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Heavily doped semiconductors are by far the most studied class of materials for thermoelectric
applications in the past several decades. They have Seebeck coefficient values which are 2-3 orders of
magnitude higher than metals, making them attractive for thermoelectric applications. Conventional
wisdom suggests that the optimal bandgap of a semiconductor to achieve largest power factor
should be between 6 and 10 kBT . Yet highest power factor materials known up to now do not
have a bandgap. In this paper, we show that semimetals with very small or no bandgap, but
high asymmetry between their conduction and valence bands can also have large Seebeck coefficient
values on the order of 200 µV/K, which is near the optimum value for thermoelectric applications.
We have studied the band structure of a class of 18 semimetals using first principles calculations
and calculated their Seebeck coefficient using the linearized Boltzmann equation within the constant
relaxation time approximation. We conclude that despite the absence of the band gap, semimetals
with band asymmetry can have good thermoelectric performance. We analyze the metrics often used
to describe thermoelectric properties of materials, and show that the ratio of electron and hole mass
of density of states is a key parameter resulting in high Seebeck coefficient values in semimetals. This
work is therefore suggesting some high thermoelectric performance materials could be of semimetallic
nature.

I. INTRODUCTION.

Material thermoelectric figure of merit, zT is defined as

zT = σS2T
κ , wherein σ is the electrical conductivity, S is

the Seebeck coefficient, κ is the thermal conductivity and
T is the temperature. A thermoelectric module is made
out of n and p legs electrically in series and thermally
in parallel. The efficiency of a thermoelectric module
in power generation mode1 and in refrigeration cycle2,
and the thermal switching ratio in switching mode3 are
increasing functions of the n and p materials’ figure of
merit. Hence, finding thermoelectric materials with large
figure of merit is of high interest.

Metals were the first class of materials studied for ther-
moelectric applications. While they have large electrical
conductivity, they usually have small Seebeck coefficient
values and large thermal conductivity values, making
them non ideal candidates for traditional thermoelectric
applications. Semiconductors usually own Seebeck coef-
ficient values that are orders of magnitude larger than
metals. The large Seebeck coefficient is the result of
the presence of the bandgap which breaks the symme-
try between electrons and holes. There are two major
competing factors in optimization of the figure of merit
in semiconductors. First, when the Fermi level is inside
the bandgap, the Seebeck coefficient is large. As the
Fermi level moves into the valence or conduction bands,
the difference between the density of states (DOS) of hot
electrons (above the Fermi level) and cold electrons (be-
low the Fermi level) becomes small, and so does the See-
beck coefficient. On the contrary, the electrical conduc-

tivity increases since there are more available electronic
states. As a result, one needs to adjust the position of
the Fermi level to optimize the thermoelectric power fac-
tor, P = σS2. Second, as the Fermi level moves inside
the band, similar to the electrical conductivity, the elec-
tronic part of the thermal conductivity also increases. It
is therefore difficult to design a material with very large
figure of merit although no theoretical upper limit has
been found for zT .

Semimetals are a class of materials with properties in
between semiconductors and metals. They usually have
very small overlap of bands and therefore while they do
not have an energy gap, their intrinsic carrier density
can vary in a large range, between 1015 − 1020 cm−3, de-
pending on the band overlap and the size of the carrier
pockets. For example, the intrinsic concentrations at liq-
uid helium temperature 4.2 K are about 5.0× 1015 cm−3

for HgTe22, 3.6× 1016 cm−3 for HgSe23, 2.7× 1017 cm−3

for Bi24, 3.7 × 1019 cm−3 for Sb24, and 2.0 × 1020 cm−3

for As24. These values are much smaller than in metals,
which are typically around 1023cm−3, and are compa-
rable with and in some cases smaller than in heavily-
doped semiconductors used for thermoelectric applica-
tions, 1018 − 1020 cm−3. However, semimetals gener-
ally have much larger carrier mobility values compared
to metals and heavily doped semiconductors. For exam-
ple, electron mobilities at 4.2 K are 6.0×105 cm2V −1s−1

in HgTe22, 1.2×105 cm2V −1s−1 in HgSe25,26 and 11×107

cm2V −1s−1 in Bi24 and at room temperature are 3.5×104

cm2V −1s−1 in HgTe27, 2.0×104 cm2V −1s−1 in HgSe28,29

and 1.2 × 104 cm2V −1s−1 in Bi30. As a result, the elec-
trical conductivity of semimetals is comparable to those
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FIG. 1. Thermoelectric power factor × T (a) and figure of merit, zT , (b) versus bandgap of a few p-type semiconductors reported
in previous studies including Si20Ge80

4, Bi2Te3
5, PbTe6, Skutterudite Yb0.2Co4Sb12

7, Yb14MnSb11
8, LaFeO3

9, CsBi4Te6
10,

Bi2Se3
11, SnSe12, Bi1.95Ca0.05Te3

13, AgSbTe2
14, Bi0.4Sb1.6Te3

15, and Zn4Sb3
16. Note that with the exception of Bi0.4Sb1.6Te3

and SnSe the power factor curves have an increasing trend as the bandgap is decreased, implying the optimum point for these
well-known thermoelectrics occurs at smaller bandgaps than previously expected.Band gap values at room temperature in
ev are 0.08 for CsBi4Te6

10, 0.50 for Yb14MnSb11
8, 0.35 for AgSbTe2

14, 0.30 for Bi1.95Ca0.05Te3
13, 0.61 for SnSe12, 1.05 for

Si20Ge80
17, 2.52 for LaFeO3

9, 0.36 for PbTe18, 0.22 for Bi2Se3
19, 1.20 for Zn4Sb3

20, 0.20 for Bi0.4Sb1.6Te3
21, and 0.197 for

Yb0.2Co4Sb12
7. Band gap values are assumed to be constant versus temperature.

of heavily-doped semiconductors. Note that the carrier
mobility is much lower in heavily-doped semiconductors
due to ionized impurity doping and in metals due to
electron-electron and electron-phonon interactions. The
thermal conductivity values in semimetals could be also
small, especially if they consist of heavy elements. For
example, the thermal conductivity at room temperature
is about 1.7 Wm−1K−1 in HgSe31, 1.9-2.9 Wm−1K−1

in HgTe31,32, 6.0 Wm−1K−1 in the trigonal direction in
pure bismuth33–35 and could be as low as 1.6 Wm−1K−1

in Bi-Sb alloys34,36.

Semimetallic and zero gap materials show many in-
teresting properties. They have attracted interests as

FIG. 2. Schematic illustration of different types of semimet-
als: a) direct semi-metal with parabolic bands b) indirect
semimetal with parabolic bands c) Dirac or Weyl semimetal
with linear dispersion. The Fermi level is denoted by the
dashed line. In each case, the band structure could be sym-
metric as shown by black curves or asymmetric as shown by
red curves. Semi-metals with asymmetric bands are the focus
of this work

topologically non trivial materials37. Many of them have
strong spin-orbit coupling and comprise of heavy ele-
ments. As a result, they possess a low thermal con-
ductivity. Inversion of bands happens in many of the
zero-gap alloys such as BixSb1−x

38 and HgxCd1−xTe39,
leading to interesting transport properties. While many
of these materials have been studied in other fields, there
has not been a systematic study of their thermoelectric
properties due to their lack of band gap.

If one is to avoid doping and only choose to work with
intrinsic materials, semimetals would be the best poten-
tial candidate for having a large thermoelectric power fac-
tor40. This motivates our hypothesis that zero or small
bandgap materials have the potential of being good ther-
moelectrics with high power factor PF and zT.

In our recent publication, we studied thermoelectric
properties of HgTe32 as a well-known semimetal. One
of the interesting features observed was that the Seebeck
coefficient in intrinsic HgTe was not sensitive to the num-
ber of defects and impurities inside the sample. This
means one can change the carrier concentration by or-
ders of magnitude while keeping the Seebeck coefficient
constant. This is because these large changes in carrier
concentration did not result in a considerable shift in
the chemical potential, so that Seebeck was not changed.
If this is a general trend in semimetals, then the inter-
play between electrical conductivity and Seebeck coef-
ficient is much weaker in semimetals compared to semi-
conductors and therefore it is easier to increase the figure
of merit in semimetallic samples. Semimetals are espe-
cially promising for low temperature applications (be-
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FIG. 3. The band structures (left panels) and density of states (right panels) of HgTe, Mg2Pb and Bi representing the three
types of semi-metals described in Figure 2. Black curves - PBE, red curves - HSE06.

low ambient) where the dominant source of scattering is
impurity scattering where heavily doped semiconductors
suffer from low mobility. Additionally, as can be noted
in Fig. 1, in many good thermoelectric semiconductors,
the optimized zT and power factor values were found to
keep increasing as the band gap to temperature ratio is
decreased41. This motivates our hypothesis, which we
would like to validate, on zero or small bandgap mate-
rials having the potential of being good thermoelectrics
with high power factor PF and zT .

In this work, the thermoelectric response of several
semimetallic elements, i.e. their Seebeck coefficient val-
ues, are studied using first principles calculations with
proper corrections for the energy levels. We restrict our-
selves to room temperature where the diffusive part of
the Seebeck coefficient is known to be dominant. The
rationale to focus only on the Seebeck coefficient is the
following: As was discussed, the carrier mobility is ex-
pected to be large in semimetals. If semimetals consist
of heavy elements, then their thermal conductivity is also
expected to be low. The biggest concern with semimet-
als is therefore the Seebeck coefficient and thus the pro-
cess of searching for good semimetals for thermoelectric
applications should start with the scan for the Seebeck
coefficient. From a computational point of view, among
the three transport properties determining the figure of
merit, the Seebeck coefficient is the least sensitive one
to the scattering rates. Therefore, the only property
that could be reliably calculated under constant relax-
ation time approximation and still be of value, is the
Seebeck coefficient. We should acknowledge that even
Seebeck coefficient values can be modified when energy
dependent relaxation times are introduced32,42–44. In-
cluding energy dependent relaxation times would be a
very difficult task when scanning many materials. Here,
as the first step towards finding promising semimetallic
candidates, we limit ourselves to the constant relaxation
time approximation.

II. COMPUTATIONAL METHODS

We preselect 18 materials which were mentioned in the
literature as semimetals. Information about their crystal
structure, space group number and number of atoms per
unit cell are summarized in Table I. Vienna Ab-initio
Simulation Package (VASP)45,46 is used to perform first-
principles calculations. Pseudopotentials based on the
projector augmented wave method47 from VASP library
with the generalized gradient approximation by Perdew,
Burke and Ernzehof (GGA-PBE)48 as well as hybrid
Heyd-Scuseria-Ernzehof (HSE06)49 exchange-correlation
(XC) functionals are employed to calculate band struc-
ture and density of states. Since the Seebeck coefficient
is very sensitive to the bandgap and effective masses,
and the latter strongly depend on the choice of the XC
functional, one has to be aware that depending on the
choice of the functional, one will end up with a range of
Seebeck values. For our purposes, we chose the hybrid
HSE functional which has been widely used in the liter-
ature 39,50–53 to describe the electronic structure proper-
ties with an accuracy comparable with that of the GW
method. To get some idea about the range of these pre-
dictions, we also compared HSE predictions to the more
conventional, but not as accurate, PBE ones. The details
about the cut-off energy and number of k points may be
found in supplementary materials54. We used relaxed
PBE lattice parameters for all materials but for HgTe,
HgSe and HgS. For the latter three materials the ex-
perimental lattice parameters55,56 were considered. The
summary of the lattice parameters can be found in the
Supplementary Material. Spin-orbit coupling is included
in all calculations (except for TiS2 and TiSe2) and trans-
port calculations are performed within the Constant Re-
laxation Time Approximation (CRTA) as implemented in
BoltzTraP57,58 and BoltzWann59 codes to obtain the dif-
fusive part of the Seebeck coefficient (see Table 1 of Sup-
plementary materials). The interpolating k point grid
was taken to be at least 30 times denser than the initial
DFT grid.



4

III. RESULTS

We divide all semimetals into three separate groups.
These are shown schematically in Fig. 2. The first group
possesses a distinct feature in the band structure: the
lowest conduction band has a deep minimum at the cen-
ter of the Brillouin zone (BZ) where it overlaps with the
highest valence bands. When the two bands are sym-
metric (shown by black curves), the intrinsic chemical
potential is expected to be at the midpoint between the
two band extrema, and the intrinsic Seebeck coefficient
is expected to be very small. However, it is possible to
have a band structure similar to the red curve in Fig 2a,
where the low degeneracy of the conduction band in the
vicinity of the Γ point results in a small density-of-states
(DOS), the magnitude of which is essentially defined by
the electron’s effective mass (i.e. the curvature of the
band). On the other hand, valence bands have heavier ef-
fective masses and higher degeneracy with contributions
from elsewhere in the BZ. As a result, the DOS is asym-
metric about the chemical potential. This is known to
be beneficial for the material’s electronic properties in
general and, in particular, leads to a high Seebeck coeffi-
cient. A typical example of such material is HgTe which
has been studied in our recent publication both theoret-
ically and experimentally32. Other (predominantly cu-
bic) materials are HgSe and HgS, TlAs and TlP60, α-Sn
as well as inverse Heusler materials (Li2AgSb, Na2AgSb,
Rb2AgSb)60,61. The band structures of these materials
along with their DOS are shown in the Supplementary
Material. Here, as the representative of this class of ma-
terials, we show the band structure and the DOS of HgTe
as shown in Fig. 3a. Black curves are used to show PBE
results for the band structure and the DOS of all mate-
rials reported in this work. Red curves show the HSE
results.

Among the materials studied within the first class, the
hybrid functional calculations (red curves) reveal that
HgS and Li2AgSb are in fact semiconductors with band
gaps of 0.33 eV and 0.67 eV respectively. In almost all
cases, we note that the effective masses of the conduc-
tion band significantly decreases in HSE comparing with
PBE calculations. A possible explanation for this effect
has been given in Ref.50 where the small effective masses
were attributed to the strong level repulsion between
the s-like conduction band and p-like valence band at
Γ. This repulsion is inversely proportional to the square
of the difference between these two levels50 which reduces
from −0.93 eV for PBE to -0.27 eV for HSE06 in case of
HgTe32,39

The second group (Fig. 3b) includes other semimetal-
lic materials without any distinct feature in their band
structure but possessing a low density of states at the
Fermi level. The top of the valence band and the bottom
of the conduction band are at different k points as shown
schematically in Fig. 2b. Electron and hole pockets co-
exist. This class includes, for instance, Mg2Pb, cubic
pyrite structures (PtSb2 and PtBi2)62–64, TiS2, TiSe2,

TaP, NbP and α−Zn3Sb2.65 We note TiS2 gap opens up
when HSE functional is used and therefore this material
is a semiconductor with the bandgap of 0.4 eV. Despite
its large Seebeck coefficient which is expected for a mate-
rial with a bandgap, the intrinsic carrier concentration is
low and therefore it does not fall in the class of materials
we are interested in this work. On the other hand, TiSe2
remains semimetallic under HSE, with overlapping con-
duction (L and M points) and valence bands (Γ point).
Its Seebeck coefficient is however found to be small due
to the small asymmetry in the bands. In another work
where properties of the monolayer TiSe2 were studied66,
we found that the bandgap can be opened under tensile
strain, leading to a metal-insulator transition and corre-
sponding non-linear effects. As for Mg2Pb, the overlap of
bands is relatively large and the ratio of the DOS effec-
tive mass of the conduction band to that of the valence
band is close to one. (see Fig. 3b) Therefore this mate-
rial exhibits a small intrinsic Seebeck coefficient value of
about -10µV/K.

The third class of materials includes relativistic (Dirac
and Weyl) semimetals with linear bands close to the
Fermi level. These are schematically shown in Fig. 2c.
The examples include Bi, Sb, Na3Bi and TaAs-family and
inverse Heusler materials Na2AgSb and Rb2AgSb. Ther-
moelectric properties of the latter family as well as some
other topologically non-trivial semimetals have been re-
cently investigated in Ref.37. The band structure of Bi
as the representative of this class of materials is shown in
Fig. 3c. Most samples in this group demonstrate rather
small Seebeck coefficient values. This is expected because
there is an inherent symmetry in the band structure at
the Dirac point.

The symmetry can breakdown only if additional bands
exist close to the Dirac point as shown schematically in
Fig. 2c. Two examples are Na2AgSb and Rb2AgSb which
show, within HSE, a Dirac dispersion at Γ point, in addi-
tion to a parabolic valence band. The band structure, the
DOS and the corresponding Seebeck coefficient of these
two materials are shown in Fig.3. The Seebeck is only
reported for HSE calculations. For PBE results, where
bands were parabolic instead of linear, we refer the reader
to the supplementary materials.

Both materials show large intrinsic Seebeck coefficient
values and large intrinsic carrier concentrations. The See-
beck coefficient of Na2AgSb is larger than 200 µV/K and
interestingly it is insensitive to the changes in the carrier
concentration up to ± 1018 cm−3. The large value can
be associated with the extra parabolic valence band, and
the flat Seebeck to the constancy of the slope of the DOS
and group velocities in this region. Rb2AgSb is similar.
We see this trend more or less for all of our calculated
materials, indicating that the coupling between electri-
cal conductivity and the Seebeck coefficient is weaker
in the semimetallic samples compared to heavily doped
semiconductors. We also emphasize that these large See-
beck values are obtained at relatively large carrier con-
centrations. Note the carrier concentration reported in
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FIG. 4. The band structure, the density of states and the Seebeck coefficient of Na2AgSb are shown in panels a, b, and c
respectively. Similarly those of Rb2AgSb are shown in the lower panels of d,e, and f. The black curves in the band structure
and DOS plots are PBE results and the red curves are HSE results. The Seebeck coefficients are only reported for HSE results.
Red curves are Seebeck coefficient values vs. doping concentration and black curves are vs. chemical potential. Left side of
each Seebeck plot refers to p-type doping and right side to n-type doing.

the plots, are the Hall type carrier concentration, i.e., the
difference between free electron, n, and free holes, p, den-
sities. The actual carrier concentration that determines
the electrical conductivity is larger and is the sum of n

FIG. 5. Computational Seebeck coefficient values calculated
in this work using HSE band structures versus experimental
Seebeck coefficient values from literature. When available,
single crystals in [001] (trigonal) and [100] (binary) direc-
tions are compared. Most experimental samples are intrinsic
including Bi67, Sb68 ,Sn69, HgTe70, PtSb2

71 , and TaAs72.
Other samples are n-doped including: α-HgS73 (1018cm−3),
TiS2

74 (8 · 1018cm−3), and HgSe75( 1018cm−3).

and p.
Bismuth and antimony are well-known materials and

have been the subject of studies for many years. The ex-
perimentally measured values for Bi and Sb can provide
a good comparison to the theoretical calculations. In ad-
dition to Bi and Sb, in Fig. 5 our computational results
are compared to reported experimental values of α-Sn,
α-HgS, HgSe, HgTe, TiS2, TaAs and PtSb2.As shown in
Fig. 5, and considering there are no fitting parameters,
the agreement between theory and experiment is satis-
factory.

Several of the samples that we have studied in
this work have Seebeck coefficient values larger than
100µV/K as shown in Fig. 6. We expect the Seebeck
coefficient to be large only when there is a band gap or
when there is asymmetry between electron and hole effec-
tive masses. To show this we start by using the equation
for bipolar Seebeck coefficient under constant relaxation
time approximation76

S = −kB
2q

[
σe − σh
σe + σh

(βEg + 5) + β(εc + εv − 2µ)

]
(1)

where kB is the Boltzmann constant, q is the elemen-
tary charge, β = (kBT )−1, σe and σh are electron and
hole conductivities. The bandgap Eg is defined similar
to semiconductors as a difference between the bottom of
the conduction band εc and the top of the valence band
εv with the the chemical potential µ somewhere in be-
tween. The bandgap Eg is positive for semiconductors
and negative for semimetals where there is band overlap.
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FIG. 6. Absolute value of intrinsic Seebeck coefficient calcu-
lated using PBE (black) and HSE (red) for materials scanned
in this work.

Its values for different materials studied in this work are
listed in Table I. This equation shows that for symmetric
bands (me = mh) the first term is zero and the Seebeck
coefficient grows linearly with the distance of the chem-
ical potential from the middle of the gap. On the other
hand when the gap is small compared to kBT , the See-
beck coefficient strongly depends on the band asymme-
try characterized by me−mh

me+mh
or more generally on σe−σh

σe+σh
.

Assuming non-degenerate statistics, constant relaxation
time approximation and intrinsic conditions (n = p), one
can simplify Eq. 1 to

S = −kB
2q

[
γ − 1

γ + 1
(βEg + 5) − 3

2
ln(γ)

]
(2)

where γ is defined as effective mass ratio of holes to elec-
trons (listed in Table I). Note that the condition n = p
automatically places the chemical potential at the right
place, and we do not need to specify it.

Equation 2 clearly shows that there are two parameters
to which the intrinsic Seebeck is sensitive: one is the
bandgap and the and the other is the mass ratio.

To demonstrate this, we extract an effective mass from
the density of states estimated as the slope of density of
states of the electrons (conduction band) and the holes
(valence band) with respect to the square root of energy.
The absolute value of intrinsic Seebeck coefficient of dif-
ferent materials with respect to the effective mass ratio
(effective mass of the holes to that of the electrons) and
bandgap energy is plotted in Fig. 7. We see an increas-
ing trend in the Seebeck coefficient values with respect
to the mass ratio for semimetals where the band gap is
zero or close to zero. There are a few exceptions, namely
Na2AgSb and Rb2AgSb. In these materials, due to the
presence of the Dirac point, the parabolic assumption en-
abling the extraction of an effective mass is not accurate.

Moreover, the model uses two band non-degenerate
statistics that is not accurate when there is an overlap

FIG. 7. Absolute value of intrinsic Seebeck coefficient (color
bar) as a function of band gap Eg (x-axis) and effective
mass ratio γ (y-axis). Negative bandgap refers to overlap-
ping bands. Black and red text correspond to PBE and HSE
values respectively.

between the bands and when there are more than two
bands. Despite these, there is clear increasing trend of
the Seebeck coefficient with respect to the mass ratios.

IV. CONCLUSIONS

In order to validate our hypothesis, that good Seebeck
coefficient materials do not necessarily require a bandgap,
we performed first principles DFT calculations to scan
among semimetallic materials potential candidates with
high Seebeck coefficient. Computed Seebeck values are
found to be in agreement with experimental results when
the latter were available. Besides the increase in the in-
trinsic Seebeck as a function of bandgap, an increase with
the ratio of hole to electron effective mass is also ob-
served. It is shown that materials with no bandgap but
with large band asymmetry can still have large Seebeck
coefficient values comparable to those of heavily doped
semiconductors. The advantage of semimetals is that
doping is not needed and therefore mobilities are usually
high. Furthermore, we observed that the Seebeck coeffi-
cient values of semimetals were in many cases insensitive
to carrier concentration in a wide range around the in-
trinsic density (see supplementary materials for details).
Therefore the coupling between the Seebeck coefficient
and the electrical conductivity is weaker in semimetals
compared to semiconductors, allowing for simpler opti-
mization of thermoelectric properties. Many of the stud-
ied semimetals including Na2AgSb, Rb2AgSb,TIP, TaP,
and HgSe showed Seebeck coefficient values close to or
larger than 100 µV/K.

Due to relatively high intrinsic carrier concentration
and, simultaneously, high mobility, in the absence of
doping, these semimetals may show high thermoelectric
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Material Crystal Group# Natoms Eg (eV) Eg (eV) m∗h/m
∗
e m∗h/m

∗
e

PBE HSE/mBJ PBE HSE/mBJ

HgTe cubic 216 2 -0.019 -0.009 3.71 16.29
HgSe cubic 216 2 -0.018 -0.009 10.34 17.63
HgS cubic 216 2 0.038 0.305 19.63 25.45
TlP cubic 216 2 -0.018 0.000 2.52 18.18
TlAs cubic 216 2 -0.019 -0.009 3.28 1.58

Li2AgSb cubic 216 2 -0.009 0.676 0.02 0.08
Na2AgSb cubic 216 2 -0.009 0.000 34.59 51.50
Rb2AgSb cubic 216 2 -0.020 -0.008 2.51 56.84
α-Sn cubic 227 2 -0.031 -0.030 0.171 0.30
Bi trigonal 166 2 -0.122 -0.061 1.711 5.87
Sb trigonal 166 2 -0.09 -0.039 7.22 1.28

TaAs tetragonal 109 4 0.062 -0.003 13.92 3.73
TaP tetragonal 109 4 -0.15 -0.092 1.81 0.13
NbP tetragonal 109 4 -0.152 0.061 0.07 0.25

Mg2Pb cubic 225 3 -0.793 -0.427 0.12 0.11
PtSb2 cubic 205 12 -0.110 -0.083 0.69 0.48
TiS2 trigonal 164 3 -0.226 0.396 0.13 0.24
TiSe2 trigonal 164 3 -0.623 -0.346 N/A N/A

TABLE I. Summary of 18 materials studied in this work including their crystal structure, space group number, number of
atoms per unit cell, band gap in PBE and HSE calculations as well as ratio of hole effective mass to electron effective mass.

power factor values. The ones with heavy atoms are good
candidates for high zT materials. This work paves the
way for finding new materials with superior thermoelec-
tric properties among a new class of relatively unexplored
materials, namely semimetals.
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