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The formation and dynamics of a wide variety of binary two-dimensional ordered structures
and superlattices are investigated through a phase field crystal model with sublattice ordering.
Various types of binary ordered phases, the phase diagrams, and the grain growth dynamics and
structural transformation processes, including the emergence of topological defects, are examined.
The results are compared to the ordering and assembly of two-component colloidal systems. Two
factors governing the binary phase ordering are identified, the coupling and competition between the
length scales of two sublattices and the selection of average particle densities of two components.
The control and variation of these two factors lead to the prediction of various complex binary
ordered patterns, with different types of sublattice ordering for integer vs. noninteger ratios of
sublattice length scales. These findings will enable further systematic studies of complex ordering
and assembly processes of binary systems particularly binary colloidal crystals.

I. INTRODUCTION

The assembly of binary colloidal crystals (BiCCs) with
sublattice ordering has been of significant interest in vari-
ous aspects of fundamental research and applications [1–
8]. These artificial ordered systems can be synthesized
from diverse types of building components that vary in
size and shape and are selected or tailored to possess spe-
cific functionalities [4, 5]. Variations of spatial arrange-
ment, shape, and size of structural components trans-
late into different macroscopic properties of the system
and the fabrication of the corresponding functional ma-
terials (e.g., photonics [9] and semiconductors [10, 11]),
in addition to biological applications (e.g., cell culture
substrates [12, 13] and MRI contrast agents [14]). Al-
though a great deal of effort has been placed on the syn-
thesis of colloidal systems from self or directed assembly
of colloidal particles or building blocks, it still remains
a challenging task to precisely control and predict the
structural and dynamic properties of the system. Many
system parameters and growth or processing conditions,
such as entropy [15], temperature [16], external magnetic
or electric fields [2, 17], isotropic and anisotropic inter-
particle interactions, and system elasticity and plasticity,
determine the structural diversity of the assembly.

One of the key challenges for understanding the com-
plex phenomena associated with colloid assembly is the
development of theoretical approaches that can efficiently
model nonequilibrium phenomena with multiple length
scales and diffusive time scales for large enough systems
of experimental relevance. Various theoretical methods
have been developed to study binary colloidal structures
and the associated phenomena. For example, Monte
Carlo (MC) simulations have been conducted to exam-
ine the structure factor of charged binary colloidal mix-
tures [18] as well as the phase transformation in a two-
dimensional (2D) BiCC monolayer that is consistent with

experiments [19]. Similarly, molecular dynamics (MD)
simulations have predicted that 2D BiCCs can only be
achieved for certain particle ratios [20]. However, the
system size and time range are usually limited in these
atomistic simulations, given the large computational de-
mands to access large-scale behaviors of the system.

Recently progress has been made to overcome these
limitations by the development of multiple scale ap-
proaches. Among them is the phase field crystal (PFC)
method [21] that introduces crystalline ordering into the
traditional phase-field type continuum approach. PFC
models, motivated from the classical density functional
theory (DFT) of freezing [22, 23], incorporate the small
length scales of crystalline materials (including the basic
features of the crystalline state such as elasticity, plastic-
ity, defects, and multiple crystal orientations) on diffusive
time scales. The system evolution is governed by dissi-
pative and relaxational dynamics driven by free energy
minimization. This method thus bridges the gap between
continuum modeling that describes the long wavelength
behavior of the system but not crystalline details, and
atomistic modeling that captures the microscopic details
but is computationally challenging for large systems. It
has been successfully applied to the study of a broad
range of phenomena such as quantum dot growth during
epitaxy [24], grain boundaries of 2D materials [25, 26],
graphene Moiré patterns [27], colloidal solidification and
growth [28, 29], structural phase transformation [30, 31],
glass formation [32], and quasicrystal growth [33], among
many others. For the application of PFC method to
colloidal systems, most existing studies are limited to
single-component crystallization process [28, 29], while
the study of binary colloidal structures is still lacking.

In this paper, we extend the PFC method to study
various types of binary 2D colloidal structures with sub-
lattice ordering, based on a binary PFC model developed
in our prior work [26]. We start by deriving the model
from classical DFT for a two-component system, keep-
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ing only two- and three-point interparticle direct corre-
lations. The ordered structures of BiCC are found to be
determined by the coupling between different sublattice
length scales, as well as the average density variations of
the particle species. For equal sublattice length scales
we identify seven binary phases, with results consistent
with recent experimental findings [1–3, 8, 19, 34]. Using
analytic and numerical methods the stability of various
phases and the coexistence between them are determined
and used to construct phase diagrams. In addition, nu-
merical simulations are employed to examine the dynam-
ical processes of grain growth and phase transformation
for different binary ordered structures, including the for-
mation of various types of topological defects during the
system evolution. Importantly, varying the length scale
ratio between the two sublattices allows us to access and
predict a much broader range of complex ordered (or qua-
sicrystalline) patterns and superlattices, with results de-
pending on integer vs. noninteger type of the ratio and
the choice of densities of the two components.

II. MODEL DERIVATION

The PFC equations for binary AB system can be de-
rived from classical dynamic density functional theory
(DDFT), following the procedure described in Ref. [23].
In classical DFT the free energy functional for a two-
component system is expanded as (see, e.g., Ref. [35])

F/kBT =

∫
dr
∑
i

[
ρi ln

(
ρi/ρ

i
l

)
− δρi

]
−
∞∑
n=2

1

n!
(1)

×
∫
dr1 · · · drn

∑
i,...,j

C
(n)
i...j(r1, · · · , rn)δρi(r1) · · · δρj(rn),

where δρi = ρi − ρil, ρi=A,B is the local atomic number
density of A, B component, ρil is a reference-state density

of i component, and C
(n)
i...j is the n-point direct correlation

function between i, ..., j = A,B. The dynamics of density
fields is governed by the DDFT equations [23, 36, 37]

∂ρA/∂t = ∇ ·
(
MAρA∇

δF

δρA
+
√
ρAηA

)
,

∂ρB/∂t = ∇ ·
(
MBρB∇

δF

δρB
+
√
ρBηB

)
, (2)

where MA(B) is the mobility of A(B) component and
ηA(B) is the noise field. In principle the free energy
in classical DFT contains all the effects including noise,
since the DFT derivation comes from the partition func-
tion summing over all states at some finite temperature
and the resulting equilibrium F is a functional of noise-
averaged densities (i.e., after ensemble average). Adding
an extra noise term in DDFT would then result in a
double counting of fluctuations [36]. From a more prag-
matic point of view, DDFT without fluctuations however,
misses key dynamic process, such as nucleation events.

In practice the free energy functional used and the cor-
responding density fields are usually coarse-grained, for
which the governing DDFT equations should be stochas-
tic as demonstrated in Ref. [38]. Therefore, for complete-
ness noise is incorporated in the above dynamic equa-
tions, where F should then be considered as an effective,
coarse-grained free energy functional but not the true free
energy.

Defining the density variation fields nA = (ρA−ρAl )/ρl
and nB = (ρB−ρBl )/ρl (with ρl = ρAl +ρBl ), keeping only

two- and three-point direct correlations C
(2)
ij (r1, r2) and

C
(3)
ijk(r1, r2, r3) (i, j, k = A,B), and expanding them in

Fourier space (with wave number q) via

Ĉ
(2)
ij (q) = −Ĉij0 + Ĉij2 q

2 − Ĉij4 q4 + · · · ,

Ĉ
(3)
ijk(q, q′) ' Ĉ(3)

ijk(q = q′ = 0) = −Ĉijk0 , (3)

we can rewrite Eq. (1) as

∆F

ρlkBT
=

∫
dr

{
∆ρAl

(
1 +

nA
∆ρAl

)
ln

(
1 +

nA
∆ρAl

)
− nA

+∆ρBl

(
1 +

nB
∆ρBl

)
ln

(
1 +

nB
∆ρBl

)
− nB

+
ρl
2

[
ĈAA0 n2A + nA

(
ĈAA2 ∇2 + ĈAA4 ∇4

)
nA

+ĈBB0 n2B + nB

(
ĈBB2 ∇2 + ĈBB4 ∇4

)
nB

+2ĈAB0 nAnB + 2nA

(
ĈAB2 ∇2 + ĈAB4 ∇4

)
nB

]
+
ρ2l
6

[
ĈAAA0 n3A + ĈBBB0 n3B

+3ĈAAB0 n2AnB + 3ĈABB0 nAn
2
B

]}
, (4)

which is the same as Eq. (A1) in the appendix of

Ref. [23], with ∆ρ
A(B)
l = ρ

A(B)
l /ρl. Note that Eqs. (3)

and (4) are based on the assumption of only one charac-
teristic length scale for either A or B sublattice (as deter-

mined by Ĉ
(2)
ij ), and the approximation of Ĉ

(3)
ijk only by

its zero-wavevector component as used in previous clas-
sical DFT work for hard-spheres [39] and Lennard-Jones
[40] binary systems.

Substituting Eq. (4) into the DDFT Eqs. (2), choosing
the same reference state for A and B, i.e., ρAl = ρBl , and
keeping only the leading order terms (via scale analysis),
we can derive a new binary PFC model represented by

∂nA/∂t = DA∇2 δF
δnA

+ ∇ · ηA,

∂nB/∂t = DB∇2 δF
δnB

+ ∇ · ηB , (5)

where the diffusion coefficients DA(B) = MA(B)kBT , and
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the resulting PFC free energy functional is given by

F =

∫
dr

[
1

2
∆BAn

2
A +

1

2
BxAnA

(
R2
A∇2 + 1

)2
nA

+
1

2
∆BBn

2
B +

1

2
BxBnB

(
R2
B∇2 + 1

)2
nB

−1

3
τAn

3
A +

1

4
vAn

4
A −

1

3
τBn

3
B +

1

4
vBn

4
B

+∆BABnAnB +BxABnA
(
R2
AB∇2 + 1

)2
nB

+
1

2
w0n

2
AnB +

1

2
u0nAn

2
B

]
. (6)

Here ∆BA(B) = BlA(B) − B
x
A(B), ∆BAB = BlAB − BxAB ,

and all the parameters can be expressed via expansion co-
efficients of two- and three-point direct correlation func-
tions in Fourier space, i.e.,

BxA =
ρAl Ĉ

AA
2

2

4ĈAA4

, BlA = 1 + ρAl Ĉ
AA
0 , RA =

√
2ĈAA4

ĈAA2

,

τA = −ρl
2

(
ĈAA0 + ρAl Ĉ

AAA
0

)
, vA =

ρ2l
3
ĈAAA0 ,

BxB =
ρBl ĈBB2

2

4ĈBB4

, BlB = 1 + ρBl Ĉ
BB
0 , RB =

√
2ĈBB4

ĈBB2

,

τB = −ρl
2

(
ĈBB0 + ρBl Ĉ

BBB
0

)
, vB =

ρ2l
3
ĈBBB0 ,

BxAB =
ρAl Ĉ

AB
2

2

4ĈAB4

, BlAB = ρAl Ĉ
AB
0 , RAB =

√
2ĈAB4

ĈAB2

,

w0 = ρlρ
A
l Ĉ

AAB
0 , u0 = ρlρ

A
l Ĉ

ABB
0 . (7)

To reduce the number of parameters we can rescale the
above PFC equations in terms of A parameters, i.e., via a
length scale RA, a time scale R2

A/(DAB
x
A), and nA(B) →

nA(B)

√
vA/BxA, leading to

∂nA
∂t

= ∇2 δF
δnA

+∇ ·ηA,
∂nB
∂t

= mB∇2 δF
δnB

+∇ ·ηB ,
(8)

where mB = MB/MA represents a mobility contrast be-
tween A and B species, and the rescaled noise fields sat-
isfy the conditions

〈ηA〉 = 〈ηB〉 = 〈ηAηB〉 = 0,

〈ηµi (r, t)ηνi (r′, t)〉 = 2ΓikBTδ(r − r′)δ(t− t′)δµν , (9)

with i = A,B, µ, ν = x, y for a 2D system, and the
rescaled noise amplitudes ΓB/ΓA = MB/MA = mB . The

PFC free energy functional is rescaled as

F =

∫
dr

[
−1

2
εAn

2
A +

1

2
nA
(
∇2 + q2A

)2
nA

−1

2
εBn

2
B +

1

2
βBnB

(
∇2 + q2B

)2
nB

−1

3
gAn

3
A +

1

4
n4A −

1

3
gBn

3
B +

1

4
vn4B

+αABnAnB + βABnA
(
∇2 + q2AB

)2
nB

+
1

2
wn2AnB +

1

2
unAn

2
B

]
, (10)

where the dimensionless parameters are given by: qA =
1 (due to rescaling), qB = RA/RB , qAB = RA/RAB ,
εA(B) = −∆BA(B)/B

x
A = (BxA(B) − B

l
A(B))/B

x
A, αAB =

∆BAB/B
x
A, βAB = BxAB/(B

x
Aq

4
AB), βB = BxB/(B

x
Aq

4
B),

gA(B) = τA(B)/
√
BxAvA, v = vB/vA, w = w0/

√
BxAvA,

and u = u0/
√
BxAvA.

III. ORDERED STRUCTURES AND PHASE
DIAGRAMS: EQUAL LENGTH SCALES

The binary PFC model constructed here [i.e., Eqs. (8)–
(10)], although only including one mode for each of the
sublattices, can produce a rich variety of ordered struc-
tures as well as their coexistence. Detailed results de-
pend on the selection and competition of length scales
between the two sublattices. For simplicity, in this sec-
tion we consider the case of equal lattice spacing of A
and B sublattices and zero mobility contrast, such that
qA = qB = qAB = 1 and mB = 1, and use the model
parameters of αAB = 0.5, βAB = 0.02, gA = gB = 0.5,
w = u = 0.3, and βB = v = 1. For these parameters a
total of seven stable phases of 2D binary sublattice or-
dering have been identified, with some structures and the
corresponding diffraction patterns and/or circularly av-
eraged structure factors for density difference nA − nB
shown in Figs. 1 and 2. These binary structures or su-
perlattices are basically the combinations of triangular,
stripe, inverse triangular (noting that an inverse trian-
gular lattice is of honeycomb structure), square, rhom-
bic, and homogeneous states of A and B sublattices, and
are determined by the coupling between nA and nB den-
sity fields. They include (i) a binary honeycomb (BH)
phase with triangular A and B sublattices, (ii) a binary
stripe (BS) phase with A and B stripe sublattices, (iii)
a combination of elongated triangular A (or B) sublat-
tice and stripe B (or A) sublattice (ETASB or ETBSA),
(iv) a pattern with triangular A(B) sublattice but in-
verse triangular (i.e., honeycomb) structure of B(A) sub-
lattice (TAHB or TBHA), and (v) a binary homogeneous
(BHom) state. In addition, two other ordered phases can
be found only from the regime of positive average density
variations, including (vi) a checkerboard structure show-
ing as binary square (BSq) sublattices of A and B, and
(vii) a binary rhombic (BR) phase consisting of A and B



4

FIG. 1. Some ordered phases obtained from PFC simulations
for the case of equal sublattice length scales (qA = qB = 1),
including (a) binary honeycomb (BH), (b) triangular B &
honeycomb A (TBHA), (c) elongated triangular A & stripe
B (ETASB), and (d) binary stripe (BS). For the first-column
simulation results the red-colored locations correspond to the
maximum density of component A, while the blue-colored
ones to the maximum density of B. The corresponding diffrac-
tion patterns are shown as insets and the circularly averaged
structure factors are given in the second column. As a com-
parison the third column shows the related results observed in
previous experiments, reprinted with permission from Ref. [8]
in (a), from Ref. [2] in (b) and (d), and from Ref. [34] in (c).

rhombic sublattices (see Fig. 2). These seven phases are
identified through our numerical simulations of the dy-
namic Eq. (8), across different ranges of average density
values including nA0, nB0 varying from −0.5 to 0.5 to ob-
tain phases (i)–(v) and from 0.5 to 1 to obtain phases (vi)
and (vii). It is possible that more ordered phases could
be found across a broader range of parameter space as a
result of the nonlinear coupling between A and B sublat-
tice density fields.

The TAHB (or TBHA) phase has been observed in ex-
periments of 2D binary colloid mixtures [1–3], while the
BSq structure has been achieved in both experiments and
MC simulations of binary colloidal monolayers [2, 19].

FIG. 2. (a) Binary square (BSq; i.e., checkerboard) and (b)
binary rhombic (BR) phases obtained from PFC simulations,
with qA = qB = 1 and positive average densities of A and
B components [nA0 = 0.53, nB0 = 0.82 for (a) and nA0 =
0.55, nB0 = 0.80 for (b)]. The color scheme is the same as
that of Fig. 1. Each inset shows the corresponding diffraction
pattern.

The BH phase not only has been obtained in previous
experiments of binary colloidal system with honeycomb
symmetry [8], but also corresponds to the structure of
binary 2D hexagonal materials such as hexagonal boron
nitride (h-BN). The BS structure has also been observed
in binary colloids, although the stripe phase obtained
in our modeling would be more relevant to that of di-
block copolymers given the homogeneous density distri-
bution within each stripe. Although to the best of our
knowledge the ETASB (or ETBSA) superlattice has not
been found in colloidal systems, a similar phase has been
produced in thin film experiments of binary blends of
block copolymers (controlled by substrate surface pre-
patterning) [34]. Some of the corresponding experimen-
tal images are shown in Fig. 1 for comparison.

A. Phase diagrams: Analytics from one-mode
approximation

The corresponding phase diagram of this PFC model
can be determined via standard thermodynamics. The
phase boundaries for the coexistence between any two
phases 1 and 2 are calculated by the conditions

µA1 = µA2, µB1 = µB2, ω1 = ω2, (11)

where µA(B) = ∂f/∂nA(B)0 is the chemical potential
for A(B), with f the free energy density and nA(B)0

the average density variation of A(B) component, and
ω = f − µAnA0 − µBnB0 is the grand potential density.
Given that ω = Ω/V = −P with the grand potential Ω,
system volume V , and pressure P , Eq. (11) gives the
phase coexisting conditions of equal chemical potentials
and equal pressure, i.e.,

∂f

∂nA0

∣∣∣∣
1

(nA01 , nB01) =
∂f

∂nA0

∣∣∣∣
2

(nA02 , nB02) = µA0 ,

∂f

∂nB0

∣∣∣∣
1

(nA01 , nB01) =
∂f

∂nB0

∣∣∣∣
2

(nA02 , nB02) = µB0 , (12)

f1 − µA0 nA01 − µB0 nB01 = f2 − µA0 nA02 − µB0 nB02 = −P,
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FIG. 3. Phase diagrams of the binary PFC model in the cross-section plane of nA0 vs. nB0 (for nA0, nB0 < 0), for the case
of equal sublattice length scales qA = qB = 1 at εA = εB = 0.1 [(a) and (c)] and 0.3 [(b) and (d)]. Results of the analytic
calculations are shown in (a) and (b), while those determined by direct numerical simulations are given in (c) and (d).

where f1(nA01 , nB01) and f2(nA02 , nB02) are the free en-
ergy densities of phase 1 and 2 respectively.

To obtain the free energy density f(nA0, nB0) and the
corresponding chemical potentials of A and B compo-
nents, we use the one-mode approximation for each or-
dered phase. The corresponding one-mode expressions
assumed in our analytic calculations are given in the Ap-
pendix. For each binary phase the parameters in these
expressions, including the wave number and amplitudes
of density field, are determined from free energy mini-
mization (after substituting the one-mode expressions of
nA and nB into the free energy functional Eq. (10) and
integrating over a unit cell); from this we then derive
the free energy density f(nA0, nB0) for each phase. Re-
sults for the example of BH phase are presented in the
Appendix.

The resulting phase diagram is multi-dimensional, e.g.,
in the εA–εB–nA0–nB0 parameter space (with all the

other model parameters fixed). For simplicity, here we
consider the A/B symmetric case of εA = εB = ε, lead-
ing to a 3D ε–nA0–nB0 phase diagram. It would be
convenient to calculate the diagrams in two steps: First
identify the stability diagram showing the phase of low-
est free energy in each regime of the parameter space,
with phase boundaries determined by the solution of
f1(nA0, nB0) = f2(nA0, nB0) for any two phases 1 and
2, and then construct the corresponding phase diagrams
(showing coexistence between two or three phases) based
on Eq. (12). Two sample diagrams at ε = 0.1 and
0.3 obtained from our analytic calculations are shown
in Figs. 3(a) and 3(b).
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B. Phase diagrams: Direct numerical calculations

We also calculate the phase diagrams through direct
numerical simulations of this binary PFC model. The
dynamic model equation (8) is solved numerically in the
absence of noise terms, starting from random initial con-
ditions across the parameter space of (nA0, nB0) at each
specific value of ε = εA = εB . The corresponding phase
at each point of the parameter space is determined by its
steady-state structure. Two of these numerically deter-
mined phase diagrams for ε = 0.1 and 0.3 are given in
Figs. 3(c) and 3(d) respectively, showing some quantita-
tively different results of phase boundaries as compared
to those in Figs. 3(a) and 3(b) obtained from above an-
alytic calculations. One of the obvious differences is the
much larger regime of BH phase identified from numeri-
cal solutions. In addition, in Fig. 3(a) with ε = 0.1 only
two-phase coexistence is obtained from the analytic re-
sults under one-mode approximation, whereas both two-
and three-phase coexistence regions are seen in Fig. 3(b)
when ε = 0.3. This differs from the simulation results
in Figs. 3(c) and 3(d) which show two- and three-phase
coexistence regions for both values of ε.

These differences can be attributed to the oversimpli-
fied assumptions in the one-mode expressions of den-
sity fields used in the analytic calculations. Gener-
ally the A and B density variation fields are expanded
as nA = nA0 +

∑
j Aj exp[i(qAj

· r + ϕAj
)] + c.c. and

nB = nB0 +
∑
j Bj exp[i(qBj

· r + ϕBj
)] + c.c.. In the

standard procedure of phase diagram calculation that is
followed above in Sec. III A, the amplitudes Aj and Bj
are assumed to be real once the wave vectors qAj

, qBj

and phase shifts ϕAj
, ϕBj

are identified from the struc-
tural symmetry (as given in the Appendix). This proce-
dure has worked well for the previous single-component
and alloy PFC models [21, 22, 30, 31]. However, the dis-
crepancies shown in Fig. 3 between analytic results and
numerical solutions indicate a more complicated scenario
for the case of binary sublattice ordering examined here,
particularly regarding the selection of complex phases of
A and B amplitudes. More details for the example of BH
structure, including the corresponding amplitude equa-
tions and phase selection, will be presented elsewhere.

IV. PHASE TRANSFORMATION, GRAIN
NUCLEATION AND GROWTH

Below the melting point crystallites can nucleate ho-
mogeneously or heterogeneously from the supersaturated
homogeneous state. In either case, those nuclei will grow
individually until they merge, which usually leads to the
formation of topological defects such as dislocations and
grain boundaries in the system. Many factors (e.g., tem-
perature and average densities) determine the ordered
structures and dynamics arising from those nucleation
processes. The emergence of multiple coexisting phases
and the structural transformation between them can also

occur during the system evolution due to the phase co-
existence determined in the phase diagram. We have
conducted a series of simulations to examine this nucle-
ation or phase transformation process, with some sample
results given below. Here the nonconserved dynamics is
used, for a better control of the grain growth rate and
the condition of constant flux, i.e.,

∂nA
∂t

= − δF
δnA

+ µA,

∂nB
∂t

= −mB

(
δF
δnB

− µB
)
, (13)

where µA(B) is the chemical potential of A(B) compo-
nent. The process of grain growth is controlled through
tuning the values of µA and µB which emulate the con-
stant flux condition. No noise terms are added in the
above PFC dynamic equations used in our simulations,
given the nature of heterogeneous nucleation studied here
for which noise does not play a crucial role.

A. Nucleation and growth of BH grains

We first study an example of emergence of binary hon-
eycomb (BH) phase from a homogeneous (BHom) state,
simulating the dynamic process of grain nucleation, in-
dividual grain growth, grain coalescence, and eventually
the formation of a polycrystalline state. Initially twenty
circular nuclei of BH structure are placed at random loca-
tions in a simulation box, with randomly assigned differ-
ent orientations. The nuclei evolve and grow individually
until the grains merge and form a binary honeycomb film.
The average densities for BH and BHom states are set as
nA0 = nB0 = −0.27 and −0.47, respectively. The chem-
ical potential µA = µB is set to be −0.58, slightly larger
than the corresponding two-phase coexistence value. A
portion of the simulation box is shown in Fig. 4, giving
three snapshots during the system evolution. Fig. 4(a)
shows the early growth stage of individual grains before
they impinge on each other, where the process of faceting
occurs on the surface of each BH grain which evolves to
a hexagon shape. At a later time stage [Fig. 4(b)] the
impingement of grains has occurred and coalescence is
taking place, which leads to the formation of dislocations
and grain boundaries. For both stages the solidification
process is not yet complete and there is still part of the
system that is in the homogeneous state. At large enough
time the whole system evolves to the ordered state of BH
symmetry, as shown in Fig. 4(c). The system is poly-
crystalline, with grain boundaries separating grains of
different orientations.

B. BH-to-BS phase transformation

An example of phase transformation is presented in
Fig. 5, showing the dynamic process of transformation
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FIG. 4. Grain growth and coalescence process obtained from PFC simulation. The nuclei of BH structure grow and impinge to
form grain boundaries and a polycrystalline system, with a portion of the simulation results shown at (a) t = 100, (b) t = 300,
and (c) t = 4000.

FIG. 5. Binary honeycomb (BH) to binary stripe (BS) phase transformation obtained from PFC simulation. The system
transforms from BH to BS phase as a result of growth and merging of individual BS grains, with a portion of the simulation
results shown at (a) t = 1, (b) t = 100, and (c) t = 270. Sample defects of disclination, dislocation, and grain boundary are
indicated in the white dashed boxes with labels 1, 2, and 3 respectively.

from a binary honeycomb (BH) structure to the binary
stripe (BS) phase. We use a setup similar to the previous
section, by initializing twenty BS nuclei at random loca-
tions and orientations in coexistence with the BH matrix.
The average densities for BH and BS states are set as
nA0 = nB0 = −0.21 and −0.0739, respectively, and the
system chemical potential is chosen as µA = µB = −0.35
(above the corresponding coexistence value). Three snap-
shots representing different stages of system evolution are
given in Fig. 5, exhibiting BH-BS structural transforma-
tion as a result of the grain growth of BS nuclei and
the subsequent grain coalescence. The individual grain
growth rate appears to depend on the initial orientation.
Each single stripe of type A or B grows and connects with
the neighboring particles of the same type. The growth
direction of the binary stripes is not restricted to that
of the initial grain, and the fronts could change direction
(i.e., curve) during growth. When the differently oriented
grains coalesce some topological defects are formed, in-
cluding disclinations, dislocations, and grain boundaries,
as indicated in the white dashed boxes of Fig. 5(c).

C. BH-to-ETASB phase transformation

Figure 6 presents another example of phase transfor-
mation, from the BH to elongated triangular A & stripe
B (ETASB) phase. The initial setup here is the same
as before, other than the nuclei being of ETASB type as
seen in Fig. 6(a). The parameters used in the simulation
are nA0 = −0.33 and nB0 = −0.1427 for the BH matrix,
nA0 = −0.3417 and nB0 = 0.002 for the ETASB nuclei,
µA = −0.6302, and µB = −0.3225. During the sys-
tem evolution the BH structure transforms into ETASB
starting at the edges of the growing grain. As seen in
Figs. 6(b) and 6(c), in this case type B particles trans-
form from a spatial arrangement of triangular symmetry
to stripe. To accommodate this transformation, type A
particle densities transform from a structure of triangu-
lar symmetry to elongated triangular symmetry. If the
initial ETASB grain orientation is around or less than
5◦ with respect to the direction of the surrounding ma-
trix, then the grain rotates to match the orientation of
the matrix. For larger grain orientations, step defects or
kinks are formed. This kink defect acts as a transition
between two different orientations of the merging grains.
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FIG. 6. Binary honeycomb (BH) to elongated triangular A & stripe B (ETASB) phase transformation obtained from PFC
simulation. Snapshots of the time evolution of a portion of the simulated system are shown at (a) t = 10, (b) t = 240, and (c)
t = 700. A region of kink defects is indicated in (c).

An example is enclosed by the dashed box in Fig. 6(c)
where the whole system has been transformed to a de-
fected ETASB state.

V. ORDERED BINARY STRUCTURES WITH
COMPETING LENGTH SCALES

Two of the key factors controlling the ordering of
BiCCs are (i) the coupling and competition among differ-
ent length scales, and (ii) the average density variations
of A and B components. The effect of different length
scales can be modeled via changing the ratio between qA
and qB in the PFC free energy functional [Eq. (10)], i.e.,
the characteristic wave numbers of the two sublattices.
We then simulate the emergence of the corresponding
BiCC structures from the initial supersaturated homoge-
neous state, for various values of average density varia-
tions nA0 and nB0. The system dynamics is governed by
Eq. (8). Some of the predicted binary ordered structures
for two different qB/qA ratios are shown in Figs. 7 and 8,
as identified from our numerical simulations. In all cases
the model parameters are chosen as: εA = εB = 0.1,
qA = 1, mB = 1, αAB = 0.5, βAB = 0, gA = gB = 0.5,
w = u = 0.3, and βB = v = 1.

Results for the length scale ratio qB/qA = 2 are given
in Fig. 7, where the first two columns show the spatial
distributions of density fields for each type of particle,
i.e., nA in the first column and nB in the second col-
umn, and the third column shows the total density field
nA + nB . In these three columns the red-colored regions
correspond to the maxima of the corresponding density
field and the blue-colored regions represent the minima.
Column four presents the density difference nA−nB , giv-
ing the locations of density maximum for both A com-
ponent (red color) and B component (blue color). It is a
better representation of the overall pattern and the A/B
coupling as compared to nA + nB . Five examples given
in this figure [panels (a)–(e)] are obtained from differ-
ent combinations of average densities nA0 and nB0. The
individual sublattice structures for nA and nB are of tri-

angular, honeycomb, or stripe type, although additional
peaks appear in their diffraction patterns as compared to
the corresponding standard lattice structures, which can
be attributed to the coupling between the two density
fields and the two sublattices.

In Fig. 7(a), nA exhibits as a modified stripe phase
and nB as a modified triangular phase with a smaller
length scale (given that qB/qA = 2). The positions of
nA maxima overlay with those of nB minimum, and for
one structural unit every two rows of nB maxima corre-
spond to one row of nA maxima without any overlaps,
as indicated by the white dashed boxes in the first two
columns of Fig. 7(a). The corresponding superimposed
structure is highlighted by a dashed box in the fourth col-
umn representing the density difference nA−nB . Similar
correspondence between the locations of A and B compo-
nents can be found in other types of ordered structures or
superlattices. In Fig. 7(b), the nA and nB distributions
show as a modified honeycomb and a modified strip struc-
ture respectively, and every two arrays of nB maxima
correspond to one array of nA minima (see the enclosed
regions of white dashed boxes inside). Fig. 7(c) gives an
example where both nA and nB are of honeycomb pat-
tern. In this case, each B honeycomb is enclosed by a
larger honeycomb ring of A component, as can be seen
more clearly from the structural unit highlighted by the
white boxes. In Fig. 7(d), both nA and nB are of mod-
ified triangular phase, with smaller lattice spacing for B
sublattice. In the overall pattern of nA − nB A particles
appear as red forming large-spacing triangular structure,
while B particles (blue) occupy in between, showing as
a small-spacing triangular pattern. The case of honey-
comb A and triangular B sublattice structures is given
in Fig. 7(e). Each unit of the overall binary pattern is
featured by a large honeycomb ring of A component en-
closing a smaller triangle composed of three B particles.

More complicated binary ordered (or quasi-ordered)
structures can be obtained when the length scale ratio
qB/qA is not an integer. Some sample results are shown
in Fig. 8, for qB/qA = 1.62. We use similar ways of rep-
resenting individual and total density fields and density
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FIG. 7. Some binary ordered structures predicted by PFC simulation, for qA = 1 and qB = 2, and (a) nA0 = 0.05 and
nB0 = −0.1, (b) nA0 = 0.35 and nB0 = 0.25, (c) nA0 = 0.25 and nB0 = 0.4, (d) nA0 = −0.15 and nB0 = −0.1, (e) nA0 = 0.3
and nB0 = −0.1. The first three columns show the spatial distributions of densities nA, nB , and nA + nB respectively, where
red color represents density maximum and blue color represents density minimum. The fourth column is for density difference
nA − nB , with red color representing density maximum of A component and blue color representing density maximum of B
component. The diffraction patterns of the corresponding density field are shown in the insets.
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FIG. 8. Some binary ordered structures predicted by PFC simulation, for qA = 1 and qB = 1.62, and (a) nA0 = 0.40 and
nB0 = 0.40, (b) nA0 = −0.05 and nB0 = −0.15, (c) nA0 = 0.25 and nB0 = 0.25, and (d) nA0 = 0.05 and nB0 = 0.2. The color
scheme and the arrangement of columns are the same as that of Fig. 7.

difference in four columns of the figure, with the same
color scheme for spatial density distribution as above.
Since the B sublattice is of smaller length scale, each
of its clusterlike structural unit can be enclosed inside a
larger-scale A unit, as seen in Fig. 8(a). On the other
hand, the B particles can also orderly distribute within
the large spacing of elongated A particles, as for the ex-
ample of Fig. 8(b). Another possibility is the alternating
ordered arrangement of A and B particle clusters, which
forms a superlattice as shown in Fig. 8(c) and Fig. 8(d).

Interestingly, when the sublattice length ratio qB/qA
is irrational and equal to the characteristic length scale
ratio for quasicrystals, e.g., qB/qA = 2 cos(π/12) =

(
√

2 +
√

6)/2 for 12-fold symmetry, the corresponding
quasicrystalline structures are expected to emerge, sim-
ilar to the case of single-component quasicrystals found
in the two-mode PFC modeling [33]. We have obtained
some stable quasicrystalline patterns with binary sublat-
tices through spot checks of simulation outcomes (both
structures and diffraction patterns), with some sample
results given in Fig. 9. It should be cautioned that the
quasicrystalline structures presented here are actually
strained due to the periodic boundary conditions applied,
and more systematic study is needed to further investi-
gate them.
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FIG. 9. Sample quasicrystalline patterns obtained from PFC simulation, for qA = 1 and qB = (
√

2+
√

6)/2, and (a) nA0 = 0.25
and nB0 = 0.33, (b) nA0 = 0.28 and nB0 = 0.3, (c) nA0 = 0.27 and nB0 = 0.37, and (d) nA0 = 0.3 and nB0 = 0.3. The
structure for density difference nA − nB and the corresponding diffraction pattern are shown in each panel.

VI. CONCLUSIONS

We have derived a binary PFC model with sublat-
tice ordering based on the classical dynamic DFT for
two-component systems. The model is applied to the
study of binary colloidal crystals, including phase order-
ing and structural transformations. Through the con-
trol of length scale contrast and coupling between two
sublattices and the tuning of average densities of A and
B components, a wide variety of ordered (or quasicrys-
talline) structures and superlattices have been generated
from the model. For the simplest case of equal sublattice
length scales we identify seven binary phases, and cal-
culate the corresponding phase diagrams (in the range
of negative average density variations) both analytically
and numerically. Much richer phenomena of binary phase
ordering are obtained and predicted for different length
scales of A and B sublattices, which could be the combi-
nation of two regular sublattice ordered structures when
the length scale ratio is an integer, or exhibit as more
complex patterns or motifs when the ratio is a noninte-
ger.

The dynamic processes of system evolution and trans-
formation have also been produced in our simulations.
These include grain nucleation, growth, coalescence, and
the formation of topological defects such as grain bound-
aries, dislocations, disclinations, and kinks or steps, as
demonstrated in the examples of BH grain growth from
a homogeneous state and structural transformation be-
tween two ordered phases (e.g., from BH to BS phase
and from BH to ETASB structure) examined here. Our
PFC modeling approach and the underlying mechanisms
of scale coupling and competition are of generic nature,
and thus can be straightforwardly extended to the sys-
tematic study of different kinds of binary colloidal crys-
tals including more varieties of binary phases in both two
and three dimensions as well as their ordering and trans-
formation dynamics.
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Appendix A: One-mode approximation of binary
ordered phases

In the one-mode approximation, the density variation
fields nA and nB for various binary 2D ordered phases
can be represented by the following: (i) For the binary
honeycomb (BH) phase, due to the triangular ordering
of A and B sublattices that are shifted by δ = aŷ =
(4π/3q)ŷ with respect to each other, we have

nA = nA0 +

3∑
j=1

Aje
iqj ·r + c.c.

= nA0 + 2A0

[
2 cos

(√
3qx/2

)
cos (qy/2) + cos (qy)

]
,

nB = nB0 +

3∑
j=1

Bje
iqj ·(r+δ) + c.c.

= nB0 + 2B0

[
2 cos

(√
3qx/2

)
cos (qy/2 + 2π/3)

+ cos (qy + 4π/3)] . (A1)

(ii) For the phase of binary stripe (BS), the antiphase of
A vs. B field leads to

nA = nA0 +A0

(
eiqy + c.c.

)
= nA0 + 2A0 cos(qy),

nB = nB0 +B0

[
ei(qy+π) + c.c.

]
= nB0 − 2B0 cos(qy).

(A2)

(iii) For the elongated triangular A & stripe B (ETASB)
phase, we assume

nA = nA0 + 4A0

[
cos
(√

3qx/2
)

cos (qy/2) + cos (qy)
]
,

nB = nB0 + 2B0 cos(qy + 4π/3). (A3)



12

(iv) The one-mode expression for the phase of triangular
A & honeycomb B (TAHB) is given by

nA = nA0 + 2A0

[
2 cos

(√
3qx/2

)
cos (qy/2) + cos (qy)

]
,

nB = nB0 − 2B0

[
2 cos

(√
3qx/2

)
cos (qy/2) + cos (qy)

]
.

(A4)

The one-mode results for other two variants of ETBSA
and TBHA can be expressed in a similar way.

For the binary honeycomb (BH) phase, substituting
the one-mode expression Eq. (A1) into the free energy
functional Eq. (10) and integrating over a cell of (0 ≤
x ≤
√

3a, 0 ≤ y ≤ 3a) with a = 4π/3q, we obtain the free
energy density as

fBH = f0 + 3a1A
2
0 + 3b1B

2
0 + 4a2A

3
0 + 4b2B

3
0 +

45

2
A4

0

+
45

2
vB4

0 − 3cA0B0 − 3wA2
0B0 − 3uA0B

2
0 , (A5)

where

f0 =
1

2

(
−εA + q4A

)
n2A0 +

1

2

(
−εB + βBq

4
B

)
n2B0

−1

3
gAn

3
A0 −

1

3
gBn

3
B0 +

1

4
nA0

4 +
1

4
vnB0

4

+
(
αAB + βABq

4
AB

)
nA0nB0

+
1

2
wn2A0nB0 +

1

2
unA0n

2
B0, (A6)

and

a1 = −εA − 2gAnA0 + 3n2A0 + wnB0 +
(
q2 − q2A

)2
,

a2 = −gA + 3nA0,

b1 = −εB − 2gBnB0 + 3vn2B0 + unA0 + βB
(
q2 − q2B

)2
,

b2 = −gB + 3vnB0,

c = αAB + wnA0 + unB0 + βAB
(
q2 − q2AB

)2
. (A7)

The equilibrium state of this binary honeycomb phase is
determined by the minimization of free energy density
in terms of wave number q and amplitudes A0 and B0.
Minimizing Eq. (A5) with respect to q gives

q2eq =
q2AA

2
0 + βBq

2
BB

2
0 − βABq2ABA0B0

A2
0 + βBB2

0 − βABA0B0
. (A8)

In the A/B symmetric case we have A0 = B0 and thus
q2eq = (q2A + βBq

2
B − βABq2AB)/(1 + βB − βAB). Here we

consider the simplest scenario of qA = qB = qAB = q0 =
1; thus qeq = q0 = 1 for any values of A0 and B0, and
Eq. (A7) becomes a1 = −εA − 2gAnA0 + 3n2A0 + wnB0,
a2 = −gA + 3nA0, b1 = −εB − 2gBnB0 + 3vn2B0 + unA0,
b2 = −gB + 3vnB0, and c = αAB + wnA0 + unB0.

Minimizing fBH with respect to amplitudes A0 and B0

leads to

30A3
0 + 4a2A

2
0 + 2a1A0 − 2wA0B0 − uB2

0 − cB0 = 0,

30vB3
0 + 4b2B

2
0 + 2b1B0 − 2uA0B0 − wA2

0 − cA0 = 0.

(A9)
The equilibrium amplitudes Aeq

0 and Beq
0 are determined

by the solution of Eq. (A9) giving minimum fBH, which
will then be used in the calculation of chemical potentials
and phase diagrams [see Eq. (12)]. Similar analysis can
be conducted for all other phases based on the assumed
expressions of one-mode approximation given above.
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T. Pusztai, Tuning the structure of non-equilibrium soft
materials by varying the thermodynamic driving force for
crystal ordering, Soft Matter 7, 1789 (2011).

[30] M. Greenwood, N. Ofori-Opoku, J. Rottler, and
N. Provatas, Modeling structural transformations in bi-
nary alloys with phase field crystals, Phys. Rev. B 84,
064104 (2011).

[31] N. Ofori-Opoku, J. Stolle, Z.-F. Huang, and N. Provatas,
Complex order parameter phase-field models derived
from structural phase-field-crystal models, Phys. Rev. B
88, 104106 (2013).

[32] J. Berry, K. R. Elder, and M. Grant, Simulation of an
atomistic dynamic field theory for monatomic liquids:
Freezing and glass formation, Phys. Rev. E 77, 061506
(2008).

[33] C. V. Achim, M. Schmiedeberg, and H. Löwen, Growth
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