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The kink-pair activation enthalpy is a fundamental parameter in the theory of plasticity of body-
centered cubic (bcc) metals. It controls the thermally activated motion of screw dislocation at
low and intermediate temperatures. While direct atomistic calculations of kink-pairs on screw
dislocations have reached a high degree of accuracy, they can only be practically performed using
semiempirical interatomic force fields, as electronic structure methods have not yet reached the
level of efficiency needed to capture the system sizes required to model kink-pair structures. In
this context, an alternative approach based on standard three-dimensional elastic models, which
are efficient but lack atomic-level information, coupled to a substrate potential that represents the
underlying lattice, has been widely applied over the past few years. This class of methods, known as
'line-on-substrate’ (LOS) models, uses the substrate potential to calculate the lattice contribution to
the kink-pair energies. In this work, we introduce the stress-dependence of the substrate potential
into LOS models to evaluate its impact on kink-pair energies. In addition, we present a new piece of
dislocation physics in bce metals, i.e. the observation of asymmetric dislocation core energies in the
dislocation character space. This asymmetry is also elevated to the continuum level by adding core
energies to the general LOS formulation, and used to explain potential energy differences known
to exist between left and right kinks in bcc metals. More importantly, by matching the total LOS
energies to previously calculated atomistic energies of kink-pair configurations, we issue a rule to
establish the value of the so-called core width in non-singular elasticity theories, and reduce its
arbitrariness as a mathematical construct.
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I. INTRODUCTION

In the field of dislocation physics, body-centered cubic (bcc) metals are peculiar due to the
existence of non-planar dislocations with screw character and thermally-activated mobility that
control plastic flow at low-to-intermediate temperatures. These dislocations have a Burgers vector
b equal to 1/2(111) and move on close-packed planes (primarily {110} and {112}) [1-5]. Generally,
this motion is understood to occur over a periodic energy landscape known as the Peierls potential
via the thermally activated nucleation of steps on the dislocation line, known as kink pairs, and
their subsequent sideward relaxation [6-12]. Screw dislocations in bce materials often behave in
non-crystallographic ways, giving rise to phenomena such as pencil glide, asymmetry of the critical
stress in the twinning and anti-twinning glide directions, asymmetry of the critical stress under
tension/compression loading, or anomalous slip [13-23]. Most of these peculiarities are typically
attributed to the highly compact (non-planar) structure of the 1/2(111) screw dislocation core,
which has naturally attracted much attention over the last several decades mostly in the form of
atomistic models [24-26]. Based on recent work using electronic structure calculations, a picture
has emerged whereby the preferred dislocation core structure in bcce crystals has been established
to be a compact, non-dissociated core resting on an underlying sinusoidal Peierls potential, Up
[27-31].

The strong temperature dependence of the yield and flow stresses displayed by most bce metals
is generally rationalized in terms of the thermally-activated nature of kink-pair nucleation. As
such, a principal objective of the materials community in bcc alloys has been to develop models to
characterize the activation energy of kink pairs. These are typically based on energy minimization
of curved string configurations lying on a static energy substrate in either one [32, 33] or two
dimensions [34]. The energy of the string is obtained by solving an integro-differential equation
in a two-dimensional space defined by the glide z and screw z directions that accounts for the
elastic energy of the line, its position on the substrate potential, and the mechanical work done by
the stress 7 [35, 36]. These so-called line-on-substrate (LOS) approaches have been traditionally
approximated by models that reduce the double line integral (along = and z) to discrete sums along
one or both integration dimensions. In the so-called line-tension (LT) model the integral along the
screw direction is replaced by a dislocation self-energy which depends on the curvature of the line.
The other integral is solved along the glide coordinate, yielding the equilibrium shape of the kink-
pair configuration on the substrate potential. These activated configurations are usually referred to
as "bulge’ structures as they resemble a protuberance on the dislocation line projected along the glide
direction. The LT approach works well when this protuberance is small, i.e. at high and intermediate
stresses!, but not at low stresses when the equilibrium position of the line is near the minimum of
potential energy Up [32, 33]. For low values of 7, the elastic interaction (EI) between kinks governs
the line energy, in which case one can approximate the bulge configuration by a polygon (typically
a trapezoid) with mutually-interacting elastic segments, reducing the double integral to a set of
discrete convergent sums [37, 38]. While this is a general consideration, irrespective of the material
and the dislocation type, the case of screw dislocations in tungsten does not really follow this idea.
This is because non-screw segment of the trapezoid are highly tilted towards the screw character
(which is a consequence of the core energy values and not uncommon in bee metals).

While insights gained from these models have improved our understanding of the activated states
of kink-pair configurations, knowledge obtained from a decade or so of atomistic calculations sup-

1 While the terms ‘low’ and ‘high’ stress used throughout this paper is somewhat arbitrary, here, for reference, we
have decided to assign a value of 0.250p as the high limit of the low stress region, and 0.750p as the low limit of
the high stress region.
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ports the need to augment LOS models with inelastic contributions brought about by non-linear
effects of atomistic nature. The most important of these are (i) the alteration of the Peierls potential
energy function in the presence of resolved shear stress, and (ii) the consideration of core energies
into the energy description of kink-pair configurations. At low stresses, one can safely assume that
Up remains unchanged and the effect of stress on the dislocation can be linearly decoupled from
the underlying substrate in the form of a mechanical work. However, at stresses approaching the
critical stress, referred to as the Peierls stress 7p at 0 K, it is insufficient to consider only the
zero stress internal energy to represent the Peierls trajectory. This trajectory is defined as the
rectilinear path, denoted by the reaction coordinate x, between two equivalent equilibrium states
(known as ‘easy core’) on the Peierls potential, which has periodicity hy = aoé, where ag is the
lattice constant. As recent calculations have shown, Up can couple to the applied stress in non-
negligible ways [39]. For its part, the inelastic contribution to the total dislocation energy, referred
to as the core energy, is known to be potentially an important driving force in the minimization
of dislocation line configurations (e.g. the so-called self-force in dislocation dynamics models). In
particular, as will be shown below, in bee metals the dependence of the core energy with dislocation
character is periodic in the entire [—g, g] angular range of 6 (taken to be equal to zero for the
screw orientation), contrary to other crystal structures, which display a [O, %} periodicity. While
this is a consequence of a well-known asymmetry of the bee crystal lattice [4, 15, 16], it has not
been included into continuum models of kink-pair configurations to date.

In this work, we explore the effect of these features on numerical LT and EI models of kink-pair
configurations modified to account for variations in Up(z) brought about by the applied stress and
character-dependent dislocation core energies. Ultimately, we are testing the notion of whether
atomistic information based on (quasi) 2D simulations can be effectively integrated into dislocation
energy models of 3D line configurations is correct to interpret bee plastic behavior. As well, we check
whether fine details obtained in atomistic models, such as, e.g., the energy asymmetry between left
and right-handed kinks that has been observed in several bce metals [40-42], can be accurately
captured by this coupled approach. Our paper is organized as follows. First we introduce the
unprocessed physical inputs as obtained from atomistic simulations. Next, we review the theoretical
formulation of the EI and LT models employed here. This is followed by details about the coupling
between atomistic information and the discretized continuum models. We then show results for two
different atomistic force fields for tungsten. We conclude the paper with a discussion of the results
and some general conclusions.

II. RAW ATOMISTIC INPUTS

Based on a prior analysis of several W interatomic potentials for screw dislocation property
calculations [43], we have selected an embedded-atom method (EAM) [44] and a modified-EAM
(MEAM) potential [45] as the most suitable in terms of physical accuracy and computational
efficiency. Using these two potentials, we have studied the dependence of Up(z) on the resolved
shear stress, and of the dislocation core energies on dislocation character. This furnishes what we
refer to as ‘raw’ atomistic inputs, i.e. before they are processed to be in usable form for the LOS
models.
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1. Peierls potential

The Peierls potential Up(x) is obtained as the minimum energy path along the reaction co-
ordinate z joining two adjacent equilibrium dislocation core configurations (known as easy core
configurations). This is done using the nudged elastic band (NEB) method [46] in small atomistic
supercells reflecting the structure of balanced dipole configurations oriented along the [111], [121]
and [TO 1] directions, corresponding, respectively, to the x, y and z directions. These configurations
permit the use of periodic boundary conditions along all three supercell directions. The dimensions
of the simulation cell along the three coordinate axes were L, =13.6 A(5b), L, =108 Aand L, =
107 A, containing a total of N = 10000 atoms. The NEB trajectory is partitioned into 30 images
constrained to relax in configurational hyperplanes defined by the normal axis along x (3N — 1
degrees of freedom).

Prior to the NEB calculations, unconstrained energy minimizations using LAMMPS [47] were carried
out for the initial and final configurations. NEB trajectories are generated as a function of stress
T (resolved shear stress on the glide plane) and the results are shown in Fig. 1. The paths shown
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FIG. 1. Variation of (a) the enthalpy and (b) the Peierls potential with stress for the EAM potential.
Graphs (a) and (b) are connected by the term —7b, which is subtracted to the enthalpy to obtain Up.

in the figure are generated by subtracting from the resulting NEB trajectory the mechanical work,
—7bz, for each image and matching the equilibrium position, xq(7), and the associated energy in
each case to the origin of each curve.

2. Dislocation core energies

The dislocation core energy is a mathematical construct designed to remove the singularity in
the stress and strain fields of elasticity theory. As such, the core region is eminently inelastic in
nature and can arbitrarily be defined by a parameter a referred to as the core width. This effectively
partitions the total energy of a dislocation dipole into elastic and inelastic parts, with the latter
confined to the core region within a [48-50] (cf. Section IITA2). This partition results in the
following definition of the core energy:

eatm(a) - 661(97 a)
2

ec(0,a) = (1)
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FIG. 2. Core energies obtained from atomistic simulations. (Left) Total atomistic energy (per unit length)
for a computational cell containing a screw dislocation segment modeled with the EAM potential. The total
energy is partitioned between an elastic energy and a core energy assuming a value of a = 2b. ¢; represents
the size of the box along a (110)crystallographic direction (separation of the dislocation dipole). (Right)
Dislocation core energies as a function of the character angle 6 all for a = 2b. Results for both interatomic
potentials, as well as DFT data, are shown.

where the angle = cos™! (%) formed by the Burgers vector b and the line direction ¢ defines the
dislocation character, while the 1/2 factor reflects the existence of a dislocation dipole.

The total energy eatn, is obtained from conjugate gradient minimizations of periodic atomistic
supercells containing a dislocation dipole much in the manner described in the above section. The
only difference resides in the orientation of the supercell, whose axes z, y and x are now oriented
along the n, t and (n x t) directions, respectively. For its part, the elastic energy e is calculated by
subtracting the interaction energy due to the periodic dipole network (appearing by virtue of using
periodic boundary conditions) from the elastic energy of a dislocation dipole. An example of the
partition of energy described by eq. (1) is shown in Figure 2. The core energies assuming a value of
a = 2b for the EAM and MEAM potentials, as well as for DFT calculations of pure screw (0°) and
edge (90°) configurations [51] are also given in Figure 2. As the graph shows, the angular periodicity
of the core energy function is (0, ), as there is an asymmetry in the energies about the pure edge
orientation. This is not surprising, given the natural crystallographic asymmetry of the bec lattice,
which is most notoriously manifested in the existence of the so-called M111 dislocation orientation
[52]. As will be discussed later, this asymmetry in the core energies leads to different energies for
‘left’ and ‘right’-handed kinks, a phenomenon commonly observed in atomistic calculations using
a number of interatomic potentials [40-42]. Further details about this geometric particularity are
provided in Appendix B.

III. GENERAL THEORY OF THE LINE-ON-SUBSTRATE MODEL

Line-on-substrate model regards the dislocation as a line resting on a periodic energy landscape
(substrate) that reflects the coupling between the dislocation line and the crystal lattice. As men-
tioned in Sec. I, the two most widely used versions of the LOS model are the elastic interaction
(EI) model and the line tension (LT) model. Here we provide a description of the theoretical



163

164

165

166

167

168

169

170

171

172

formulations employed here for each of the two cases.

A. Elastic interaction model

In the EI model, a kink-pair on a screw dislocation line can be approximated by an open trapezoid
connected to two semi-infinite segments in the manner shown in Fig. 3: The segments LA and DR

B C
: IR
LZL ,,,,,,,,,,,, Xl - e ________ > ol me o __
L 1 lo R

FIG. 3. Schematic representation of a kink-pair configuration on a straight screw dislocation. The points
labeled L and R represent arbitrarily distant locations to the left and right of A and D, respectively. We
use a cartesian coordinate system such that the x direction is along the glide direction, the y direction is
normal to the glide plane, and z is oriented along the line. z( is the equilibrium position of a straight screw
segment at a finite stress 7, defined in equation (12). ho is the periodicity of the Peierls potential, w is the
distance between kinks, and I, and s are the widths of the kinks (projections of the AB and C' D segments
on z). The shaded region corresponds to the slipped area defined in eq. (4).

are located on the first Peierls valley, the segment BC' is on the second Peierls valley, and AB
and CD are the kink segments that straddle both minima. w is the width of the trapezoid, which
we take to be the distance between kinks, calculated as the distance between the two midpoints
of segments AB and CD. [; and [y are the widths (along the z direction) of such two segments,
calculated as the z-distance between the point at z = 0.05h¢ + 2o and that at x = 0.95hg + zo.
One can use the structure shown in Fig. 3 to obtain stable configurations for the activated state
by optimizing the activation enthalpy of the system for a given stress. The activated state can
be characterized by the sum of self-energies AFgq s and interaction energies AFi,; for all segments
shown in the figure. In addition, the contribution to the energy of the underlying substrate AUp
must be separately considered for the case of screw dislocations in bce metals. The enthalpy is
then obtained by subtracting the mechanical work W,, performed by the stress 7 from the three
contributions mentioned above:

AH({ri}, 1) = AEss({ri}, 0:) + AEwme({r:}) + AUp({ri}) — Win(7,{ri}) (2)

The stable configurations for the kink-pair structure shown in the figure are obtained by opti-
mizing the above expression with respect to the coordinates r4, rp, r¢, rp. Note that, due to
the asymmetry in the e, function described in the previous Section, in Fig. 3 the kink widths [y
and [o do not necessarily have to be equal. This sets our work apart from other studies where it is
commonly assumed that they are the same [30, 38] . The energies of the kink-pair configurations
shown in the figure need to be computed piecewise, adding the contributions from all the dislocation
segments. In the next sections we provide expressions for each of the energy terms introduced in

eq. (2).
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1. The mechanical work
The mechanical work W,,, in eq. (2) is simply defined as:
W (7, {r:}) = 7bA (3)

where 7, b, and A are, respectively, the resolved stress on the glide plane, the magnitude of the
Burgers vector, and the area swept by the kink pair. This area can be calculated as:

A= (|AB x AC| + |DC x DA (4)

NN

2. Self-energies of dislocation segments

In accordance with Hirth and Lothe [36] and Koizumi et al. [38], the total elastic self-energy of
the configuration in Fig. 3 can be written as:

AEg({ri}) = Es(AB) + Eq(BC) + Egy:(CD) — ES(AD) (5)
Here we use the non-singular expressions for the self-energy of a straight dislocation segment m
defined by endpoints 71 and 7y, and Burgers vector b provided by Cai et al. [53], which give these
energies as a function of 6 and a. In this work, we add the core energy contribution to the above

elastic energies as:

Ega(m) = Egy(m) + ec(0, a)|m| (6)

3. Interaction energies

For the interaction energies, Hirth and Lothe [36] give the following expression for a symmetric
kink-pair.

AEin({r:}) =
2 [Eint(LA/AB) + Eint(LA/BC) + Ey (LA/CD) + Ey (AB/BC) — Ey (LA/AD)] +
+ Eini(AB/CD) (7)

where, by symmetry, the following equivalences can be establihed:

Eint(LA/AB) = Emt(DR/CD)
Eint (LA/BC) = Emt(DR/BC)
Eint(LA/CD) = Eint (DR/AB)

Eint (AB/BC) = Eint (CD/BC)
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En(LA/AD) = Eyn (DR/AD)
However, for an asymmetric configuration, only the last one is true and, thus, the sum of interaction
energies reads:
AFEimn({r;}) = Em(LA/AB) + Ei (DR/CD)
+ Eint(LA/BC) 4 Ein(DR/BC) + Ein (LA/CD)+
+ Ei(DR/AB) + Eint(AB/BC) + Eit(CD/BC)
~ 2B, (LA/AD) + Ey(AB/CD) ®)

The general expression within non-singular isotropic elasticity theory for the interaction energy of
two segments m and n with, respectively, endpoints r; and 73, and r3 and r4 is:

Eipnt(m,n)=FE*(ry —7r3) + E*(rs —r1) — E*(ry —71) — E*(r3 — 1r3) (9)

where the functional E* takes different forms depending on the nature of the interaction. The
non-singular elastic expressions used here to obtain E* are all given by Cai et al. [53], which we
include in Appendix C, in case they could be valuable for the reader.

4. The Peierls potential

The kink pair structure shown in Fig. 3 rests on a periodic energy landscape known as the Peierls
potential, Up. Multiple atomistic studies using DFT and semi-empirical potentials [54-56] have
shown that Up is well represented by a (co)sinusoidal function of the type:

U 2 27\ ?
0 1cosma<lcosm)] (10)

U= 5w

ho 2 ho

where z represents the reaction coordinate (along the glide direction), Uy is known as the Peierls
energy, and hg is the period of Up (hg = aoV6/3 in bce lattices). « is a parameter that captures
the deviation of Up from a pure cosine function. The contribution to the total energy of a kink
segment lying across two Peierls valleys is:

AU ({r:}) = / Up (2)dl Up (2)de (11)
LABCDR LADR
Both of the above integrals are evaluated from an equilibrium position xg to zg+ hg. =g is obtained
from the following relation:

dUp (.’)3)
dx

The infinitesimal differential d¢ follows along the kink segment and can be linearized as:

dl = \/dx? + dz?

We now make the approximation that the straight segments LA, BC, DR cancel with their
respective counterparts in the LAD R configuration. Then the above integrals reduce to:

=7b (12)

=T

zo+ho
AUP({T'Z}) = / Up((E) (dgl + dég) - Up(fo) (11 + lz) (13)

0



205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

To capture the effect of the resolved shear stress on the shape of Up(z) revealed in Sec. II 1, we
consider a stress dependence of both Uy(7) and a(7), as will be shown in Appendix A.

Equations (3), (5), (8), and (13) are combined to fully define the activation enthalpy in eq. (2),
which is subsequently optimized for the set of parameters w, l1, and lo as a function of stress. Each
saddle point corresponds to the activated state of the kink-pair at each stress, from which the de-
pendence of AH (w,l,1l3) with 7 can be calculated. The dimensions of the trapezoid corresponding
to each optimized configuration are obtained as:

ra = (20,0)

rg = (2o + ho, 1)

ro = (xo + ho, 1 + w)
rp = (xo,l1 +w+12)

B. The line tension model as a simplified LOS approach

At low stresses the stability of the kink-pair configuration is controlled by the elastic interaction
between the kink segments. However, as the stress increases and the shape of the line resembles
more a ‘bulged’ structure with low curvature. In such cases, the elastic energy of the system is well
approximated by a so-called line tension representation [57, 58], where the energy of the kink-pair
structure is controlled by the curvature of non-straight segments. Within elasticity, the line tension
is defined as:

aElself(ea a)

T(97a’) = ag

(14)
which is the dislocation energy per unit length, depending only on dislocation character # and the
core width a. For small dislocation segment lengths, ¢, the above expression can be approximated
by T'(6,a) ~ Es%w’a). This form of T'(6, a) replaces the self and interaction elastic energies in the
enthalpy expression for the kink-pair configuration. AH ({r;}) now reads:

AH(z, 1) = /dz [AT(0(2),a) + Aec(0(2),a) + AUp(x(2),T) — Wi ()] = (15)
/dz [(T(0(z),a) — T =0,a)) + (ec.(6(2),a) — e.(0 =0,a)) + AUp(x(2),7) — Wy (7)]
(16)

where e., W, and AUp are defined as in Secs. II 2, TITA 1 and IIT A 4. Eq. (15) can be represented
as a piecewise sum along the z direction of the contributions of individual segments of length b [59]:

{.’L‘l —bz |: Hl,a (GZO,G)+(€C(9i7a)_ec(HZOaa))+AUP($i7T)_ 2
(17)

where Up(z,7) is given by equation (10), and #; = tan~! ) The geometry of one dis-

Tit1—T;
b

cretization segment is shown in Fig. 4 for the calculation of the mechanical work.

b
—(Tig1 + i — 220)
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FIG. 4. Representation of a discrete segment used to calculate the enthalpy of the kink-pair configuration
using the line tension LOS model. zo is calculated as in eq. (12).

The expression utilized in eq. (14) is derived from those provided by Cai et al. [53], which
expressed in piecewise form for use in eq. (17) is:

ub? 9 b+vVb2+a?2 3—v [Vb2+a®—a 9
T = ———7<¢(1— | — 1
(0,a) prE— {( vcos®6) In . 5 5 cos” 6 (18)

The equilibrium configurations are obtained by minimizing the value of AH in eq. (17) as a function
of the set of coordinates {z;} at each stress point 7.

IV. IMPLEMENTATION AND PARAMETERIZATION OF LOS MODELS

In this section we explain how to process the atomistic results described in Sec. II for use in the
EI and LT models just presented. First, we discuss the expressions for the stress-dependence of the
Peierls potential, followed by those pertaining to the core energies.

A. The Peierls potential

For the EI model, the integral in eq. (13) can be solved analytically and used directly in expression

(2):

xo+ho
AU({r:}) = <\/1 " ,i . % ; ,i) / T U (@)de — Up(ao) (1 + 1) —

0

_ ho(]é— a) (Sin 27T("E0 + ho) o 271'1'0) hoOZ <Sin 4’/T(£E0 + ho) sin 47T.’E0) :|+
m

ho S ]’LO

2
2tr « 2rx
— + 1-— —— —(1- —_ 1
(li +12) cos e 3 < cos T > 1 } (19)
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where we have used dzg = %dw, with 8 = 1,2. The atomistic information provided in Sec. IT 1
has been introduced into this expression in the form of stress-dependent correlations for Uy and a.
We have seen that Uy scales as 7" whereas « is a linear function of 7. The specific expressions and
the fitting procedure followed to obtain these correlations is described in Appendix A.

For the LT model, Up(x;) is evaluated directly using (10) for each discretized segment x;. Sum-
mation over all segments then gives us the total potential energy of the line, in accordance with
eq. (17). The expressions for Up(7) and «(7) are identical to those used in the EI model.

B. Core energies

The core energy results from atomistic calculations shown in Sec. II 2 are introduced in the same
manner in the EI and LT models. In principle, the main features of e, that a fitting procedure must
capture are its dependence of both dislocation character (i.e. angle §) and core width a. However,
what is novel in this work is the slight asymmetry about the edge character orientation displayed
in Fig. 2. For this, we additively separate the total core energy into an a-independent term, and
an a-dependent one:

ec(6,a) = £(6) +9(0) log () (20)

where f(0) and g(#) are obtained by fitting the data in Fig. 2 to Fourier series expansions of the
type:

3
y(0) = co+ Z ¢ sin(2k0) 4 dy, cos(2k0) (21)
k=1

These functions can yield the asymmetry about § = 7/2 and naturally satisfy the condition that
their first derivative is equal to zero for § = 0 and 6 = = (zero self-force for screw orientation).
It is important to clarify that this partition of the core energy is mathematically arbitrary, and
other works have opted for different approaches [60]. The dependence of the dislocation core energy
with both the character angle and the core size is shown in Fig. 5. The details about the fitting
procedure and the numerical values of the coefficients ¢, and dj are given in Appendix B.

C. Implementation details
1. Elastic interaction model

In the EI model, the kink-pair configuration itself represents the activated state between the two
minima in the Peierls potential representing the initial and final screw dislocation configurations.
As such, the enthalpy in eq. (2) must be maximized along the reaction path. This is done by
obtaining the saddle point of the entire structure as a function of the position of points A, B,
C, and D in Fig. 3. However, standard (unconstrained) optimization algorithms are difficult to
stabilize in an energy landscape that is only conditionally convergent [61]. The geometry of the
configuration, however, can be used to identify conditions that favor convergence.

This can be done, for example, by noting that the trapezoid depicted in Fig. 3 represents a
dislocation loop (with three ‘real’ segments and one ‘anti’ segment) whose elastic energy is known
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FIG. 5. Dislocation core energies for EAM interatomic potentials as a function of the dislocation character
angle 0 and the core size a. The curves generated using eq.(20) for nine different values of a are also plotted.

to be finite. This imposes limits on the minimum and maximum size of the trapezoidal structure
that are discussed below.

(i) The condition of finite energy means that the total activation enthalpy in eq. (2) is independent
of the size of segments LA and DR. Using isotropic singular linear elasticity, the terms
depending on the lengths of these segments are seen to cancel in the analytical expressions for
the total elastic energy of the trapezoidal configuration. With the non-singular theory, things
are not quite as simple, as analytical expressions are not straightforward to obtain. However,
the same premise must still hold. Here, we have performed a numerical study to confirm
this, and have established the minimum length of segments LA and DR to have converged,
length-independent energies. Figure 6 shows the combined value of (AEint + AEger) in eq. (2)
as a function of the value of |LA| = ||[RD)||. Our results show that values of approximately
2000 or larger must be used to achieve length independence. In most simulations, we have
typically used a value of 10000.

(ii) At the same time, the separation of segments AB and CD (i.e. the value of w in Fig. 3)
must be sufficiently small for the elastic interaction energy to be finite within the numerical
tolerance of our minimization procedure. w changes with stress, but we have found that, as
a rule of thumb, at zero stress, values of no less than 40b should be considered.

2. Line tension model

The case of the LT model differs from that of the EI model just explained. In this case, the saddle
point configuration corresponds to a bulged structure that lies somewhere along the x coordinate.
This configuration does not generally correspond to one where the line lies on either of the minima
of Up. Therefore, one must vary the size of the bulge, defined by a variable h along the = path
between xg and hg until the system’s enthalpy goes through a maximum. At each stress, this path
is discretized and the saddle point structure found. This is expected to yield minimum energy paths
that are substantially equivalent to dynamic trajectories [62]. To improve the rate of convergence,
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here we invert the potential energy landscape by altering the sign of the mechanical work along
the path as to balance the rest of the terms in the enthalpy and have net zero effect on the total
energy. This approach has proven robust for the calculations undertaken in this work.

Once the saddle-point configuration is found for each stress, we approximate the left and right
sides of the bulged structure with an arc tangent function. All the corresponding outputs (i.e. w,
Iy, l2, etc) are calculated upon mathematical analysis of the best approximants obtained for each
case.

V. RESULTS

The first-principles method used here for parameterizing and benchmarking the LOS model
calculations are atomistic calculation results using two different interatomic potentials, EAM and
MEAM. All atomistic calculations were done using molecular statics at 0 K. Table I (top half) gives
several parameters of importance obtained for each potential. Below, we discuss the most important
results for the EI and LT models. Most results are shown in normalized form to facilitate inter-
comparison: (i) the stress is expressed as the fraction of the Peierls stress, s = 7/7p, (ii) energies
are plotted relative to the zero-stress activation enthalpy AHy, and (iii) lengths are expressed in
Burgers vector units, b, or Peierls potential wavelength hg.

A. System length scales: line shapes, kink separation, and kink widths

For the sake of clarity, we only show results for the EAM potential in the main body of the text,
and discuss MEAM results in the context of each EAM graph (more discussion provided in Sec. VI
and Appendix D). Figure 7 shows the optimized saddle point configurations for kink pairs as a
function of stress under the EI and LT models for the EAM potential (the configurations obtained
using the MEAM potential is qualitatively similar to those obtained using EAM potential). The
graphs for the EI model results do not show segments LA and D R in their entirety but a diminishing
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TABLE I. Interatomic potential-specific parameters. The top half of the table includes atomistic parameters
used in the LOS models: ao is the lattice constant, 7p is the Peierls stress, Ujx and U,k are the energies of
left and right kinks, respectively, and AHy = Uik + Usk is the zero-stress kink-pair activation enthalpy. The
bottom half of the table lists values of parameters extracted from the LOS model calculations, separated
between EI and LT calculations: a is the core width, p and g are the exponents of the phenomenological
kink-pair enthalpy expressions, AH{ is the intercept of the kink-pair activation enthalpy with the vertical
axis, and 7, is the stress at which the activation enthalpy vanishes, equivalent to the athermal stress in

experimental tests.

EAM | MEAM
ao [A] 3.19 3.14
T [GPa] 2.0 3.4
Ui [eV] 0.71 0.81
U [eV] | 0.92 0.99
AHyp [eV]| 1.63 1.80
EI LT | EI LT
a o] [0.70 0.80(0.15 0.50
P 0.41 0.83(0.45 0.80
q 1.05 1.38(1.09 1.46
AH; [eV]| — 1.68) — 1.84
7o [GPa] |1.84 1.99|3.22 3.61
1.2 T T T
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FIG. 7. Optimized kink pair configurations as a function of stress for the EAM potential. (a) Elastic
interaction model. (b) Line tension model.

kink separation, w, can generally be observed as the stress increases. This variation of w with 7
is plotted in Figure 8. In accordance with elasticity theory, the kink-pair length diverges at zero
stress, decreasing gradually with stress to a final value of = 2b. For its part, lacking an interaction
energy, the results for w in the LT model are less significant, but they are weakly dependent on
stress. Interestingly, LT predictions for the EAM and MEAM potentials result in differences of
about a factor of two between both atomic models (higher for MEAM). As well, EAM values are
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in very good agreement with the corresponding atomistic results (around 10b, from ref. [41]).

ﬁl —aF]
| —_— T

40

e Atomistic

FIG. 8. Kink separation in the kink-pair under stress (normalized to the corresponding Peierls stress). The
EI results indicate divergence at zero stress, in accordance with elasticity theory, while the LT values are
finite at all stresses. Atomistic results for the EAM potential are shown for comparison, showing very good
agreement with predictions by the LT model.

As shown in Fig. 7 for the LT model, the activated state for the dislocation is a bulged config-
uration straddling the Peierls potential. The amplitude of this bulge is plotted in Figure 9 as a
function of stress for the EAM potential. As the figure indicates, this amplitude coincides with the
wavelength of Up(x), hg at zero stress, and is zero at the Peierls stress, consistent with the definition
of the activated state at both ends of the stress range. Our results show excellent agreement with
the expected analytical form for & in line tension models [62, 63] (shown as lines in Fig. 9).

While these results are interesting, one of the most important aspects in this work is the asym-
metry in the dislocation core energies introduced in Sec. II 2. This asymmetry manifests itself as
differing kink ‘widths’; i.e. the spreading length along the dislocation line (z-coordinate) of the
segments connecting two consecutive Peierls valleys. These are labeled [y and ls in Fig. 3. The
results for these two lengths are shown in Figure 10. With the EI model, there are slight differences
between the left and right kinks, with the left one, l;, being larger than the right one, ls. Contrary
to the situation of the kink-pair separation w, here the EAM kinks spread over approximately twice
the distance of the MEAM ones. These results also show a slow decrease of [; and [, with stress
(kinks approaching the edge orientation), although interestingly these widths are around 1.5b for
the MEAM potential and between 3 and 4b for EAM. This stands in contrast to atomistic results,
which predict kink widths of approximately 250 for EAM calculations [41]. For their part, LT
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FIG. 9. Amplitude of the saddle-point configuration for the LT model as a function of stress. The results
for EAM (black squares) agree well with theoretical predictions [63] (solid line)

results show no appreciable difference between [; and ls. Here too calculations for the EAM po-
tential result in larger kink widths than for the MEAM potential, between 4.5 and 6b vs. 3 and 4b,
respectively. However, [y and [y display a different dependence with stress in this case, reaching a
minimum at low stresses but growing with stress subsequently.

B. System energies: kink energies and activation enthalpies

The most important physical quantity to extract from our models is the kink-pair activation
enthalpy as a function of stress. This is used in a number of approaches to describe thermally-
activated screw dislocation motion in bcec metals (as it has been done in our works in the past,
e.g. [41, 64]). In Figure 11 we show the results for the EI and LT models. To facilitate comparison,
we normalize the enthalpies by the unstressed activation enthalpy obtained in atomistic calculations
in each case, AH(, and the stresses by the Peierls stress 7p. These parameters are all given in Table
I. Note that (i) the enthalpy at zero stress for the EI model is undefined and therefore the data
point shown in Figure 11 is the atomistic value, and (ii) that the actual intercept of the activation
enthalpy curves for the LT model with the vertical axis does not necessarily correspond to the
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FIG. 10. Kink widths, I; and l5 (refer to Fig. 3), as a function of stress.

atomistic value?. This is what is labeled as AH¢ in Table 1. Similarly, intercepts with the stress
axis in all cases do not necessarily match the value of 7p, with the actual values labeled as 7, in
Table I. We interpret these stresses as being the ‘athermal’ limits for the kink-pair mechanism in
each case.

Most importantly, the values of a used in egs. (6), (8), and (18) to obtain these energies have
been chosen as to provide the best fit of the activation enthalpy curves to the known atomistic
values of AHy and 7p. In other words, we arbitrarily set the core width value to match known
‘first-principles’ calculations of the potential in question. These values of a are provided also in
Table I and, as can be seen, are always less than one Burgers vector distance. We will return to
this issue in Sec. VI.

Finally, it is common practice to fit the curves in Fig. 11 to the Kocks-Ashby-Argon phenomeno-

logical expression [65]:
T P\ ¢4
amt) = am (1- (')
P

where p and ¢ are exponents that describe the asymptotic behavior of AH(7) in the limits of
zero stress (¢ = 1.25) and the Peierls stress (p = 0.5) for isotropic linear elasticity [58]. Since
tungsten is elastically isotropic, our model provides an excellent testbed for these values, which
have indeed been reproduced for stress-independent Up and symmetric e.(6,a). These exponents

(22)

2 It is also important to note that AHp is obtained atomistically via procedures that are insensitive to periodic
image interactions [40].
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FIG. 11. Kink-pair activation enthalpy for the EI and LT models. The results are normalized to the
unstressed activation enthalpy obtained in atomistic calculations and the Peierls stress in each case (refer
to Table I).

are also provided in Table 1. Note that we use eq. (22) only to facilitate comparison across the
atomistic, EI, and LT model results (and for the EAM and MEAM cases) via the values of p and
q, without implying its validity for any specific case.

To evaluate again the effect of the core energy asymmetries on the energetics of the activated
states, we calculate in Figure 12 the individual kink energies as a function of 7. As no appreciable
difference was found for the LT model predictions, we omit them from the figure for clarity. The
energies shown include the interaction and self-energies in the EI model of the kink segments only.
Only a noticeable difference can be found for the EAM results, approximately 10%, whereas kinks
energies are practically identical for the MEAM potential. The individual atomistic kink energies
are given in the table above as well (for zero stress), differing about 20% between themselves. We
also discuss this more in depth in the next section.
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FIG. 12. Energies of individual kinks for LT models for EAM potential. The differences are due to the
asymmetry of the core energy functions about the edge orientation.

VI. DISCUSSION
A. Comparisons between LOS models

As indicated in Sec. I, different approximations to the line integral along the x (glide) direction to
calculate the energy of the activated kink-pair state result in different LOS model formulations, each
with its own advantages and disadvantages. The EI model approximates the bulge configuration
better at low stresses, when the activated state extends across the entire Peierls potential period and
the kink-pair energy is dominated by elastic interactions between kink segments. This allows the
use of a simple trapezoidal structure to represent the system, which has the benefit of consisting of
only four degrees of freedom. This considerably speeds up convergence of the energy minimizations,
which allows us to study the parametric space of the model efficiently. The novel aspect of the EI
model used here is the asymmetry of the left and right kinks, by virtue of the character dependence
of the core energy function. Regarding this, the EI model results predict differences of less than 1%
in the kink widths for both EAM and MEAM parameters (Fig. 10), while the difference in enthalpy
is slightly larger (Fig. 12).

For its part, the LT model is best suited for lines with small curvature, when the bulge config-
uration is small, a situation typically encountered at high stresses. The implementation of the LT
approach involves, however, up to hundreds of discrete segments, which increases the computational
time severalfold compared to the EI model. LT results show no discernible difference in the values
of both the energies and the kink widths. Thus, it appears that the LT model is less sensitive to
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the core energy asymmetry than the EI model.

In terms of EAM-vs-MEAM differences, as shown in Fig. 11, when normalized to the correspond-
ing values of AHy and 7p, the shapes of the LT and EI models differ in less than 3%. This is
an encouraging result as it could potentially indicate that normalized LOS model predictions can
be transferred across different potentials, which would eliminate a common source of variability in
dislocation property calculations.

B. Defining the core size by matching LOS models to atomistic data

The size of the dislocation core (a in this work) is a mathematical construct introduced to remove
the singularity inherent to the theory of elasticity. As such, it does not possess any intrinsic physical
meaning, serving instead as an arbitrary limit between the elastic and inelastic regions. However,
one can remove some of this arbitrariness by matching the LOS model calculations to atomistic
results of the total energy of kink pair configurations. By adjusting the value of a to partition the
elastic and core energies in egs. (1) and (20) in such a way as to match the atomistic kink-pair
energies at zero stress (obtained independently for the EAM and MEAM potentials), one can relate
the value of the core width to the size of a region that contains the inelastic contribution to the
total energy. Following these approach, we obtain values of 0.7b (EI) and 0.8b (LT) for the EAM
case (AHp = 1.63 eV) and 0.2b and 0.5 for MEAM (AHy = 1.78 eV). The fact that these are
between half and a full Burgers vector may be indicative of the order of magnitude to be expected
for this parameter. However, we emphasize that this is one attempt to establish the value of a
using a physical criterion, but it is difficult to ascertain how accurate or valid it is relative to other
approaches [66—68]. In any case, we believe this to be an interesting aspect of our calculations and
worth reporting as an original application of LOS models.

C. Building 3D kink-pair models from 2D atomistic data

One of the advantages of studying straight dislocations is the existence of translational symmetry
along the line direction, which generally reduces the study of its properties to quasi 2D structures
that need only capture the minimum repeatable translational unit along the dislocation line. For
screw dislocations, this length is of course the Burger’s vector, which is typically the shortest lattice
vector of the crystal. For this reason, general dislocation properties can be efficiently and accurately
calculated using thin atomistic supercells, which makes them amenable to electronic structure
calculations. The existence of kink pairs breaks the translational symmetry of screw dislocations in
bee (and other) crystals. Being the fundamental structure governing screw dislocation dynamics,
this necessitates using 3D configurations which precludes the use of computationally demanding
approaches such as DFT. Consequently, it has been a goal of the bcce plasticity community to assess
whether 2D information such as what has been presented here (Secs. V A and V B) suffices to capture
3D behavior when incorporated into efficient continuum models of dislocation line configurations.

Our calculations provide a testbed for this idea, in line with prior efforts [56], as they allow a
direct comparison to strictly atomistic results of kink-pair configurations using EAM [41, 64]. This
is illustrated in Figure 13, where a good agreement between the LOS results and the atomistic
calculations can be appreciated. As the figure shows, the LT model agrees with the atomistic result
at low stresses, while the EI model produces a better match at high stresses. While this may appear
contradictory with the common assumption that the EI is better suited for low stresses and the LT
model for high stresses, the non-screw segments of the trapezoid in the EI case are highly tilted
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FIG. 13. Comparison of EI, LT, and atomistic models for the EAM potential fitted to eq. (22). The
gray dashed line corresponds to LT results assuming no asymmetry in the core energies and no stress-
dependence of the Peierls potential (p = 0.88, ¢ = 1.37), while the gray dotted line is the equivalent EI
curve (p = 0.50, ¢ = 1.29). The vertical dashed lines indicate the limits of the ‘low’ and ‘high’ stress
regions, defined ad hoc to be at 0.250p and 0.750p, respectively.

towards the screw character due to the combined action of dislocation self and core energies,which
is not unusual in bee metals. This makes the standard assumption of the EI model weakly true
in this case. For its part, the LT model works well at low stresses not due to the shape of the
kinks but because it provides stable kink-pair configurations at stresses where elastic models do not
converge. Partially, this is because dislocation segments do not interact with one another in the
LT framework, the driving force is only the curvature of the line, which is always minimized for a
given applied stress. At high stresses, the LT fails because the line is‘bulged’ , i.e. it has so much
curvature that the non-interaction assumption starts to fail. In the intermediate stress range, the
EAM calculations lie in between both LOS approaches. Albeit restricted to very specific conditions,
this verification result suggests that continuum models parameterized with atomistic 2D results can
indeed be good approximants of full atomistic behavior in tungsten. While it is not clear how much
of this agreement can be attributed to specific features of W, such as elastic isotropy or the choice
of interatomic potential, we can cautiously conclude that LOS models that employ 2D information
can be trusted to provide acceptable estimates of AH in other bce metals.
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D. Discussion of other works

Researchers have been calculating kink-pair activation enthalpies using continuum elastic models
since the 1950s. As atomistic information rinvolving fundamental dislocation properties has become
available [54, 60], we have been able to enrich continuum formulations and increase their physical
accuracy. There are several examples of this in the literature [52, 56, 59, 68], each highlighting one
specific aspect of the physics of kink pairs in screw dislocations in bce metals. However, to the best
of our knowledge, this work constitutes the first LOS formulation to simultaneously integrate (i)
the stress dependence of the Peierls potential, (ii) the asymmetry of the dislocation core energies
with respect to dislocation character, and (iii) the extraction of the core width by matchig LOS
results with atomistic results.

VII. CONCLUSIONS

Our first conclusion is that one can successfully incorporate atomistic data obtained in quasi-2D
conditions into continuum elastic models of 3D kink-pair configurations. We have demonstrated that
the stress dependence of the Peierls potential and results for core energies as a function of dislocation
character can be integrated into elastic interaction and line tension models in a straightforward
manner. Moreover, we report a slight asymmetry in the core energies about the edge orientation in
W, in accordance with a periodicity of (0,7) for the dislocation character space in bee metals.

The asymmetry in the dislocation core energies accounts for no more than 10% difference in left
and right kink energies (compared to no less than 20% in atomistic results) and results in very
slight variations in their spreading lengths. Thus, we conclude that, while they are likely one of
several contributions to this energy asymmetry, core energies alone cannot capture it in its entirety.
However, a representation of core energies in terms of the core width parameter is helpful to extract
the value of this parameter by matching to atomistic data. In our particular case, we find that this
core width is always less than one Burgers vector distance.

Including the stress dependence of the Peierls potential in the models appears to shift the athermal
stresses to higher values compared to when just the zero stress potential is used, more in line with
the atomistic values of the Peierls stress. However, this effects is small as well.

Finally, our results suggest that atomistic calculations of kink-pair configurations result in acti-
vation enthalpies that are in between elastic interaction and line tension predictions. In particular,
at low stresses atomistic data agree better with line tension calculations, while at high stresses the
agreement is better with full elastic models.
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Appendix A: Fitting procedure of the stress dependence of the Peierls potential

Here we explain how to introduce the resolved shear-stress dependence in eq. (10). The 7-
dependence enters through the parameters Uy and « and our goal here then is to obtain compact
expressions for Up(7) and (7). To this end, we first plot the values of Uy and « with stress in
Figures 14 and 15 for the EAM and MEAM potentials, respectively.
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FIG. 15. Fitting of Uy and « for the MEAM potential

As the figures show, generally there is a nonlinear dependence of Uy with stress and a linear one
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for a. Consequently, we use power laws for Uy(7) and linear relationships for a(7).
e Fitting of Upy:

— EAM: Due to the change of convexity of the EAM Uy data, we split the fitting into two
regions.

1. In the low stress region, 7 < 0.8 GPa,

Uo(T) = 0.0057"4° 4 0.06 (A1)
2. In the high stress region, 7 > 0.8 GPa,
Uo(7) = 0.21 (1 — 0.7643)"°*° — 0.14 (A2)
— MEAM:
Uo(7) = 0.003 ( — 0.13)"572 4+ 0.11 (A3)

with Uy expressed in [eV/b] when 7 is expressed in GPa.
e Fitting of a:
1. EAM:
a = 0.0777 + 0.152 (A4)
2. MEAM:
a=0.1157 — 0.515 (A5)

with o non-dimensional when 7 is in GPa.

We emphasize that these expressions have no implied physical meaning and are simply used for
convenience in the range of stresses considered here.

Appendix B: Fitting of core energy data

As it was shown in Section II 2, dislocation core energies expressed as:

eo(6,a) = £(6) + 9(0) log ()

where both f(#) and g(6) are Fourier series of the type:

3
y(0) = co + Z ¢k sin(2i0) + dy cos(2i0)
k=1

Note that this form for f(6) and g(6) depends only on 8, with the a-dependence contained exclusively
in the logarithmic term. This mimics the partition represented by eq. (1). The coefficients in these
expressions are obtained by least-squares fitting to the atomistic data points obtained from Fig. 2
by varying a and 6, and are listed in Table II. f(6) and g(#) are plotted as a function of € in Fig. 16
along with the corresponding Fourier series curves for the EAM and MEAM potentials.
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TABLE II. Values of the Fourier coefficients in eq. (21) for the EAM and MEAM potentials.

Potential | function| cg c1 dq Co do c3 ds
1.1017 0.0149 —0.7895 0.0082 —0.0634 —0.0331 —0.0078
EAM J
g 0.7067 -  —0.1141 - - - -
0.8390 0.0092 —0.5730 —0.0191 —0.0325 —0.0118 —0.0122
MEAM g

0.7275 - —0.1179 - - - -

Appendix C: Expressions of the functional E* for the interaction energies

The functional E* that appears in the formulation of the interaction energies Fip (cf. Section IIT)

takes different forms depending on the nature of the interaction. In the following, the non-singular
elastic expressions given by Cai et al. [53] for parallel and non-parallel segments are provided. In
both cases, the common Burgers vector to both segments is b.

1. Non-parallel segments

This is relevant for the interaction between kink segments and screw segments. The energy

functional E*(r) = E,p(r) is defined as:

Enp(r) =

Y LS PO ey — A + A

yEg —V)(u~u){r In[Ry, 4+ 7 -t ((A; — AS)v" + Afu) +

(C1)
+7r-In[Ry+7-t] (A1 — As)v + Asu) + AR+
(A — As) [2(7” . 'u,)2 + (u- 'u,)aQ] srctan (1+t-t )R, +r(t+t)
V(- u)? + (u-u)a? V(- u)? + (u-u)a?

where t = (ro — r1)/L,, and t' = (ry — r3)/L,, are the respective line tangents (L,, = |72 — 71]]

and L, = |rs —r3]|), u =t xt/, v=u xt, v =t X u, and:

R,=+vVr-r+a?
Al =1+v)b-t)(b-t)
Ay = (B + (b 1)t )

Ay = (> +(b-t))(t-t)
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t-t

Ay =2(b- u)(b-v)——

t-t

Al = 2(b-u)(b-v’)u'u

Ap=((b-1)(b-v)+ (b-t)(b-v))(t-t)

ot t
u-u

A5:2(b><u)

where b = ||b||. These expressions simplify significantly for perpendicular segments.

2. Interaction energy between two parallel segments

This interaction includes the interaction of segments of pure screw character with one another
and the interaction of kink segments of the same kind with one another. As above, the Burgers

vector is assumed to be the same for all segments. The interaction energy functional has the form
E*(r) = Ej(r):

Ey(r) = M(l"_y){ [2b(b-7) — b (t-7)(3 —v)| In{R, +t- T} + R.b*(2 — v)+ o

2 RZ—(t-r)?

R, (b~r—bt~r)2—a2b2(u—1)}
where t is the common line tangent to both segments.

Appendix D: Calculation using MEAM potential

Here we show the series of calculations for the MEAM potential. Except for full atomistic
kink-pair enthalpy calculations under stress, the database for the EAM and MEAM potentials is
equivalent. (cf. Table I). Shown are the variation of Peierls potential with stress (in Fig. 17), Fourier
fits of the core energies (Fig. 18), kink separation (in Fig. 19), kink height (Fig. 20), kink widths
(in Fig. 21), and activation enthalpy in Fig. 22
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