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The kink-pair activation enthalpy is a fundamental parameter in the theory of plasticity of body-11

centered cubic (bcc) metals. It controls the thermally activated motion of screw dislocation at12

low and intermediate temperatures. While direct atomistic calculations of kink-pairs on screw13

dislocations have reached a high degree of accuracy, they can only be practically performed using14

semiempirical interatomic force fields, as electronic structure methods have not yet reached the15

level of efficiency needed to capture the system sizes required to model kink-pair structures. In16

this context, an alternative approach based on standard three-dimensional elastic models, which17

are efficient but lack atomic-level information, coupled to a substrate potential that represents the18

underlying lattice, has been widely applied over the past few years. This class of methods, known as19

’line-on-substrate’ (LOS) models, uses the substrate potential to calculate the lattice contribution to20

the kink-pair energies. In this work, we introduce the stress-dependence of the substrate potential21

into LOS models to evaluate its impact on kink-pair energies. In addition, we present a new piece of22

dislocation physics in bcc metals, i.e. the observation of asymmetric dislocation core energies in the23

dislocation character space. This asymmetry is also elevated to the continuum level by adding core24

energies to the general LOS formulation, and used to explain potential energy differences known25

to exist between left and right kinks in bcc metals. More importantly, by matching the total LOS26

energies to previously calculated atomistic energies of kink-pair configurations, we issue a rule to27

establish the value of the so-called core width in non-singular elasticity theories, and reduce its28

arbitrariness as a mathematical construct.29
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I. INTRODUCTION30

In the field of dislocation physics, body-centered cubic (bcc) metals are peculiar due to the31

existence of non-planar dislocations with screw character and thermally-activated mobility that32

control plastic flow at low-to-intermediate temperatures. These dislocations have a Burgers vector33

b equal to 1/2〈111〉 and move on close-packed planes (primarily {110} and {112}) [1–5]. Generally,34

this motion is understood to occur over a periodic energy landscape known as the Peierls potential35

via the thermally activated nucleation of steps on the dislocation line, known as kink pairs, and36

their subsequent sideward relaxation [6–12]. Screw dislocations in bcc materials often behave in37

non-crystallographic ways, giving rise to phenomena such as pencil glide, asymmetry of the critical38

stress in the twinning and anti-twinning glide directions, asymmetry of the critical stress under39

tension/compression loading, or anomalous slip [13–23]. Most of these peculiarities are typically40

attributed to the highly compact (non-planar) structure of the 1/2〈111〉 screw dislocation core,41

which has naturally attracted much attention over the last several decades mostly in the form of42

atomistic models [24–26]. Based on recent work using electronic structure calculations, a picture43

has emerged whereby the preferred dislocation core structure in bcc crystals has been established44

to be a compact, non-dissociated core resting on an underlying sinusoidal Peierls potential, UP45

[27–31].46

The strong temperature dependence of the yield and flow stresses displayed by most bcc metals47

is generally rationalized in terms of the thermally-activated nature of kink-pair nucleation. As48

such, a principal objective of the materials community in bcc alloys has been to develop models to49

characterize the activation energy of kink pairs. These are typically based on energy minimization50

of curved string configurations lying on a static energy substrate in either one [32, 33] or two51

dimensions [34]. The energy of the string is obtained by solving an integro-differential equation52

in a two-dimensional space defined by the glide x and screw z directions that accounts for the53

elastic energy of the line, its position on the substrate potential, and the mechanical work done by54

the stress τ [35, 36]. These so-called line-on-substrate (LOS) approaches have been traditionally55

approximated by models that reduce the double line integral (along x and z) to discrete sums along56

one or both integration dimensions. In the so-called line-tension (LT) model the integral along the57

screw direction is replaced by a dislocation self-energy which depends on the curvature of the line.58

The other integral is solved along the glide coordinate, yielding the equilibrium shape of the kink-59

pair configuration on the substrate potential. These activated configurations are usually referred to60

as ’bulge’ structures as they resemble a protuberance on the dislocation line projected along the glide61

direction. The LT approach works well when this protuberance is small, i.e. at high and intermediate62

stresses1, but not at low stresses when the equilibrium position of the line is near the minimum of63

potential energy UP [32, 33]. For low values of τ , the elastic interaction (EI) between kinks governs64

the line energy, in which case one can approximate the bulge configuration by a polygon (typically65

a trapezoid) with mutually-interacting elastic segments, reducing the double integral to a set of66

discrete convergent sums [37, 38]. While this is a general consideration, irrespective of the material67

and the dislocation type, the case of screw dislocations in tungsten does not really follow this idea.68

This is because non-screw segment of the trapezoid are highly tilted towards the screw character69

(which is a consequence of the core energy values and not uncommon in bcc metals).70

While insights gained from these models have improved our understanding of the activated states71

of kink-pair configurations, knowledge obtained from a decade or so of atomistic calculations sup-72

1 While the terms ‘low’ and ‘high’ stress used throughout this paper is somewhat arbitrary, here, for reference, we
have decided to assign a value of 0.25σP as the high limit of the low stress region, and 0.75σP as the low limit of
the high stress region.
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ports the need to augment LOS models with inelastic contributions brought about by non-linear73

effects of atomistic nature. The most important of these are (i) the alteration of the Peierls potential74

energy function in the presence of resolved shear stress, and (ii) the consideration of core energies75

into the energy description of kink-pair configurations. At low stresses, one can safely assume that76

UP remains unchanged and the effect of stress on the dislocation can be linearly decoupled from77

the underlying substrate in the form of a mechanical work. However, at stresses approaching the78

critical stress, referred to as the Peierls stress τP at 0 K, it is insufficient to consider only the79

zero stress internal energy to represent the Peierls trajectory. This trajectory is defined as the80

rectilinear path, denoted by the reaction coordinate x, between two equivalent equilibrium states81

(known as ‘easy core’) on the Peierls potential, which has periodicity h0 = a0
√
6
3 , where a0 is the82

lattice constant. As recent calculations have shown, UP can couple to the applied stress in non-83

negligible ways [39]. For its part, the inelastic contribution to the total dislocation energy, referred84

to as the core energy, is known to be potentially an important driving force in the minimization85

of dislocation line configurations (e.g. the so-called self-force in dislocation dynamics models). In86

particular, as will be shown below, in bcc metals the dependence of the core energy with dislocation87

character is periodic in the entire
[
−π2 , π2

]
angular range of θ (taken to be equal to zero for the88

screw orientation), contrary to other crystal structures, which display a
[
0, π2

]
periodicity. While89

this is a consequence of a well-known asymmetry of the bcc crystal lattice [4, 15, 16], it has not90

been included into continuum models of kink-pair configurations to date.91

In this work, we explore the effect of these features on numerical LT and EI models of kink-pair92

configurations modified to account for variations in UP(x) brought about by the applied stress and93

character-dependent dislocation core energies. Ultimately, we are testing the notion of whether94

atomistic information based on (quasi) 2D simulations can be effectively integrated into dislocation95

energy models of 3D line configurations is correct to interpret bcc plastic behavior. As well, we check96

whether fine details obtained in atomistic models, such as, e.g., the energy asymmetry between left97

and right-handed kinks that has been observed in several bcc metals [40–42], can be accurately98

captured by this coupled approach. Our paper is organized as follows. First we introduce the99

unprocessed physical inputs as obtained from atomistic simulations. Next, we review the theoretical100

formulation of the EI and LT models employed here. This is followed by details about the coupling101

between atomistic information and the discretized continuum models. We then show results for two102

different atomistic force fields for tungsten. We conclude the paper with a discussion of the results103

and some general conclusions.104

II. RAW ATOMISTIC INPUTS105

Based on a prior analysis of several W interatomic potentials for screw dislocation property106

calculations [43], we have selected an embedded-atom method (EAM) [44] and a modified -EAM107

(MEAM) potential [45] as the most suitable in terms of physical accuracy and computational108

efficiency. Using these two potentials, we have studied the dependence of UP(x) on the resolved109

shear stress, and of the dislocation core energies on dislocation character. This furnishes what we110

refer to as ‘raw’ atomistic inputs, i.e. before they are processed to be in usable form for the LOS111

models.112
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1. Peierls potential113

The Peierls potential UP(x) is obtained as the minimum energy path along the reaction co-114

ordinate x joining two adjacent equilibrium dislocation core configurations (known as easy core115

configurations). This is done using the nudged elastic band (NEB) method [46] in small atomistic116

supercells reflecting the structure of balanced dipole configurations oriented along the [1 1 1], [1 2 1]117

and [1 0 1] directions, corresponding, respectively, to the x, y and z directions. These configurations118

permit the use of periodic boundary conditions along all three supercell directions. The dimensions119

of the simulation cell along the three coordinate axes were Lx =13.6 Å(5b), Ly = 108 Å, and Lz =120

107 Å, containing a total of N = 10000 atoms. The NEB trajectory is partitioned into 30 images121

constrained to relax in configurational hyperplanes defined by the normal axis along x (3N − 1122

degrees of freedom).123

Prior to the NEB calculations, unconstrained energy minimizations using LAMMPS [47] were carried124

out for the initial and final configurations. NEB trajectories are generated as a function of stress125

τ (resolved shear stress on the glide plane) and the results are shown in Fig. 1. The paths shown126
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FIG. 1. Variation of (a) the enthalpy and (b) the Peierls potential with stress for the EAM potential.
Graphs (a) and (b) are connected by the term −τb, which is subtracted to the enthalpy to obtain UP.

127

128

in the figure are generated by subtracting from the resulting NEB trajectory the mechanical work,129

−τbx, for each image and matching the equilibrium position, x0(τ), and the associated energy in130

each case to the origin of each curve.131

2. Dislocation core energies132

The dislocation core energy is a mathematical construct designed to remove the singularity in133

the stress and strain fields of elasticity theory. As such, the core region is eminently inelastic in134

nature and can arbitrarily be defined by a parameter a referred to as the core width. This effectively135

partitions the total energy of a dislocation dipole into elastic and inelastic parts, with the latter136

confined to the core region within a [48–50] (cf. Section III A 2). This partition results in the137

following definition of the core energy:138

ec(θ, a) =
eatm(θ)− eel(θ, a)

2
(1)139
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FIG. 2. Core energies obtained from atomistic simulations. (Left) Total atomistic energy (per unit length)
for a computational cell containing a screw dislocation segment modeled with the EAM potential. The total
energy is partitioned between an elastic energy and a core energy assuming a value of a = 2b. c1 represents
the size of the box along a 〈110〉crystallographic direction (separation of the dislocation dipole). (Right)
Dislocation core energies as a function of the character angle θ all for a = 2b. Results for both interatomic
potentials, as well as DFT data, are shown.

where the angle θ = cos−1
(
b·t
b

)
formed by the Burgers vector b and the line direction t defines the140

dislocation character, while the 1/2 factor reflects the existence of a dislocation dipole.141

The total energy eatm is obtained from conjugate gradient minimizations of periodic atomistic142

supercells containing a dislocation dipole much in the manner described in the above section. The143

only difference resides in the orientation of the supercell, whose axes z, y and x are now oriented144

along the n, t and (n×t) directions, respectively. For its part, the elastic energy eel is calculated by145

subtracting the interaction energy due to the periodic dipole network (appearing by virtue of using146

periodic boundary conditions) from the elastic energy of a dislocation dipole. An example of the147

partition of energy described by eq. (1) is shown in Figure 2. The core energies assuming a value of148

a = 2b for the EAM and MEAM potentials, as well as for DFT calculations of pure screw (0◦) and149

edge (90◦) configurations [51] are also given in Figure 2. As the graph shows, the angular periodicity150

of the core energy function is (0, π), as there is an asymmetry in the energies about the pure edge151

orientation. This is not surprising, given the natural crystallographic asymmetry of the bcc lattice,152

which is most notoriously manifested in the existence of the so-called M111 dislocation orientation153

[52]. As will be discussed later, this asymmetry in the core energies leads to different energies for154

‘left’ and ‘right’-handed kinks, a phenomenon commonly observed in atomistic calculations using155

a number of interatomic potentials [40–42]. Further details about this geometric particularity are156

provided in Appendix B.157

III. GENERAL THEORY OF THE LINE-ON-SUBSTRATE MODEL158

Line-on-substrate model regards the dislocation as a line resting on a periodic energy landscape159

(substrate) that reflects the coupling between the dislocation line and the crystal lattice. As men-160

tioned in Sec. I, the two most widely used versions of the LOS model are the elastic interaction161

(EI) model and the line tension (LT) model. Here we provide a description of the theoretical162
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formulations employed here for each of the two cases.163

A. Elastic interaction model164

In the EI model, a kink-pair on a screw dislocation line can be approximated by an open trapezoid
connected to two semi-infinite segments in the manner shown in Fig. 3: The segments LA and DR

A

B C

Dx
z

h0

x0

h0 w

l1 l2L R

FIG. 3. Schematic representation of a kink-pair configuration on a straight screw dislocation. The points
labeled L and R represent arbitrarily distant locations to the left and right of A and D, respectively. We
use a cartesian coordinate system such that the x direction is along the glide direction, the y direction is
normal to the glide plane, and z is oriented along the line. x0 is the equilibrium position of a straight screw
segment at a finite stress τ , defined in equation (12). h0 is the periodicity of the Peierls potential, w is the
distance between kinks, and l1 and l2 are the widths of the kinks (projections of the AB and CD segments
on x). The shaded region corresponds to the slipped area defined in eq. (4).

are located on the first Peierls valley, the segment BC is on the second Peierls valley, and AB
and CD are the kink segments that straddle both minima. w is the width of the trapezoid, which
we take to be the distance between kinks, calculated as the distance between the two midpoints
of segments AB and CD. l1 and l2 are the widths (along the z direction) of such two segments,
calculated as the z-distance between the point at x = 0.05h0 + x0 and that at x = 0.95h0 + x0.
One can use the structure shown in Fig. 3 to obtain stable configurations for the activated state
by optimizing the activation enthalpy of the system for a given stress. The activated state can
be characterized by the sum of self-energies ∆Eself and interaction energies ∆Eint for all segments
shown in the figure. In addition, the contribution to the energy of the underlying substrate ∆UP

must be separately considered for the case of screw dislocations in bcc metals. The enthalpy is
then obtained by subtracting the mechanical work Wm performed by the stress τ from the three
contributions mentioned above:

∆H({ri}, τ) = ∆Eself({ri}, θi) + ∆Eint({ri}) + ∆UP({ri})−Wm(τ, {ri}) (2)

The stable configurations for the kink-pair structure shown in the figure are obtained by opti-165

mizing the above expression with respect to the coordinates rA, rB , rC , rD. Note that, due to166

the asymmetry in the ec function described in the previous Section, in Fig. 3 the kink widths l1167

and l2 do not necessarily have to be equal. This sets our work apart from other studies where it is168

commonly assumed that they are the same [30, 38] . The energies of the kink-pair configurations169

shown in the figure need to be computed piecewise, adding the contributions from all the dislocation170

segments. In the next sections we provide expressions for each of the energy terms introduced in171

eq. (2).172
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1. The mechanical work173

The mechanical work Wm in eq. (2) is simply defined as:174

Wm(τ, {ri}) = τbA (3)175

where τ , b, and A are, respectively, the resolved stress on the glide plane, the magnitude of the176

Burgers vector, and the area swept by the kink pair. This area can be calculated as:177

A =
1

2
(|AB ×AC|+ |DC ×DA|) (4)178

2. Self-energies of dislocation segments179

In accordance with Hirth and Lothe [36] and Koizumi et al. [38], the total elastic self-energy of
the configuration in Fig. 3 can be written as:

∆Eel
self({ri}) = Eel

self(AB) + Eel
self(BC) + Eel

self(CD)− Eel
self(AD) (5)

Here we use the non-singular expressions for the self-energy of a straight dislocation segment m180

defined by endpoints r1 and r2, and Burgers vector b provided by Cai et al. [53], which give these181

energies as a function of θ and a. In this work, we add the core energy contribution to the above182

elastic energies as:183

Eself(m) = Eel
self(m) + ec(θ, a)‖m‖ (6)184

3. Interaction energies185

For the interaction energies, Hirth and Lothe [36] give the following expression for a symmetric
kink-pair.

∆Eint({ri}) =

2 [Eint(LA/AB) + Eint(LA/BC) + Eint(LA/CD) + Eint(AB/BC)− Eint(LA/AD)] +

+ Eint(AB/CD) (7)

where, by symmetry, the following equivalences can be establihed:

Eint(LA/AB) ≡ Eint(DR/CD)

Eint(LA/BC) ≡ Eint(DR/BC)

Eint(LA/CD) ≡ Eint(DR/AB)

Eint(AB/BC) ≡ Eint(CD/BC)
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Eint(LA/AD) ≡ Eint(DR/AD)

However, for an asymmetric configuration, only the last one is true and, thus, the sum of interaction
energies reads:

∆Eint({ri}) = Eint(LA/AB) + Eint(DR/CD)

+ Eint(LA/BC) + Eint(DR/BC) + Eint(LA/CD)+

+ Eint(DR/AB) + Eint(AB/BC) + Eint(CD/BC)

− 2Eint(LA/AD) + Eint(AB/CD) (8)

The general expression within non-singular isotropic elasticity theory for the interaction energy of
two segments m and n with, respectively, endpoints r1 and r2, and r3 and r4 is:

Eint(m,n) = E∗(r4 − r2) + E∗(r3 − r1)− E∗(r4 − r1)− E∗(r3 − r2) (9)

where the functional E∗ takes different forms depending on the nature of the interaction. The186

non-singular elastic expressions used here to obtain E∗ are all given by Cai et al. [53], which we187

include in Appendix C, in case they could be valuable for the reader.188

4. The Peierls potential189

The kink pair structure shown in Fig. 3 rests on a periodic energy landscape known as the Peierls190

potential, UP. Multiple atomistic studies using DFT and semi-empirical potentials [54–56] have191

shown that UP is well represented by a (co)sinusoidal function of the type:192

UP(x) =
U0

2(1− α)

[
1− cos

2πx

h0
− α

2

(
1− cos

2πx

h0

)2
]

(10)193

where x represents the reaction coordinate (along the glide direction), U0 is known as the Peierls194

energy, and h0 is the period of UP (h0 = a0
√
6/3 in bcc lattices). α is a parameter that captures195

the deviation of UP from a pure cosine function. The contribution to the total energy of a kink196

segment lying across two Peierls valleys is:197

∆UP({ri}) =

∫
LABCDR

UP(x)d`−
∫
LADR

UP(x)d` (11)198

Both of the above integrals are evaluated from an equilibrium position x0 to x0 +h0. x0 is obtained199

from the following relation:200

dUP(x)

dx

∣∣∣
x=x0

= τb (12)201

The infinitesimal differential d` follows along the kink segment and can be linearized as:

d` =
√
dx2 + dz2

We now make the approximation that the straight segments LA, BC, DR cancel with their202

respective counterparts in the LADR configuration. Then the above integrals reduce to:203

∆UP({ri}) =

∫ x0+h0

x0

UP(x) (d`1 + d`2)− UP(x0) (l1 + l2) (13)204
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To capture the effect of the resolved shear stress on the shape of UP(x) revealed in Sec. II 1, we205

consider a stress dependence of both U0(τ) and α(τ), as will be shown in Appendix A.206

Equations (3), (5), (8), and (13) are combined to fully define the activation enthalpy in eq. (2),
which is subsequently optimized for the set of parameters w, l1, and l2 as a function of stress. Each
saddle point corresponds to the activated state of the kink-pair at each stress, from which the de-
pendence of ∆H(w, l1, l2) with τ can be calculated. The dimensions of the trapezoid corresponding
to each optimized configuration are obtained as:

rA ≡ (x0, 0)

rB ≡ (x0 + h0, l1)

rC ≡ (x0 + h0, l1 + w)

rD ≡ (x0, l1 + w + l2)

B. The line tension model as a simplified LOS approach207

At low stresses the stability of the kink-pair configuration is controlled by the elastic interaction208

between the kink segments. However, as the stress increases and the shape of the line resembles209

more a ‘bulged’ structure with low curvature. In such cases, the elastic energy of the system is well210

approximated by a so-called line tension representation [57, 58], where the energy of the kink-pair211

structure is controlled by the curvature of non-straight segments. Within elasticity, the line tension212

is defined as:213

T (θ, a) =
∂Eself(θ, a)

∂`
(14)214

which is the dislocation energy per unit length, depending only on dislocation character θ and the
core width a. For small dislocation segment lengths, `, the above expression can be approximated

by T (θ, a) ≈ Eself (θ,a)
` . This form of T (θ, a) replaces the self and interaction elastic energies in the

enthalpy expression for the kink-pair configuration. ∆H ({ri}) now reads:

∆H(z, τ) =

∫
dz [∆T (θ(z), a) + ∆ec(θ(z), a) + ∆UP(x(z), τ)−Wm(τ)] = (15)

=

∫
dz [(T (θ(z), a)− T (θ = 0, a)) + (ec(θ(z), a)− ec(θ = 0, a)) + ∆UP(x(z), τ)−Wm(τ)]

(16)

where ec, Wm and ∆UP are defined as in Secs. II 2, III A 1 and III A 4. Eq. (15) can be represented215

as a piecewise sum along the z direction of the contributions of individual segments of length b [59]:216

217

∆H({xi}, τ) = b
∑
i

[
T (θi, a)− T (θ = 0, a) + (ec(θi, a)− ec(θ = 0, a)) + ∆UP(xi, τ)− τb

2
(xi+1 + xi − 2x0)

]
(17)218

where UP(x, τ) is given by equation (10), and θi = tan−1
(
xi+1−xi

b

)
. The geometry of one dis-219

cretization segment is shown in Fig. 4 for the calculation of the mechanical work.220221
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xi
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x0

b

x

z

θi

FIG. 4. Representation of a discrete segment used to calculate the enthalpy of the kink-pair configuration
using the line tension LOS model. x0 is calculated as in eq. (12).

The expression utilized in eq. (14) is derived from those provided by Cai et al. [53], which
expressed in piecewise form for use in eq. (17) is:

T (θ, a) =
µb2

4π(1− ν)

{(
1− ν cos2 θ

)
ln
b+
√
b2 + a2

a
− 3− ν

2

(√
b2 + a2 − a

b

)
cos2 θ

}
(18)

The equilibrium configurations are obtained by minimizing the value of ∆H in eq. (17) as a function222

of the set of coordinates {xi} at each stress point τ .223

IV. IMPLEMENTATION AND PARAMETERIZATION OF LOS MODELS224

In this section we explain how to process the atomistic results described in Sec. II for use in the225

EI and LT models just presented. First, we discuss the expressions for the stress-dependence of the226

Peierls potential, followed by those pertaining to the core energies.227

A. The Peierls potential228

For the EI model, the integral in eq. (13) can be solved analytically and used directly in expression
(2):

∆UP({ri}) =

(√
1 +

l21
h20

+

√
1 +

l22
h20

)∫ x0+h0

x0

UP(x)dx− UP(x0) (l1 + l2) =

=
U0

2(1− α)

{(√
1 +

l21
h20

+

√
1 +

l22
h20

)[
h0

(
1− 3α

4

)
+

− h0(1− α)

2π

(
sin

2π(x0 + h0)

h0
− sin

2πx0
h0

)
− h0α

16π

(
sin

4π(x0 + h0)

h0
− sin

4πx0
h0

)]
+

− (l1 + l2)

[
1− cos

2πx

h0
− α

2

(
1− cos

2πx

h0

)2
]}

(19)
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where we have used dzβ =
lβ
h0
dx, with β = 1, 2. The atomistic information provided in Sec. II 1229

has been introduced into this expression in the form of stress-dependent correlations for U0 and α.230

We have seen that U0 scales as τn whereas α is a linear function of τ . The specific expressions and231

the fitting procedure followed to obtain these correlations is described in Appendix A.232

For the LT model, UP(xi) is evaluated directly using (10) for each discretized segment xi. Sum-233

mation over all segments then gives us the total potential energy of the line, in accordance with234

eq. (17). The expressions for U0(τ) and α(τ) are identical to those used in the EI model.235

B. Core energies236

The core energy results from atomistic calculations shown in Sec. II 2 are introduced in the same237

manner in the EI and LT models. In principle, the main features of ec that a fitting procedure must238

capture are its dependence of both dislocation character (i.e. angle θ) and core width a. However,239

what is novel in this work is the slight asymmetry about the edge character orientation displayed240

in Fig. 2. For this, we additively separate the total core energy into an a-independent term, and241

an a-dependent one:242

ec(θ, a) = f(θ) + g(θ) log
(a
b

)
(20)243

where f(θ) and g(θ) are obtained by fitting the data in Fig. 2 to Fourier series expansions of the244

type:245

y(θ) = c0 +

3∑
k=1

ck sin(2kθ) + dk cos(2kθ) (21)246

These functions can yield the asymmetry about θ = π/2 and naturally satisfy the condition that247

their first derivative is equal to zero for θ = 0 and θ = π (zero self-force for screw orientation).248

It is important to clarify that this partition of the core energy is mathematically arbitrary, and249

other works have opted for different approaches [60]. The dependence of the dislocation core energy250

with both the character angle and the core size is shown in Fig. 5. The details about the fitting251

procedure and the numerical values of the coefficients ck and dk are given in Appendix B.252253

C. Implementation details254

1. Elastic interaction model255

In the EI model, the kink-pair configuration itself represents the activated state between the two256

minima in the Peierls potential representing the initial and final screw dislocation configurations.257

As such, the enthalpy in eq. (2) must be maximized along the reaction path. This is done by258

obtaining the saddle point of the entire structure as a function of the position of points A, B,259

C, and D in Fig. 3. However, standard (unconstrained) optimization algorithms are difficult to260

stabilize in an energy landscape that is only conditionally convergent [61]. The geometry of the261

configuration, however, can be used to identify conditions that favor convergence.262

This can be done, for example, by noting that the trapezoid depicted in Fig. 3 represents a263

dislocation loop (with three ‘real’ segments and one ‘anti’ segment) whose elastic energy is known264
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FIG. 5. Dislocation core energies for EAM interatomic potentials as a function of the dislocation character
angle θ and the core size a. The curves generated using eq.(20) for nine different values of a are also plotted.

to be finite. This imposes limits on the minimum and maximum size of the trapezoidal structure265

that are discussed below.266

(i) The condition of finite energy means that the total activation enthalpy in eq. (2) is independent267

of the size of segments LA and DR. Using isotropic singular linear elasticity, the terms268

depending on the lengths of these segments are seen to cancel in the analytical expressions for269

the total elastic energy of the trapezoidal configuration. With the non-singular theory, things270

are not quite as simple, as analytical expressions are not straightforward to obtain. However,271

the same premise must still hold. Here, we have performed a numerical study to confirm272

this, and have established the minimum length of segments LA and DR to have converged,273

length-independent energies. Figure 6 shows the combined value of (∆Eint+∆Eself) in eq. (2)274

as a function of the value of ‖LA‖ ≡ ‖RD‖. Our results show that values of approximately275

200b or larger must be used to achieve length independence. In most simulations, we have276

typically used a value of 1000b.277278

(ii) At the same time, the separation of segments AB and CD (i.e. the value of w in Fig. 3)279

must be sufficiently small for the elastic interaction energy to be finite within the numerical280

tolerance of our minimization procedure. w changes with stress, but we have found that, as281

a rule of thumb, at zero stress, values of no less than 40b should be considered.282

2. Line tension model283

The case of the LT model differs from that of the EI model just explained. In this case, the saddle284

point configuration corresponds to a bulged structure that lies somewhere along the x coordinate.285

This configuration does not generally correspond to one where the line lies on either of the minima286

of UP. Therefore, one must vary the size of the bulge, defined by a variable h along the x path287

between x0 and h0 until the system’s enthalpy goes through a maximum. At each stress, this path288

is discretized and the saddle point structure found. This is expected to yield minimum energy paths289

that are substantially equivalent to dynamic trajectories [62]. To improve the rate of convergence,290



13

1.00

1.05

1.10

1.15

1.20

(∆
E

in
te
r
+
∆
E

se
lf
)
(e
V
)

0 250 500 750 1000
‖LA‖ (b)

FIG. 6. Elastic interaction and self energies as a function of the length of LA and DR segments.

here we invert the potential energy landscape by altering the sign of the mechanical work along291

the path as to balance the rest of the terms in the enthalpy and have net zero effect on the total292

energy. This approach has proven robust for the calculations undertaken in this work.293

Once the saddle-point configuration is found for each stress, we approximate the left and right294

sides of the bulged structure with an arc tangent function. All the corresponding outputs (i.e. w,295

l1, l2, etc) are calculated upon mathematical analysis of the best approximants obtained for each296

case.297

V. RESULTS298

The first-principles method used here for parameterizing and benchmarking the LOS model299

calculations are atomistic calculation results using two different interatomic potentials, EAM and300

MEAM. All atomistic calculations were done using molecular statics at 0 K. Table I (top half) gives301

several parameters of importance obtained for each potential. Below, we discuss the most important302

results for the EI and LT models. Most results are shown in normalized form to facilitate inter-303

comparison: (i) the stress is expressed as the fraction of the Peierls stress, s = τ/τP, (ii) energies304

are plotted relative to the zero-stress activation enthalpy ∆H0, and (iii) lengths are expressed in305

Burgers vector units, b, or Peierls potential wavelength h0.306307

A. System length scales: line shapes, kink separation, and kink widths308

For the sake of clarity, we only show results for the EAM potential in the main body of the text,309

and discuss MEAM results in the context of each EAM graph (more discussion provided in Sec. VI310

and Appendix D). Figure 7 shows the optimized saddle point configurations for kink pairs as a311312

function of stress under the EI and LT models for the EAM potential (the configurations obtained313

using the MEAM potential is qualitatively similar to those obtained using EAM potential). The314

graphs for the EI model results do not show segments LA and DR in their entirety but a diminishing315
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TABLE I. Interatomic potential-specific parameters. The top half of the table includes atomistic parameters
used in the LOS models: a0 is the lattice constant, τP is the Peierls stress, Ulk and Urk are the energies of
left and right kinks, respectively, and ∆H0 = Ulk +Urk is the zero-stress kink-pair activation enthalpy. The
bottom half of the table lists values of parameters extracted from the LOS model calculations, separated
between EI and LT calculations: a is the core width, p and q are the exponents of the phenomenological
kink-pair enthalpy expressions, ∆H∗

0 is the intercept of the kink-pair activation enthalpy with the vertical
axis, and τa is the stress at which the activation enthalpy vanishes, equivalent to the athermal stress in
experimental tests.

EAM MEAM

a0 [Å] 3.19 3.14
τP [GPa] 2.0 3.4
Ulk [eV] 0.71 0.81
Urk [eV] 0.92 0.99

∆H0 [eV] 1.63 1.80
EI LT EI LT

a [b] 0.70 0.80 0.15 0.50
p 0.41 0.83 0.45 0.80
q 1.05 1.38 1.09 1.46

∆H∗
0 [eV] − 1.68 − 1.84

τa [GPa] 1.84 1.99 3.22 3.61
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FIG. 7. Optimized kink pair configurations as a function of stress for the EAM potential. (a) Elastic
interaction model. (b) Line tension model.

kink separation, w, can generally be observed as the stress increases. This variation of w with τ316

is plotted in Figure 8. In accordance with elasticity theory, the kink-pair length diverges at zero317

stress, decreasing gradually with stress to a final value of ≈ 2b. For its part, lacking an interaction318

energy, the results for w in the LT model are less significant, but they are weakly dependent on319

stress. Interestingly, LT predictions for the EAM and MEAM potentials result in differences of320

about a factor of two between both atomic models (higher for MEAM). As well, EAM values are321
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in very good agreement with the corresponding atomistic results (around 10b, from ref. [41]).322
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FIG. 8. Kink separation in the kink-pair under stress (normalized to the corresponding Peierls stress). The
EI results indicate divergence at zero stress, in accordance with elasticity theory, while the LT values are
finite at all stresses. Atomistic results for the EAM potential are shown for comparison, showing very good
agreement with predictions by the LT model.

323

324

As shown in Fig. 7 for the LT model, the activated state for the dislocation is a bulged config-325

uration straddling the Peierls potential. The amplitude of this bulge is plotted in Figure 9 as a326

function of stress for the EAM potential. As the figure indicates, this amplitude coincides with the327

wavelength of UP(x), h0 at zero stress, and is zero at the Peierls stress, consistent with the definition328

of the activated state at both ends of the stress range. Our results show excellent agreement with329

the expected analytical form for h in line tension models [62, 63] (shown as lines in Fig. 9).330

While these results are interesting, one of the most important aspects in this work is the asym-331

metry in the dislocation core energies introduced in Sec. II 2. This asymmetry manifests itself as332

differing kink ‘widths’, i.e. the spreading length along the dislocation line (z-coordinate) of the333

segments connecting two consecutive Peierls valleys. These are labeled l1 and l2 in Fig. 3. The334335

results for these two lengths are shown in Figure 10. With the EI model, there are slight differences336

between the left and right kinks, with the left one, l1, being larger than the right one, l2. Contrary337

to the situation of the kink-pair separation w, here the EAM kinks spread over approximately twice338

the distance of the MEAM ones. These results also show a slow decrease of l1 and l2 with stress339

(kinks approaching the edge orientation), although interestingly these widths are around 1.5b for340

the MEAM potential and between 3 and 4b for EAM. This stands in contrast to atomistic results,341

which predict kink widths of approximately 25b for EAM calculations [41]. For their part, LT342
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FIG. 9. Amplitude of the saddle-point configuration for the LT model as a function of stress. The results
for EAM (black squares) agree well with theoretical predictions [63] (solid line)

results show no appreciable difference between l1 and l2. Here too calculations for the EAM po-343

tential result in larger kink widths than for the MEAM potential, between 4.5 and 6b vs. 3 and 4b,344

respectively. However, l1 and l2 display a different dependence with stress in this case, reaching a345

minimum at low stresses but growing with stress subsequently.346

B. System energies: kink energies and activation enthalpies347

The most important physical quantity to extract from our models is the kink-pair activation348

enthalpy as a function of stress. This is used in a number of approaches to describe thermally-349

activated screw dislocation motion in bcc metals (as it has been done in our works in the past,350

e.g. [41, 64]). In Figure 11 we show the results for the EI and LT models. To facilitate comparison,351

we normalize the enthalpies by the unstressed activation enthalpy obtained in atomistic calculations352

in each case, ∆H0, and the stresses by the Peierls stress τP. These parameters are all given in Table353

I. Note that (i) the enthalpy at zero stress for the EI model is undefined and therefore the data354

point shown in Figure 11 is the atomistic value, and (ii) that the actual intercept of the activation355

enthalpy curves for the LT model with the vertical axis does not necessarily correspond to the356
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FIG. 10. Kink widths, l1 and l2 (refer to Fig. 3), as a function of stress.

atomistic value2. This is what is labeled as ∆H∗0 in Table I. Similarly, intercepts with the stress357

axis in all cases do not necessarily match the value of τP, with the actual values labeled as τa in358

Table I. We interpret these stresses as being the ‘athermal’ limits for the kink-pair mechanism in359

each case.360361

Most importantly, the values of a used in eqs. (6), (8), and (18) to obtain these energies have362

been chosen as to provide the best fit of the activation enthalpy curves to the known atomistic363

values of ∆H0 and τP. In other words, we arbitrarily set the core width value to match known364

‘first-principles’ calculations of the potential in question. These values of a are provided also in365

Table I and, as can be seen, are always less than one Burgers vector distance. We will return to366

this issue in Sec. VI.367

Finally, it is common practice to fit the curves in Fig. 11 to the Kocks-Ashby-Argon phenomeno-368

logical expression [65]:369

∆H(τ) = ∆H0

(
1−

(
τ

τP

)p)q
(22)370

where p and q are exponents that describe the asymptotic behavior of ∆H(τ) in the limits of371

zero stress (q = 1.25) and the Peierls stress (p = 0.5) for isotropic linear elasticity [58]. Since372

tungsten is elastically isotropic, our model provides an excellent testbed for these values, which373

have indeed been reproduced for stress-independent UP and symmetric ec(θ, a). These exponents374

2 It is also important to note that ∆H0 is obtained atomistically via procedures that are insensitive to periodic
image interactions [40].
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FIG. 11. Kink-pair activation enthalpy for the EI and LT models. The results are normalized to the
unstressed activation enthalpy obtained in atomistic calculations and the Peierls stress in each case (refer
to Table I).

are also provided in Table I. Note that we use eq. (22) only to facilitate comparison across the375

atomistic, EI, and LT model results (and for the EAM and MEAM cases) via the values of p and376

q, without implying its validity for any specific case.377

To evaluate again the effect of the core energy asymmetries on the energetics of the activated378

states, we calculate in Figure 12 the individual kink energies as a function of τ . As no appreciable379

difference was found for the LT model predictions, we omit them from the figure for clarity. The380

energies shown include the interaction and self-energies in the EI model of the kink segments only.381

Only a noticeable difference can be found for the EAM results, approximately 10%, whereas kinks382

energies are practically identical for the MEAM potential. The individual atomistic kink energies383

are given in the table above as well (for zero stress), differing about 20% between themselves. We384

also discuss this more in depth in the next section.385
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FIG. 12. Energies of individual kinks for LT models for EAM potential. The differences are due to the
asymmetry of the core energy functions about the edge orientation.

VI. DISCUSSION386

A. Comparisons between LOS models387

As indicated in Sec. I, different approximations to the line integral along the x (glide) direction to388

calculate the energy of the activated kink-pair state result in different LOS model formulations, each389

with its own advantages and disadvantages. The EI model approximates the bulge configuration390

better at low stresses, when the activated state extends across the entire Peierls potential period and391

the kink-pair energy is dominated by elastic interactions between kink segments. This allows the392

use of a simple trapezoidal structure to represent the system, which has the benefit of consisting of393

only four degrees of freedom. This considerably speeds up convergence of the energy minimizations,394

which allows us to study the parametric space of the model efficiently. The novel aspect of the EI395

model used here is the asymmetry of the left and right kinks, by virtue of the character dependence396

of the core energy function. Regarding this, the EI model results predict differences of less than 1%397

in the kink widths for both EAM and MEAM parameters (Fig. 10), while the difference in enthalpy398

is slightly larger (Fig. 12).399

For its part, the LT model is best suited for lines with small curvature, when the bulge config-400

uration is small, a situation typically encountered at high stresses. The implementation of the LT401

approach involves, however, up to hundreds of discrete segments, which increases the computational402

time severalfold compared to the EI model. LT results show no discernible difference in the values403

of both the energies and the kink widths. Thus, it appears that the LT model is less sensitive to404
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the core energy asymmetry than the EI model.405

In terms of EAM-vs-MEAM differences, as shown in Fig. 11, when normalized to the correspond-406

ing values of ∆H0 and τP, the shapes of the LT and EI models differ in less than 3%. This is407

an encouraging result as it could potentially indicate that normalized LOS model predictions can408

be transferred across different potentials, which would eliminate a common source of variability in409

dislocation property calculations.410

B. Defining the core size by matching LOS models to atomistic data411

The size of the dislocation core (a in this work) is a mathematical construct introduced to remove412

the singularity inherent to the theory of elasticity. As such, it does not possess any intrinsic physical413

meaning, serving instead as an arbitrary limit between the elastic and inelastic regions. However,414

one can remove some of this arbitrariness by matching the LOS model calculations to atomistic415

results of the total energy of kink pair configurations. By adjusting the value of a to partition the416

elastic and core energies in eqs. (1) and (20) in such a way as to match the atomistic kink-pair417

energies at zero stress (obtained independently for the EAM and MEAM potentials), one can relate418

the value of the core width to the size of a region that contains the inelastic contribution to the419

total energy. Following these approach, we obtain values of 0.7b (EI) and 0.8b (LT) for the EAM420

case (∆H0 = 1.63 eV) and 0.2b and 0.5b for MEAM (∆H0 = 1.78 eV). The fact that these are421

between half and a full Burgers vector may be indicative of the order of magnitude to be expected422

for this parameter. However, we emphasize that this is one attempt to establish the value of a423

using a physical criterion, but it is difficult to ascertain how accurate or valid it is relative to other424

approaches [66–68]. In any case, we believe this to be an interesting aspect of our calculations and425

worth reporting as an original application of LOS models.426

C. Building 3D kink-pair models from 2D atomistic data427

One of the advantages of studying straight dislocations is the existence of translational symmetry428

along the line direction, which generally reduces the study of its properties to quasi 2D structures429

that need only capture the minimum repeatable translational unit along the dislocation line. For430

screw dislocations, this length is of course the Burger’s vector, which is typically the shortest lattice431

vector of the crystal. For this reason, general dislocation properties can be efficiently and accurately432

calculated using thin atomistic supercells, which makes them amenable to electronic structure433

calculations. The existence of kink pairs breaks the translational symmetry of screw dislocations in434

bcc (and other) crystals. Being the fundamental structure governing screw dislocation dynamics,435

this necessitates using 3D configurations which precludes the use of computationally demanding436

approaches such as DFT. Consequently, it has been a goal of the bcc plasticity community to assess437

whether 2D information such as what has been presented here (Secs. V A and V B) suffices to capture438

3D behavior when incorporated into efficient continuum models of dislocation line configurations.439

Our calculations provide a testbed for this idea, in line with prior efforts [56], as they allow a440

direct comparison to strictly atomistic results of kink-pair configurations using EAM [41, 64]. This441

is illustrated in Figure 13, where a good agreement between the LOS results and the atomistic442

calculations can be appreciated. As the figure shows, the LT model agrees with the atomistic result443

at low stresses, while the EI model produces a better match at high stresses. While this may appear444

contradictory with the common assumption that the EI is better suited for low stresses and the LT445

model for high stresses, the non-screw segments of the trapezoid in the EI case are highly tilted446
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FIG. 13. Comparison of EI, LT, and atomistic models for the EAM potential fitted to eq. (22). The
gray dashed line corresponds to LT results assuming no asymmetry in the core energies and no stress-
dependence of the Peierls potential (p = 0.88, q = 1.37), while the gray dotted line is the equivalent EI
curve (p = 0.50, q = 1.29). The vertical dashed lines indicate the limits of the ‘low’ and ‘high’ stress
regions, defined ad hoc to be at 0.25σP and 0.75σP, respectively.

towards the screw character due to the combined action of dislocation self and core energies,which447

is not unusual in bcc metals. This makes the standard assumption of the EI model weakly true448

in this case. For its part, the LT model works well at low stresses not due to the shape of the449

kinks but because it provides stable kink-pair configurations at stresses where elastic models do not450

converge. Partially, this is because dislocation segments do not interact with one another in the451

LT framework, the driving force is only the curvature of the line, which is always minimized for a452

given applied stress. At high stresses, the LT fails because the line is‘bulged’ , i.e. it has so much453

curvature that the non-interaction assumption starts to fail. In the intermediate stress range, the454

EAM calculations lie in between both LOS approaches. Albeit restricted to very specific conditions,455

this verification result suggests that continuum models parameterized with atomistic 2D results can456

indeed be good approximants of full atomistic behavior in tungsten. While it is not clear how much457

of this agreement can be attributed to specific features of W, such as elastic isotropy or the choice458

of interatomic potential, we can cautiously conclude that LOS models that employ 2D information459

can be trusted to provide acceptable estimates of ∆H in other bcc metals.460
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D. Discussion of other works461

Researchers have been calculating kink-pair activation enthalpies using continuum elastic models462

since the 1950s. As atomistic information rinvolving fundamental dislocation properties has become463

available [54, 60], we have been able to enrich continuum formulations and increase their physical464

accuracy. There are several examples of this in the literature [52, 56, 59, 68], each highlighting one465

specific aspect of the physics of kink pairs in screw dislocations in bcc metals. However, to the best466

of our knowledge, this work constitutes the first LOS formulation to simultaneously integrate (i)467

the stress dependence of the Peierls potential, (ii) the asymmetry of the dislocation core energies468

with respect to dislocation character, and (iii) the extraction of the core width by matchig LOS469

results with atomistic results.470

VII. CONCLUSIONS471

Our first conclusion is that one can successfully incorporate atomistic data obtained in quasi-2D472

conditions into continuum elastic models of 3D kink-pair configurations. We have demonstrated that473

the stress dependence of the Peierls potential and results for core energies as a function of dislocation474

character can be integrated into elastic interaction and line tension models in a straightforward475

manner. Moreover, we report a slight asymmetry in the core energies about the edge orientation in476

W, in accordance with a periodicity of (0, π) for the dislocation character space in bcc metals.477

The asymmetry in the dislocation core energies accounts for no more than 10% difference in left478

and right kink energies (compared to no less than 20% in atomistic results) and results in very479

slight variations in their spreading lengths. Thus, we conclude that, while they are likely one of480

several contributions to this energy asymmetry, core energies alone cannot capture it in its entirety.481

However, a representation of core energies in terms of the core width parameter is helpful to extract482

the value of this parameter by matching to atomistic data. In our particular case, we find that this483

core width is always less than one Burgers vector distance.484

Including the stress dependence of the Peierls potential in the models appears to shift the athermal485

stresses to higher values compared to when just the zero stress potential is used, more in line with486

the atomistic values of the Peierls stress. However, this effects is small as well.487

Finally, our results suggest that atomistic calculations of kink-pair configurations result in acti-488

vation enthalpies that are in between elastic interaction and line tension predictions. In particular,489

at low stresses atomistic data agree better with line tension calculations, while at high stresses the490

agreement is better with full elastic models.491
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Appendix A: Fitting procedure of the stress dependence of the Peierls potential498

Here we explain how to introduce the resolved shear-stress dependence in eq. (10). The τ -499

dependence enters through the parameters U0 and α and our goal here then is to obtain compact500

expressions for U0(τ) and α(τ). To this end, we first plot the values of U0 and α with stress in501

Figures 14 and 15 for the EAM and MEAM potentials, respectively.502
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FIG. 14. Fitting of U0 and α for the EAM potential
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FIG. 15. Fitting of U0 and α for the MEAM potential

As the figures show, generally there is a nonlinear dependence of U0 with stress and a linear one505
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for α. Consequently, we use power laws for U0(τ) and linear relationships for α(τ).506

• Fitting of U0:507

– EAM: Due to the change of convexity of the EAM U0 data, we split the fitting into two508

regions.509

1. In the low stress region, τ ≤ 0.8 GPa,510

U0(τ) = 0.005τ1.49 + 0.06 (A1)511

2. In the high stress region, τ > 0.8 GPa,512

U0(τ) = 0.21 (τ − 0.7643)
0.005 − 0.14 (A2)513

– MEAM:514

U0(τ) = 0.003 (τ − 0.13)
1.6742

+ 0.11 (A3)515

with U0 expressed in [eV/b] when τ is expressed in GPa.516

• Fitting of α:517

1. EAM:518

α = 0.077τ + 0.152 (A4)519

2. MEAM:520

α = 0.115τ − 0.515 (A5)521

with α non-dimensional when τ is in GPa.522

We emphasize that these expressions have no implied physical meaning and are simply used for523

convenience in the range of stresses considered here.524

Appendix B: Fitting of core energy data525

As it was shown in Section II 2, dislocation core energies expressed as:

ec(θ, a) = f(θ) + g(θ) log
(a
b

)
where both f(θ) and g(θ) are Fourier series of the type:

y(θ) = c0 +

3∑
k=1

ck sin(2iθ) + dk cos(2iθ)

Note that this form for f(θ) and g(θ) depends only on θ, with the a-dependence contained exclusively526

in the logarithmic term. This mimics the partition represented by eq. (1). The coefficients in these527

expressions are obtained by least-squares fitting to the atomistic data points obtained from Fig. 2528

by varying a and θ, and are listed in Table II. f(θ) and g(θ) are plotted as a function of θ in Fig. 16529

along with the corresponding Fourier series curves for the EAM and MEAM potentials.530
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TABLE II. Values of the Fourier coefficients in eq. (21) for the EAM and MEAM potentials.

Potential function c0 c1 d1 c2 d2 c3 d3

EAM
f 1.1017 0.0149 −0.7895 0.0082 −0.0634 −0.0331 −0.0078

g 0.7067 - −0.1141 - - - -

MEAM
f 0.8390 0.0092 −0.5730 −0.0191 −0.0325 −0.0118 −0.0122

g 0.7275 - −0.1179 - - - -

Appendix C: Expressions of the functional E∗ for the interaction energies531

The functional E∗ that appears in the formulation of the interaction energies Eint (cf. Section III)532

takes different forms depending on the nature of the interaction. In the following, the non-singular533

elastic expressions given by Cai et al. [53] for parallel and non-parallel segments are provided. In534

both cases, the common Burgers vector to both segments is b.535

1. Non-parallel segments536

This is relevant for the interaction between kink segments and screw segments. The energy537

functional E∗(r) ≡ Enp(r) is defined as:538

Enp(r) =

µ

4π(1− ν)(u · u)

{
r · ln [Ra + r · t′] ((A1 −A′2)v′ +A′3u) +

+ r · ln [Ra + r · t] ((A1 −A2)v +A3u) +A4Ra+

+
(A1 −A5)

[
2(r · u)2 + (u · u)a2

]√
(r · u)2 + (u · u)a2

arctan

{
(1 + t · t′)Ra + r(t + t′)√

(r · u)2 + (u · u)a2

}} (C1)539

where t = (r2 − r1)/Lm and t′ = (r4 − r3)/Ln are the respective line tangents (Lm = ‖r2 − r1‖
and Ln = ‖r4 − r3‖), u = t× t′, v = u× t, v′ = t′ × u, and:

Ra =
√
r · r + a2

A1 = (1 + ν)(b · t)(b · t′)

A2 = (b2 + (b · t)2)(t · t′)

A′2 = (b2 + (b · t′)2)(t · t′)
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A3 = 2(b · u)(b · v)
t · t′
u · u

A′3 = 2(b · u)(b · v′) t · t
′

u · u

A4 = ((b · t)(b · v) + (b · t′)(b · v′))(t · t′)

A5 = 2 (b× u)
2 t · t′
u · u

where b = ‖b‖. These expressions simplify significantly for perpendicular segments.540

2. Interaction energy between two parallel segments541

This interaction includes the interaction of segments of pure screw character with one another542

and the interaction of kink segments of the same kind with one another. As above, the Burgers543

vector is assumed to be the same for all segments. The interaction energy functional has the form544

E∗(r) ≡ E‖(r):545

E‖(r) =
µ

4π(1− ν)

{[
2b(b · r)− b2(t · r)(3− ν)

]
ln {Ra + t · r}+Rab

2(2− ν)+

− Ra
2

(b · r − bt · r)
2 − a2b2(ν − 1)

R2
a − (t · r)2

} (C2)546

where t is the common line tangent to both segments.547

Appendix D: Calculation using MEAM potential548

Here we show the series of calculations for the MEAM potential. Except for full atomistic549

kink-pair enthalpy calculations under stress, the database for the EAM and MEAM potentials is550

equivalent. (cf. Table I). Shown are the variation of Peierls potential with stress (in Fig. 17), Fourier551

fits of the core energies (Fig. 18), kink separation (in Fig. 19), kink height (Fig. 20), kink widths552

(in Fig. 21), and activation enthalpy in Fig. 22553554
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