ex-
hibit a zero magnetic charge at the vertex of Q = 0. Type
III vertices break the ice rule, as three moments point
into the vertex and one out or vice versa. In the mag-
netic charge representation, they can be seen as topolog-
ical defects bearing a non-zero effective magnetic charge
residing at the vertex (Q = ±2q). Type IV vertices ((Q
= ±4q) represent the highest energy states and are en-
ergetically so unfavorable that they are not observed in
our experiments. The three-nanomagnet vertices can be
compared to the known Kagome vertices [4, 10, 47], how-
ever, with one crucial difference: Because a 6= b and the
varying lattice parameter c, the distances between nano-
magnets at the three-nanomagnet vertices can be non-
equal, resulting in different coupling strengths (J1 ≥ J3).
Therefore, the six-fold degenerate ice-rule (two-moments-
in-one-moment-out or vice versa) configurations are now
split into two different vertex types. Moment alignments
that minimize the stronger J1 interactions (coupling be-
tween black and red moments in Fig. 2b) are lower in
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FIG. 2. (a) Vertex types at four-nanomagnet vertices listed
with increasing dipolar energy from Type I to Type IV. Type
I and Type II are the so-called ice-rule obeying configura-
tions and exhibit a zero net emergent magnetic charge at the
vertex (Q = 0). Type III vertices break the ice rules and
can be described as vertex defects that possess an non-zero
net magnetic charge at the vertex (Q = ±2q). Type IV ver-
tices have the highest energy and are never observed in our
experiments. (b) Vertex types at three-nanomagnet vertices
categorized with increasing dipolar energy from Type A to
Type C. Red arrows mark those moments that are coupled
with each other via J3, while the red and black arrows are
coupled via J1.

energy and are labeled Type A (see Fig. 2b). Configura-
tions that minimize the weaker interaction J3, but maxi-
mize one of the two J1 interactions, are higher in energy
and are labeled Type B vertices. Configurations breaking
the ice-rule remain energetically equivalent and are now
branded Type C. The unique feature in the dipolar Cairo
lattice is that the balance between the competing inter-
actions J1 and J3 can be tuned at the nanoscale from
being vastly different to being totally equal. In the latter
case, Type A and Type B vertices become energetically
equivalent again. In other words, one can turn the spin
ice degeneracy at the three-nanomagnet vertices on and
off, by varying the lattice parameter c. In Fig. 3 we
plot all coupling strengths J1 to J4 as a function of c
(see Methods). According to these simulation results, J1
and J2 as well as J3 and J4 equalize around c = 500 nm.
Equalization of J1 and J3 and thus a restoration of the
spin ice degeneracy (Type A Energy = Type B Energy)
is predicted around lattice parameter c = 600 nm (blue
and yellow curves in Fig. 3). Mircomagnetic vertex type
energy calculations confirm this observation (see Fig. 4d
and 4e).

FIG. 3. Evolution of all relevant coupling strengths J1 (blue
dots and curve), J2 (red dots and curve), J3 (yellow dots and
curve) and J4 (purple dots and curve) plotted as a function
of lattice parameter c.

B. Thermal annealing and XMCD imaging

Now that the dipolar Cairo lattice has been intro-
duced, we turn our attention to thermal annealing ex-
periments. Similar to previous work on artificial frus-
trated systems [4, 5, 19, 22, 29], the prepared structures
were kept at room temperature and in vacuum for sev-
eral days. Then, the samples were transferred into the
PEEM and cooled down 20-30 K below the temperature
where thermally-induced moment fluctuations start to
occur within the nanomagnets on the time scale of several
seconds [19, 22, 29]. Cooling below the so-called block-
ing temperature (TB = 130 K in our system) ensures that
configurations remain frozen during XMCD imaging af-
ter thermal annealing. For each lattice parameter (c =
376 nm, 450 nm, 500 nm and 600 nm), this annealing
procedure is performed five times to provide sufficient
statistics. To ensure that observations are not linked to
lithographic defects, a different array on the sample was
imaged, after each annealing protocol.

Figure 4 shows XMCD images of dipolar Cairo lattices.
For all values of the lattice parameter c, long-range or-
dering is absent by pure visual inspection. A first quanti-
tative characterization of these observations is obtained
by plotting the vertex type populations achieved as a
function of lattice parameter c (see Fig. 4d and 4e). The
four-nanomagnet vertices show a nearly linear decrease
in the Type I ground state population, while Type II
vertices are rising with increasing lattice parameter c.
Type III vertex defects are almost absent up to c = 450
nm, but appear in lattices with c = 500 nm and c =
600 nm. The diminishing energy difference between all
four-nanomagnet vertices (see dashed curves in Fig. 4d)
is likely what allows these ice rule violations to occur.
In contrast to the four-nanomagnet vertices, the pop-
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FIG. 4. XMCD images (recorded at T = 100 K) of a low-energy moment configuration achieved, following thermal annealing in
(a) dipolar Cairo lattice with lattice parameter c = 376 nm, (b) c = 500 nm and (c) c = 600 nm. The incoming X-ray direction
is indicated by a large red arrow. The XMCD dark-and-bright contrast gives a direct measure of the magnetization direction
relative to the incoming X-ray propagation vector. Magnetic moments pointing towards the incoming X-rays appear dark, while
moments opposing the X-ray direction appear bright. The blue bar indicates a length of 1 µm. (d) Vertex type populations at
four-nanomagnet vertices plotted as a function of lattice parameter c. (e) Three-nanomagnet vertex-type population under the
variation of c. The error bars in (d) and (e) represent standard deviations of the mean resulting from XMCD measurements
performed after each of the five repeated annealing cycles. The dashed curves in (d) and (e) represent the corresponding relative
vertex type energies (from micromagnetic simulations) plotted as a function of c.

ulations of three-nanomagnet vertex Types do not de-
pend much on c (see Fig. 4e). Intuitively, one would
expect, that full dominance by ground state Type I ver-
tices would lead to the ergodicity of Type A and Type B
three-nanomagnet vertices, comprising 1/3 and 2/3 of the
population, respectively. However, the number of Type
A and Type B vertices is approximately equal, implying
that another mechanism is at play. Curiously, only the
600 nm system moves towards ergodicity as the Type A
and B vertices equalize in energy (see dashed curves in
Fig. 4e) and ice rule obedience at the four-nanomagnet
vertices diminishes. In summary, the dipolar Cairo lat-
tice aims to establish a Type I ground state configura-
tion at the four-nanomagnet vertex sites, while the three-
nanomagnet vertices strictly obey the ice rule (almost no
Type C vertices). However, the proportion of Type A
vertices remains higher than expected.

C. Emergent ice-rule and polaronic states

The Cairo lattice is topologically equivalent to the re-
cently investigated Shakti lattice [21, 48], implying that

the same mode of toplogical frustration prevents long-
range order in the system. Looking at magnetic moment
configurations (see arrows in Fig. 5a and 5b) and mag-
netic charge patterns (blue and red circles in Fig. 5a and
5b), long-range order seems absent. In analogy to the
Shakti lattice, the Cairo lattice largely obeys an emer-
gent ice-rule. This rule dictates that a system with this
geometry and only Type A, Type B, and Type I ver-
tices must distribute Type A and Type B vertices (filled
and empty circles in Fig. 5a, 5b and 5c, respectively)
equally within a four-vertex plaquette (see Fig. 5c). The
emergent ice rule explains the discrepancy from ergodic
Type A and Type B vertex populations by bringing them
closer to 50% (see Fig. 4e). Strict emergent ice-rule
obedience is particularly striking in the case of strong
nearest-neighbor coupling at the four-nanomagnet ver-
tices (c = 376 nm) due to the lack of Type II-IV vertices,
providing a direct explanation why the Cairo lattice lacks
features of long-range order. As the lattice parameter c
is increased, we see an increasing number of violations to
this emergent ice-rule (see Fig. 5b), which is linked to a
rise in Type B vertex population with c (see Fig. 4e). In-
terestingly, this is also coupled to an increase in Type III
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FIG. 5. (a),(b) Magnetic moment and charge configurations achieved after thermal annealing for Cairo lattices with (a) c = 376
nm and (b) c = 600 nm. Positive +q and negative −q charges are depicted in with red and blue circles at three-nanomagnet
vertices, respectively. Filled circles represent Type A vertices, while Type B vertices are shown with empty circles. Type III
charge defects ±2q are represented with red (+) and blue (-) crosses. Grey circles in (b) highlight screened charge defects.
(c) Four-vertex plaquettes obeying the emergent ice-rule. Six variations of the two Type A (filled circles) and two Type B
(empty circles) vertices within each plaquette obey this emergent ice-rule. Dashed orange kites in (a) and (c) highlight one of
the plaquettes. (d) Percentage of screened Type III charge defects plotted as a function of lattice parameter c. The error bars
represent standard deviations resulting from observations after five annealing cycles.

vertex defects at the four-nanomagnet vertex sites (blue
and red crosses in Fig. 5b). These vertex defects can be
seen as emergent magnetic charge defects (Qz4 = ±2q),
with a major part of them getting screened by surround-
ing magnetic charges (Qz3 = ±q), which reside at neigh-
boring three-nanomagnet vertices (see Fig. 5b). In other
words, the sum of magnetic charges residing at four- and
three-nanomagnet vertices is zero (

∑
Qz4 + Qz3 = 0).

The fraction of Type III charge defects that are perfectly
screened is plotted in Fig. 5d. A random distribution of
Qz3 charges would only screen four out of sixteen possi-
ble states, but the screened fraction remains significantly
higher than 25% for all values of c. The outlying point at

c = 376 nm is likely a result of the low number of Type
III vertices (9 out of 1600 possible four-nanomagnet ver-
tices) at this lattice parameter. Polaronic states are a
typical feature for artificial spin ices with mixed coordi-
nation numbers as predicted and observed in the dipo-
lar dice- and pentagonal lattice [22, 23]. However, in
contrast to these cases, which feature long-range charge-
ordered ground states, the dipolar Cairo lattice does not
seem to show any tendency towards long-range ordering,
whether defined by magnetic charges or magnetic mo-
ments.
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FIG. 6. Correlation functions and extracted correlation lengths of all annealed ground states. All length scales are stated in
proportion to the lattice parameter a = 472 nm. (a),(b) Spin-spin correlations between the ”p” subset of spins (a) and the
”s” subset of spins (b). (c) Charge-charge correlation function of all charges in the lattice. All correlation function seem to be
exponentially encapsulated as a function of distance. (d) Correlation lengths as a function of lattice parameter c. The error
bars represent standard deviations resulting from XMCD measurements performed after each of the five repeated annealing
cycles.

D. Correlations and short-range ordering

The existence of preferred vertex types and emergent
ice-rule obedience suggests quantifiable short-range or-
dering within the system. Additionally, the emergent
magnetic charges may possess some hidden order [49],
providing another structure to the system not immedi-
ately apparent in the magnetic orientation of the nano-
magnets. Here we extract the spin-spin and charge-
charge correlation functions, fit these functions to an
exponential, and from those fits compute the spin and
charge correlation lengths.

The geometry of the Cairo lattice creates two subsets
of spins, those only partaking in three-nanomagnet ver-
tices and those in both three and four-nanomagnet ver-
tices. The former we label ”p” spins because they are
parallel and perpendicular to each other and the latter
we label ”s” spins as they are skewed from one another.
The two subsets experience different types of interactions
and therefore should not be assumed to have correlation
functions that behave the same. The correlation func-
tions themselves are calculated in a manner typical of
Ising type systems:

C(rij) = SiSj (1)

where Si = ±1 to represent the Ising state of spin i and
rij is the distance between spins i and j. There is nor-
mally a thermal average, but it is omitted here as the
analysis is performed on single configurations. The cor-
relation functions are made a function of distance, r, by

averaging over Cij where r −∆/2 < rij < r + ∆/2:

[C(r)]av =
1

Npair

′∑
ij

C(rij). (2)

Here, Npair is the number of pairs of ij over which the
sum is taken. A charge correlation function is defined
similarly as

CQ,ij = Θ(QiQj), (3)

where Qi is the magnetic charge at a vertex labelled i
and Θ(x) returns the sign of the argument or zero if the
argument is zero. Again, the function is averaged over
similar distances to create C(r). The magnitude of this
parameter and the spin correlations are fitted to an expo-
nential decay function, |C(r)| = A exp(−r/L), where A is
merely a fitting constant and L is the correlation length
(see dashed curves in Fig. 6a-c). Three categories of
lengths are extracted for the p spins, s spins, and charges
(Lp, Ls, and LQ respectively). The correlation lengths
are plotted as a function of c in Fig. 6d.

All correlation functions (Fig. 6a-c) are fit to expo-
nentials with confidence intervals of 95%. They typi-
cally oscillate between positive and negative values as
antiferromagnetic spin ordering and alternating charge
ordering are preferred. The higher value of the spin cor-
relation functions (Fig. 6a-b) compared to the charge-
charge correlation function (Fig. 6c) indicates a domi-
nant preference for spin ordering over charge ordering.
Though they are less likely to correlate, the lengths over
which charges correlate are similar to the spin correlation
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lengths (Fig. 6d). In accord with the geometrical frus-
tration picture, the spin-spin correlation lengths are all
on the order of 2-3 lattice parameters a, approximately
the size of a single four-vertex plaquette (see Fig. 5c).
Long-range order is clearly absent. Despite the absence
of a clear trend, the ”p” and ”q” lengths roughly de-
crease with increasing c and the ”s” length fluctuates up
and down with c. Each of the three correlation lengths
are dominant for at least one value of c. These non-
monotonic behaviors further highlight the flexibility in
defining ordering preferences in the dipolar Cairo lattice.

IV. SUMMARY AND OUTLOOK

The Cairo lattice presents rich, tunable frustration. Its
geometry allows for lattice parameter c to influence 4
magnetic coupling constants (Fig. 3). All annealed sys-
tems with c varying from 376 nm to 600 nm contained no
apparent long-range order (Fig. 4), as verified by corre-
lation function and correlation length calculations (Fig.
6). An emergent ice-rule (Fig. 5a-c) explains the high
degree of frustration and the oddity of similar concentra-
tions of Type A and Type B vertices (Fig. 4) and the
lack of long-range order. In contrast to the Shakti lattice
where this rule was first observed [21], long-range charge
ordering is absent (Fig. 5a-b and Fig. 6d). Reducing the
four-nanomagnet vertex coupling by increasing c leads to
an increase in Type III charge defects (Qz4 =±2q), which
have a tendency to be screened by surrounding charges
Qz3 = ±q, that reside at three-nanomagnet vertices.

However, an important open question remains, namely
that of the true ground state of this system and the role
of long-range dipolar interactions that go beyond J1 to J4
(see Fig. 1b). This question might be addressed through
computational studies [46] or improvements in the an-
nealing procedure. Furthermore, it will be interesting
to study the thermal stability of polaronic states with
temperature dependent experiments [19, 22]. The degree
to which these charges are screened and their mobility
may provide ideal conditions for new DebyeHckel plas-
mas [19]. Such dynamic XMCD measurements might
also shed light on the potential observation of emergent
reduced dimensionality [50], a scenario that cannot be
fully excluded with absolute certainty, based on the cur-
rent results. Furthermore, relaxation time scale varia-
tions, as a result of vertex frustration [51] might also
provide insight into the ground state question.
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