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The varying degrees of short- and long-range order exhibited by multi-component solids compli-
cates a first-principles calculation of non-dilute diffusion coefficients. Temporal and spatial variations
in the local degree of order affect the migration barriers of individual hops and can result in strong
correlations between successive hops that ultimately affect macroscopic transport coefficients. Here
we report on a first-principles study of diffusion in Ni-rich Ni-Al alloys. We used cluster expansion
Hamiltonians to describe the energies of the end states and migration barriers of each hop. Kinetic
Monte Carlo simulations were performed to calculate macroscopic transport coefficients. Variations
in the degree of ordering are shown to play a significant role in affecting diffusion coefficients. While
Al has a higher mobility than Ni in the disordered Ni-rich fcc solid solution, it becomes signifi-
cantly less mobile in the ordered L12 γ

′ phase due to strong thermodynamic tendencies that keep
Al trapped to disconnected sublattice sites.

I. INTRODUCTION

Solid state diffusion is an important property for many
applications. It determines, for example, how fast a bat-
tery or a fuel cell can operate1–4. Diffusion also plays
a central role during the processing of materials, where
diffusional phase transformations are often exploited to
achieve a particular microstructure5–7. Precipitation re-
actions, for example, depend sensitively on the rates
with which the different components of an alloy diffuse8.
Long-term stability of alloy microstructures with respect
to coarsening processes are also sensitive to the mo-
bilities of the constituents of the alloy9–11. Numerous
structural and functional applications rely on artificial
multi-layers that are susceptible to degradation due to
interdiffusion12.

First-principles approaches are now commonly used to
calculate diffusion coefficients in dilute alloys13–26. Dif-
fusion coefficients are more challenging to calculate in
non-dilute alloys, however, due to the wide variety of lo-
cal environments that hopping atoms encounter as they
migrate through a concentrated crystal27–38 Most solid
solutions, while disordered, still continue to exhibit lo-
cal short-range order that fluctuates spatially throughout
the solid. Ordered compounds, in contrast, are charac-
terized by long-range order, but often also exhibit some
local disorder due to the presence of anti-site defects that
accommodate off-stoichiometry or emerge from thermal
excitations. These spatial and temporal variations in lo-
cal order affect the activation barriers, ∆E, of diffusing
atoms along their trajectories. They also often result in
correlations between successive hops that ultimately af-
fect macroscopic diffusion coefficients33,39.

The aim of this study is to establish the extent with
which migration barriers in substitutional alloys can de-
pend on local ordering around the activated state and
how this manifests itself in macroscopic transport coef-
ficients. We combine first-principles electronic structure
calculations with cluster expansion approaches40,41 and
kinetic Monte Carlo simulations42 to predict macroscopic
transport coefficients. As a model system, we consider

the FCC phases of the Ni-Al binary as they feature a
rich variety of long and short-range order. The Ni-Al bi-
nary includes the Ni-rich FCC solid solution, also referred
to as γ, and the γ′-Ni3Al phase having the L12 ordering
on FCC43. These phases form the basis of most modern
jet engine turbine blades44,45. We find that variations in
local alloy concentration and ordering can have a strong
influence on the migration barriers of Al hops, but much
less so for Ni hops. The diffusion coefficient of Al is pre-
dicted to be higher than that of Ni in the disordered γ
phase, but this is reversed in the ordered γ′-Ni3Al phase
where Al remains locked on the disconnected sublattice
of the L12 ordering. Our study demonstrates the impor-
tance of varying degrees of long and short-range order on
diffusion coefficients.

II. THEORETICAL FORMALISM

This section summarizes various phenomenological
metrics of atomic mobility in substitutional alloys and
describes how they can be calculated starting with an
atomic description of hop frequencies. We make a dis-
tinction between perfect crystals, where the number of
vacancies are conserved, and solids containing a sufficient
number of vacancy sources and sinks to ensure local equi-
librium in the vacancy concentration. The two extremes
lead to different sets of diffusion coefficients.

A. The case of a perfect crystal of a binary
substitutional alloy

We focus on the Ni rich fcc-based phases of the Ni-Al
binary. These phases accommodate dilute concentrations
of vacancies that can mediate substitutional diffusion. In
an actual alloy, extended defects such as dislocations and
grain boundaries act as sources and sinks for vacancies.
In this section, we review metrics of substitutional dif-
fusion in crystals where no such sources and sinks are
present, and where the number of sites of the crystal, M ,
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and the total number of vacancies, NVa, is conserved.
We will refer to these solids as “perfect crystals,” not-
ing that, while they do not contain dislocations or grain
boundaries, they still contain vacancies.

Imbalances in the chemical potentials of mobile species
act as thermodynamic driving forces for atomic diffusion.
Chemical potentials can be extracted from the Gibbs free
energy, G, of the alloy, which is a function of the tem-
perature, T , pressure, P , and the number of atoms NNi

and NAl. The free energy of a perfect crystal can be
normalized by the number of sites in the crystal

g (T, P, xNi, xAl) =
G

M
(1)

where xNi and xAl are the Ni and Al atom fractions rel-
ative to the number of sites in the crystal, M (such that
xNi + xAl + xVa = 1).

Diffusion in a perfect crystal is driven by gradients of
“diffusion potentials”, defined as35,46–48

µ̃i =
∂g

∂xi
= µi − µVa (2)

The diffusion potential of a species i is equal to
the difference in the chemical potential of i, µi =
(∂G/∂Ni)T,P,Nj 6=i

, and the vacancy chemical potential,

µVa = (∂G/∂NVa)T,P,Nj 6=V a
. Each µ̃i can be viewed as

the change in free energy of the alloy as an atom of type i
is added to the solid at the expense of a vacancy (holding
the number of crystal sites M constant).

Diffusion fluxes within a perfect crystal are related to
the gradients of diffusion potentials according to[

~JNi

~JAl

]
= −

[
LNi,Ni LNi,Al

LAl,Ni LAl,Al

] [
∇µ̃Ni

∇µ̃Al

]
(3)

where the Lij refer to Onsager transport
coefficients1,47,49. Note that only the fluxes for Ni

and Al need be accounted for since ~JVa + ~JNi + ~JAl = 0
when the number of sites M is conserved.

Kubo-Green linear response methods can be used to re-
late the phenomenological Onsager transport coefficients
of eq. (3) to fluctuations that occur at the atomic scale
in equilibrium50–52. At finite temperature, atoms will
be in continuous motion, migrating from one site to the
next through atom-vacancy exchanges. For a crystalline
solid,50,52

Lij =
1

ΩkBT
L̃ij (4)

with

L̃ij =
〈
(∑

ζ ∆~Rζi (t)
)(∑

ζ ∆~Rζj (t)
)
〉

(2d)tM
(5)

Here, kB is the Boltzmann constant, T is the temper-
ature, Ω is the volume per substitutional site, M is the

number of sites in the crystal, and d is the dimensionality
of the substitutional network (e.g. for a 3-dimensional
substitutional network d = 3, while a layered material

would have d = 2). The vectors ∆~Rζi connect the end
points of the trajectory of atom ζ being a species of type
i after the elapse of a time t. The brackets 〈 〉 denote
ensemble averages at equilibrium. Note that eq. (5) sat-
isfies the Onsager reciprocity relations53, which require
that Lij = Lji.

Other purely kinetic quantities can be defined in terms

of the ∆~Rζi , including correlation factors and tracer dif-
fusion coefficients. The correlation factor fi of a species
i is defined as48,54

fi =
〈∆~R2

i 〉
Nτ∆~r 2

(6)

where Nτ is equal to the number of hops and where ∆~r 2

is the square of an elementary hop distance (e.g. near-
est neighbor distance for nearest neighbor atom-vacancy
exchanges). Correlation factors measure the degree with
which correlations between successive hops affect atomic
transport of individual atoms in a crystal. When an
atom or vacancy performs a random walk, there are no
correlations between successive hops and f = 1. When
f = 0, every individual hop is exactly opposite the previ-
ous one. Tracer diffusion coefficients measure the diffu-
sivity of tagged tracer atoms in the absence of chemical
gradients and can be expressed as48

D∗i =
〈∆~R2

i 〉
2dt

(7)

Gradients in chemical potential are not straightforward
to measure experimentally. Flux expressions in terms of
concentration gradients are more convenient, and can be
derived from eq. (3) by chain rule differentiation of the
chemical potentials. The flux expressions then take the
form [

~JNi

~JAl

]
= −

[
DNi,Ni DNi,Al

DAl,Ni DAl,Al

] [
∇cNi

∇cAl

]
(8)

The matrix of diffusion coefficients, D, are related to the
Onsager transport coefficients according to35[

DNi,Ni DNi,Al

DAl,Ni DAl,Al

]
=

[
L̃Ni,Ni L̃Ni,Al

L̃Al,Ni L̃Al,Al

] [
Θ̃Ni,Ni Θ̃Ni,Al

Θ̃Al,Ni Θ̃Al,Al

]
(9)

The thermodynamic factor matrix, Θ̃, is proportional to
the Hessian of the free energy35

Θ̃ =
1

kBT


∂2g

∂xNi∂xNi

∂2g

∂xNi∂xAl

∂2g

∂xAl∂xNi

∂2g

∂xAl∂xAl

 (10)

Similar to the Onsager transport coefficients, it is possi-
ble to relate the elements of the thermodynamic factor
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matrix to fluctuations, this time in composition within
the semi Grand Canonical ensemble according to35

Θ̃−1ij =
1

M
〈NiNj〉 − 〈Ni〉〈Nj〉 (11)

where the ensemble averages are performed in a crystal of
M sites while holding the diffusion potentials µ̃i constant.

Though D couples fluxes to gradients in concentration,
the individual components of the matrix by themselves
do not reveal the underlying physics of transport prop-
erties in a binary substitutional alloy where atomic hops
are mediated by atom-vacancy exchanges. Key proper-
ties are embedded in the eigenvalues of D. In the limit of
a dilute vacancy concentration, the larger eigenvalue, λ+,
asymptotically converges to the vacancy diffusion coeffi-
cient, while the smaller eigenvalue, λ−, becomes equal
to an intermixing diffusion coefficient between Ni and
Al35,47. Additional metrics can be defined in terms of
the elements of D that measure the extent with which
the alloy deviates from a kinetically ideal substitutional
alloy, which is defined as an alloy that is not only ther-
modynamically ideal, but also has the property that the
components of the alloy have identical atom-vacancy ex-
change frequencies. One such metric is defined as35

φ =
DAl,Ni

DNi,Al +DAl,Ni
, (12)

and measures the fraction of Al that will exchange with
a flux of vacancies. For a kinetically ideal substitutional
alloy there is no bias in the atom-vacancy exchange fre-
quency between the different components and φ becomes
equal to the alloy concentration35. Any deviation from
this value reveals a difference in the relative mobilities
between the two components of the alloy. Another met-
ric, defined as35

δ = DAl,Al −DNi,Ni +DNi,Al −DAl,Ni (13)

measures the degree with which a gradient between the
Ni and Al concentrations, in the absence of a gradient
in the vacancy concentration, induces a vacancy flux. δ
reflects the alloy’s susceptibility to the Kirkendall effect.

B. Vacancies at local equilibrium

Other diffusion metrics exist when there are sufficient
vacancy sources and sinks to regulate an equilibrium va-
cancy concentration at each point within the alloy. In
this scenario, the vacancy chemical potential µVa will
be equal to zero throughout the solid, thereby impos-
ing thermodynamic constraints on the chemical poten-
tials of Ni and Al. This is a common assumption in
analyses of substitutional diffusion and was first invoked
by Darken55. Under this approximation, the flux expres-
sions can be written as35,48

~Ji = −Di∇ci (14)

where the self diffusion coefficientsDi are again a product
of a kinetic and thermodynamic factor

Di = ΛiΣ (15)

The kinetic factor for each species are related to the On-
sager transport coefficients according to

Λi =

(
L̃i,i
xi
− L̃i,j

xj

)
(16)

The thermodynamic factors are the same for both species
in the limit of a dilute vacancy concentration and can be
calculated according to

Σ =
xi
kBT

(
dµi
dxi

)
µVa=0

(17)

The fluxes of eq. (14) are relative to the crystal frame
of reference. However, in the presence of vacancy sources
and sinks, such as dislocations and grain boundaries, the
solid can become susceptible to the Kirkendall effect and
single crystal regions may move relative to a fixed labo-
ratory frame of reference. Interdiffusion between the two
components of the alloy is usually measured in the labo-
ratory frame of reference. The interdiffusion coefficient in
the laboratory frame of reference can be expressed as35,48

D̃ = Λ̃Σ (18)

where for the Ni-Al binary

Λ̃ = xAlΛNi + xNiΛAl (19)

The interdiffusion coefficient D̃ is the analog of the per-
fect crystal intermixing coefficient, λ−, but for a solid
with sufficient vacancy sources and sinks to regulate
an equilibrium vacancy concentration throughout the
solid35.

C. Atomistic description

Atoms of a substitutional alloy continuously exchange
with a dilute concentration of vacancies and thereby wan-
der throughout the crystal, even in thermodynamic equi-
librium. The Kubo-Green expression of eq. (5) shows
that the phenomenological transport coefficients can be

calculated by tracking the trajectories ∆~Rζi of these mo-

bile atoms. The trajectories ∆~Rζi are the result of many
individual atom-vacancy exchanges that occur stochasti-
cally with frequencies that in a crystal can be approxi-
mated with transition state theory56–59 according to

Γ = v∗ exp

(
−∆E

kBT

)
. (20)

Here ∆E is the migration barrier for a hop and v∗ is a
vibrational prefactor. Within the harmonic approxima-
tion, the vibrational prefactor v∗ is equal to the ratio



4

of the products of the normal mode frequencies in the
activated and initial states56

v∗ =

∏3N−3
i=1 vi∏3N−4
k=1 ṽk

(21)

where v and ṽ are the initial and activated state frequen-
cies respectively and where N is the number of atoms in
the crystal.

1. Cluster expansion representation of end state energies

Non dilute alloys exhibit varying degrees of short and
long-range ordering as a function temperature and al-
loy composition. As atoms of an alloy migrate, they
encounter a range of migration barriers due to fluctu-
ations in the local degree of ordering along their trajec-
tory. Modeling diffusion in concentrated substitutional
alloys therefore requires an accurate description of the
dependence of the energies of the end states and of the
activated states on the local degree of short- and long-
range order.

In this work, we use cluster expansion
Hamiltonians40,41,60–62 to describe the dependence
of the energy of the solid on the particular arrangement
of Ni, Al and vacancies over the sites of the FCC crystal.
The energies of the end states of a hop in a Ni-Al alloy
can be described with a ternary cluster expansion as
each site of the crystal is either occupied by Ni, Al or
a vacancy. For the Ni-rich alloy, it is convenient to
assign two occupation variables to each crystal site i:
pAli , which is equal to 1 if the site is occupied by Al and
zero otherwise and pV ai , which is 1 if the site is occupied
by a vacancy and zero otherwise. The configurational
state of a crystal of M sites is then uniquely determined
by specifying the occupation variables at each site,
~p =

(
pAl1 , pV a1 , ..., pAli , p

V a
i , ..., pAlM , p

V a
M

)
. The energy of

the crystal in any end state of a hop can be expressed
as an expansion of polynomials of the occupation
variables40,62

E(~p) = V0 +
∑
α,π

Vα,πφα,π(~p) (22)

where each cluster basis functions, φα,π(~p), is a product
of occupation variables belonging to a cluster of sites α
according to

φα,π(~p) =
∏
i∈α

pπi
i (23)

The clusters of sites, α, refer to point, pair, triplet etc.
clusters, while the π denotes which occupation variable
is to be assigned to each site in the cluster α. The Vα,π
are constant expansion coefficients referred to as effective
cluster interactions (ECI). The ECI of a cluster expan-
sion Hamiltonian can be parameterized by training to
a large number of energies for different alloy configura-
tions ~p that have been calculated with a first principles

electronic structure method such as density functional
theory43,63.

2. Cluster expansion description of activation barriers

The migration barrier for a particular hop is equal to
the difference in energy between the activated state and
the initial state of the hop. In FCC Ni-Al, there are two
important hop types: a nearest neighbor Al-Va exchange
and a nearest neighbor Ni-Va exchange. The migration
barrier for each hop type, t, in a concentrated alloy de-
pends on the local degree of ordering surrounding the
sites participating in the hop. We denote this ordering
as ~pH = ~p\H, which collects all the occupation variables
of the crystal minus those residing on the hop cluster H.
Migration barriers also depend on the direction of the
hop, since the end states of most hops in a concentrated
alloy will not have the same energy. This is schemati-
cally illustrated in fig. 1. The direction dependence of
the migration barrier can be separated from the environ-
ment dependence by working with a Kinetically Resolved
Activation (KRA) barrier, defined as31

∆EKRA = E∗ − Ei + Ef
2

(24)

where E∗ is the energy of the activated state, Ei is the
energy of the initial state and Ef is the energy of the final
state of the hop. The ∆EKRA, while still a function of
the hop type t and the hop environment ~pH , is indepen-
dent of the hop direction. We denote this dependence as
∆EKRA

t (~pH). For an atom-vacancy exchange mechanism
on a nearest neighbor hop cluster, ∆EKRA

t (~pH) simply
reduces to an average of the forward and reverse hop
activation barriers. In essence, the KRA separates the
kinetic component of the hop from the thermodynamic
end states.

As with the energies of the end states of a hop, the
dependence of ∆EKRA

t on ~pH can also be described with
a (local) cluster expansion31

∆EKRA
t (~pH) = Kt

0 +
∑
α,π

Kt
αφα,π(~pH) (25)

where the sum extends over clusters not including the
hop cluster H. The expansion coefficients Kt

α can be de-
termined by training to a large set of ∆EKRA

t (~pH) values
as calculated with a first-principles method. Each hop
type t will have a separate cluster expansion.

Symmetry imposes constraints on the number of in-
dependent interaction coefficients. Diffusional hops in a
substitutional solid can be approximated to occur in an
infinite crystal far away from symmetry breaking defects
such as dislocations and grain boundaries. The sym-
metric equivalence of two local environments around a
particular hop type is then determined by a subgroup
L of the crystal space group S, obtained by taking the
intersection of a hop symmetry group H with S. For
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FIG. 1. The activation barrier for a forward hop (a) will differ from that of the reverse hop (b) if the energies of the end states
are different. The kinetically resolved activation (KRA) barrier is independent of the hop direction as it is an average of the
forward and backward activation barriers.

simple hops, such as the nearest neighbor atom-vacancy
exchange mechanism, the hop symmetry groupH reduces
to the point group of the hop cluster (i.e. the point group
that maps the nearest neighbor pair hop cluster onto it-
self). Any cluster function φα,π(~p) that can be mapped
onto another cluster function φβ,π′(~p) using a symmetry
operation from the subgroup L = H ∩ S will have the
same ECI (i.e. Kt

α,π = Kt
β,π′).

Once cluster expansions for the end states of the hop
(eq. (22)) and the KRA barrier for each of the hop types
t have been parameterized using first-principles training
data, it is possible to calculate the migration barrier for
any local environment according to

∆E = E∗ − Ei = ∆EKRA
t (~pH) +

E(~pf )− E(~pi)

2
(26)

where ~pf and ~pi are the configurations of the crystal in
the final and initial states, and where ~pH is the configu-
ration of the crystal minus the hop cluster sites (which
remains unchanged during the hop).

III. COMPUTATIONAL DETAILS

The cluster expansions of the alloy and of the KRA
barriers make it possible to calculate all the thermo-
dynamic and kinetic quantities described in section II
with Monte Carlo techniques. Grand Canonical Monte
Carlo simulations applied to the crystal cluster expan-
sion Hamiltonian, eq. (22), generate the necessary ther-
modynamic information to (i) construct an equilibrium
temperature versus composition phase diagram, (ii) cal-
culate the equilibrium vacancy concentration and (iii) es-
timate the elements of the thermodynamic factor matrix
of eq. (10). Migration barriers in any alloy environment
can be calculated by combining the alloy cluster expan-
sion eq. (22) with the local cluster expansions for the
KRAs, eq. (25), as in eq. (26). Atomic trajectories that
arise from stochastic atom-vacancy exchanges can then
be sampled with kinetic Monte Carlo simulations42.

Cluster expansions were parameterized using large
training sets of energies as calculated with density func-
tional theory (DFT). All DFT calculations were per-
formed with the generalized gradient approximation
(GGA-PBE) using the projector augmented wave (PAW)
pseudopotential method as implemented in the Vienna
ab initio simulation package (VASP)64–67. A recursive
approach63 was used to parameterize the expansion co-
efficients of a ternary cluster expansion for the FCC Ni-
Al-Va system by starting with a well optimized binary
Ni-Al cluster expansion43 and extending it to account
for interactions between Al and vacancies. The vacancy
concentration in the Ni-Al alloy is very dilute, allowing
us to neglect interactions between vacancies. The bi-
nary Ni-Al cluster expansion43 was extended by fitting
Al-vacancy interaction coefficients using 50 DFT energies
of configurations containing a vacancy within a 107 atom
supercell (3 × 3 × 3 conventional cubic FCC unit cells)
in either L12 derived configurations or in various Ni-rich
FCC configurations. At this size, convergence errors due
to interactions between periodic images were found to be
below 25meV per vacancy (based on a comparison of cal-
culations performed in 4×4×4 conventional FCC cells).
A k-point mesh of 4 × 4 × 4, with a smearing parame-
ter of 0.2eV, was used. Calculations were performed spin
polarized with ferromagnetic ordering initialized in each
supercell and with a plane wave cutoff energy of 560eV.

Two local cluster expansions were constructed to de-
scribe the dependence of ∆EKRA

t (~pH) on local ordering
for the Ni-vacancy and Al-vacancy exchange hop types
t. Each of the local cluster expansions were fit to first-
principles KRA barriers, calculated for configurations in
Ni rich FCC and L12. Diffusion barriers for low symme-
try hops were calculated in 107 atom supercells (3×3×3
of the conventional cubic FCC unit cell) with DFT using
the nudged elastic band68 (NEB) method as implemented
in VASP. The volume of all images in each NEB calcu-
lation was held constant, but the ionic positions were
allowed to relax. A total of 7 images were considered in
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each NEB calculation, which included the two end states
of each hop. For hops in high symmetry environments
with a mirror plane perpendicularly bisecting the hop
cluster, only a single supercell calculation is necessary,
provided the migrating atom is placed in the mirror plane
of a high-symmetry, prerelaxed crystal to ensure that the
migrating atom remains at the saddle point during relax-
ation.

Vibrational prefactors, defined by eq. (21), were ap-
proximated by calculating vibrational frequencies of Ni
and Al within a 31 atom Ni supercell. Supercells with ei-
ther Ni or Al in both the equilibrium and activated state
were first completely relaxed. Vibrational frequencies
for both the equilibrium and activated states were then
determined from the Hessian matrix as calculated with
VASP. This yielded v∗Ni = 3.11 THz, and v∗Al = 4.39 THz.
We used these values for all hop environments in subse-
quent kinetic Monte Carlo simulations.

Grand canonical Monte Carlo simulations were per-
formed using the CASM62,69–71 software package to cal-
culate the binary temperature versus composition phase
diagram and the equilibrium vacancy concentration as a
function of alloy composition. The equilibrium vacancy
concentration was determined by setting µVa = 0. This
thermodynamic boundary condition is equivalent to min-
imizing the Gibbs free energy of the alloy with respect
to the vacancy concentration and mimics the role of ex-
tended defects such as dislocations and grain boundaries
that act as sources and sinks for vacancies. The equi-
librium vacancy concentration in actual crystals cannot
be controlled experimentally and is instead regulated by
these imperfections. We also tracked the fluctuations in
composition during the Monte Carlo simulations to cal-
culate the thermodynamic factor according to eq. (11).
Kinetic Monte Carlo simulations were performed to cal-
culate the Onsager transport coefficients. The dimen-
sions of our simulation cell were 10 × 10 × 10 conven-
tional FCC cells (4000 atoms) and contained a single va-
cancy. The Onsager coefficients scale linearly with the
vacancy concentration in the dilute vacancy limit35, and
we adjusted their values accordingly, using the equilib-
rium vacancy concentrations from our Grand Canonical
simulations72. All thermodynamic and kinetic quantities
were calculated at 1300 K as this value is close to the
operating temperature of jet engines where Ni-Al alloys
serve as the base alloy for the turbine blades44.

IV. RESULTS

A. Thermodynamic Properties

Figure 2a shows the calculated phase diagram of the
Ni-rich FCC portion of the Ni-Al binary. The shaded
areas represent single phase regions corresponding to the
γ and γ′ phases. The γ phase is a Ni-rich disordered
solid solution on FCC while the γ′ phase is an L12 order-
ing with an ideal stoichiometry of Ni3Al. The calculated

γγ'
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FIG. 2. Calculated thermodynamic properties of the γ and
γ′ phases. (a) Equilibrium phase boundaries of the Ni-rich
side of the Ni-Al binary phase diagram. (b) The equilibrium
vacancy concentration as a function of alloy concentration.
(c) The local compositions around a vacancy in its nearest
neighbor, second nearest neighbor, and third nearest neighbor
shells. The alloy concentration is shown as a dashed line.

phase diagram shows that γ′ is stable over a wide compo-
sition range, with off-stoichiometry accommodated by Ni
anti-site defects for Ni rich compositions and Al anti-site
defects for Al compositions43.
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Figure 2b shows the equilibrium vacancy concentration
as a function of alloy composition calculated at 1300 K.
The vacancy concentration clearly depends both on the
overall alloy concentration and the degree of ordering, ex-
hibiting a strong dip at the stoichiometric Ni3Al compo-
sition of γ′. Figure 2c shows the average Al concentration
of the nearest, next nearest and third nearest neighbor
shells of a vacancy. Our DFT calculations predict that Al
has an energetic preference to occupy the nearest neigh-
bor shell of a vacant site in a Ni rich supercell, while
the converse is predicted for the second nearest neigh-
bor shell. This is faithfully reproduced by the ternary
cluster expansion and manifests itself as an increased Al
concentration within the nearest neighbor shell (orange
curve in fig. 2c) and a reduced Al concentration in the
second nearest neighbor shell (purple curve) of a vacancy
relative to that of the average alloy (dashed line). Fig-
ure 2c also shows that the interaction between a vacancy
and Al in the third nearest neighbor shell (green curve)
is insufficiently strong at 1300K to produce a significant
deviation from the average alloy composition.

Figure 2c reveals that the vacancy predominantly oc-
cupies the Ni sub lattice of γ′ L12 ordering. A vacancy
on the Ni sub lattice is exclusively surrounded by Ni in
its second nearest neighbor shell. Figure 2c shows that
the Al concentration in the second nearest neighbor shell
of a vacancy decreases dramatically in γ′, exhibiting a
minimum close to the stoichiometric composition, where
the number of Ni and Al anti-site defects are at a mini-
mum. The high temperature prediction that the vacancy
segregates to the Ni sub lattice of γ′ is again consistent
with the DFT supercell calculations of vacancy forma-
tion energies. It is also consistent with experimental
positron lifetime spectroscopy measurements of Ni3Al,
which showed a tendency for thermal vacancy segrega-
tion to the Ni sublattice73.

B. Migration Barriers

We explore the dependence of migration barriers on
local environment. It is useful to distinguish two regions
surrounding a hop when assessing the role of the local en-
vironment on migration barriers. The first corresponds
to the shell of atoms that directly coordinate the acti-
vated state. In FCC, an atom moving into a nearest
neighbor vacancy must pass through a rectangle of four
atoms, as shown in fig. 3. We refer to this shell of sites
as the Activated Coordination Environment (ACE). The
second region consists of all other sites outside the ACE
and the hop cluster.

The decoration on the ACE should have the largest im-
pact on the activation barrier. Figure 3 illustrates several
symmetrically distinct decorations over the ACE, inde-
pendent of the ordering in shells further away from the
hop cluster. Atomic shells at further distances, however,
will also influence the activation barrier. For example, a
hop in a dilute Ni-rich solid solution and a hop in L12

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a) An atom in the activated state is closer to the
ACE atoms (black) than when it is in an end state. (b)-(d)
Examples of different ACE environments. Ni atoms are shown
in orange, Al is colored purple and vacancies are white. In
the L12 ordering, hops can occur between two Ni sublattices
(e), or between an Al and a Ni sublattice (f).

may have identical Ni-Al arrangements on the ACE, but
very different arrangements in the outer region. It is un-
likely that these two hops will have the same activation
barriers.

A Ni or Al hop in pure Ni occurs in only one dis-
tinct environment. The L12 ordering in contrast, breaks
translational symmetry and thereby produces two dis-
tinct local hop environments: one between two different
Ni sublattice sites, and another between an Al sublattice
site and any of its nearest neighbor Ni sublattice sites.
The local environments of these hops in the absence of
local antisite perturbations are shown in figs. 3e and 3f.
Additional local hop environments were enumerated by
adding Al to the ACE of hops in pure Ni and by deco-
rating the ACE of the two distinct hop environments in
L12 with antisite defects.
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FIG. 4. (a) KRA barriers as a function of the alloy composi-
tion, with the hops colored to distinguish between Ni-Va, and
Al-Va exchanges. KRA barriers as a function of the Ni com-
position in the ACE for (b) Al-vacancy and (c) Ni-vacancy
exchanges. Colors are used to distinguish KRA barriers cal-
culated in Ni-rich γ from those calculated in the L12 ordering.

Figure 4a shows calculated KRA barriers for Ni and
Al hops as a function of alloy composition. Figures 4b
and 4c show the same KRA barriers, but as a function of
the Ni concentration in the ACE. There is a striking dif-
ference in the dependence of the Ni and Al KRA barriers
on the ACE concentration. Regardless of local and long-
range ordering, fig. 4c shows that the Ni KRA barriers
remain constant to within 250meV. In contrast, fig. 4b
shows a strong, almost linear dependence of the Al KRA
on the ACE composition. Furthermore, long-range or-
dering in the crystal also impacts Al KRA barriers, as is
clear from the systematic downward shift of KRA barri-
ers for hops in L12 (green) compared to those in pure Ni
(orange) for the same ACE ordering.

Two local cluster expansions, one for Ni, and another
for Al KRA barriers, were constructed, using a genetic
algorithm approach to select basis functions having non-
zero expansion coefficients74. Figure 6a shows 4 different
shells of sites around a nearest-neighbor hop in FCC,
where each shell, having a different color, is a collec-
tion of symmetrically equivalent sites under the local hop
symmetry L. The pool of available clusters for the local
cluster expansions contained up to 3-body terms consist-
ing of any combination of sites of the 4 shells. A total
of 22 Ni KRAs and 21 Al KRAs were used to train the
cluster expansions. The Ni KRA cluster expansion was
constructed using 4 local basis functions, and has a leave-
one-out cross validation (LOOCV) score of 62meV. The
Al KRA cluster expansion has a total of 5 basis func-
tions with a LOOCV score of 69meV. Figures 6b and 6c
shows the magnitudes and selected clusters of the two
cluster expansions. The local cluster expansions faith-
fully reproduce the different trends for Ni and Al KRA
barriers.

C. Transport coefficients

Figure 5a shows Onsager transport coefficients as cal-
culated with kinetic Monte Carlo simulations using the
ternary Ni-Al-Va alloy cluster expansion for the end state
energies of each hop and the two local cluster expan-
sions for the KRA barriers for Ni-vacancy and Al-vacancy
hops. The Onsager coefficients scale linearly with the
vacancy concentration when the vacancies are dilute35.
The diagonal and off-diagonal coefficients, L̃Ni,Ni, L̃Al,Al

and L̃Ni,Al, exhibit a composition dependence for the γ
phase that is similar to that of a thermodynamically ideal
solid solution28,35,75. In the γ′ phase both LNi,Ni and
LAl,Al exhibit a dip near xNi = 0.75 due to a decrease in
the equilibrium vacancy concentration and a minimum
in the number of Al and Ni anti-site defects at the sto-
ichiometric composition of the L12 ordering. The cross
term LNi,Al becomes negative below xNi = 0.78 (hollow
circles).
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FIG. 5. (a) Onsager coefficients, (b) tracer diffusion coeffi-
cients and (c) correlation factors as calculated with kinetic

Monte Carlo simulations at 1300K. The off diagonal L̃Ni,Al

in (a) becomes negative at Al rich concentrations in the γ′

phase. Hollow points represent data where the absolute value
of a negative L̃Ni,Al was taken.

Further insights about diffusion mechanisms are re-
vealed by considering tracer diffusion coefficients, which
are a measure of the mobility of individual atoms in the
crystal. Figure 5b shows the tracer diffusion coefficients
of both Ni and Al as a function of alloy composition.
The tracer diffusion coefficient of Al is higher than that
of Ni in the γ phase. Al is therefore more mobile in the
disordered solid solution. This can be understood by in-
spection of the KRA barriers for Ni and Al at dilute Al
concentrations. Figure 4 shows that the KRA barrier for
Al is substantially lower than that for Ni for local hop
environments that are rich in Ni, as is typical for a Ni-
rich disordered solid solution such as the γ phase. The
relative magnitudes of the Al and Ni tracer diffusion co-
efficients are reversed in the γ′ phase with Ni being the
faster diffuser in the L12 ordering. In part this is due
to the vacancy’s preference for the Ni sub lattice of L12.
The Ni sub lattice of L12 is fully interconnected and a
vacancy can wander along this sub lattice without intro-
ducing additional disorder. This is not the case for a hop
that involves an Al atom residing on the disconnected Al
sub lattice as such an exchange will result in anti-site de-
fects. Similar to the Onsager transport coefficients, the
tracer diffusion coefficients also exhibit a minimum near
a composition of xNi = 0.75.

The calculated correlation factors, shown in fig. 5c,
provide information about the role of short- and long-
range order on diffusion mechanisms. In pure Ni (xNi =
1), the correlation factor for Ni is equal to that of a sin-
gle component FCC crystal (≈ 0.78), while that of the
vacancy correlation factor approaches 1, indicating that
it performs an uncorrelated random walk. The alloying
of FCC Ni with Al results in additional correlations. The
very low Al correlation factor signifies that its trajecto-
ries are highly correlated. The vacancy correlation factor
also decreases rapidly with an increase in the Al composi-
tion in the γ phase, approaching values that are almost as
low as that of Al. The Ni correlation factor, in contrast,
is only negligibly affected by the addition of Al.

The low vacancy and Al correlation factors have both a
thermodynamic and kinetic origin. The thermodynamics
of the γ phase favors Al-vacancy pairs at concentrations
that are higher than a random solid solution while the
kinetics ensures that once a vacancy is next to an Al,
it will perform a large number of Al-vacancy exchanges
before breaking free to exchange with a surrounding Ni.
These frequent back and forth Al-vacancy hops introduce
a substantial amount of correlation along both the Al and
vacancy hop trajectories. The Ni in contrast, because of
their low hop frequencies (compared to Al), occasionally
exchange with a vacancy and only after the vacancy has
performed many exchanges with neighboring Al atoms
such that the position of the vacancy between successive
hops with a Ni is much less correlated.
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FIG. 6. (a) The local environment of a nearest neighbor hop
in FCC. The end states of the hop are shown in white, while
the other colors denote symmetrically equivalent sites under
local symmetry. The purple sites represent the ACE. The
Effective Cluster Interactions (ECI) of the local cluster ex-
pansions of the Ni and Al KRA barriers are shown in (b) and
(c) respectively.

Correlated transport persists within the ordered γ′

phase, as is evident in fig. 5c. However, surprisingly the
vacancy correlation factor actually increases and achieves
a local maximum at the stoichiometric L12 composition

of xNi = 0.75. This emerges due to the thermodynamic
preference of the vacancy to reside on the fully intercon-
nected Ni sub lattice of L12. At the stoichiometric L12
composition, the number of Al anti site defects on the
Ni sub lattice is at a minimum, diminishing the chance
that a vacancy encounters Al to perform large numbers
of highly correlated back and forth exchanges.

The full 2 × 2 matrix of Fickian diffusion coefficients,
D, contains additional information about diffusion pro-
cesses in the Ni-Al alloy. It embeds both thermodynamic
and kinetic information as it is the product of the ther-
modynamic factor and the matrix of Onsager transport
coefficients (eq. (9)). Rather than examining the indi-
vidual elements of D, we consider its eigenvalues47 λ+

and λ−, and the diffusion metrics35 φ and δ defined in
eqs. (12) and (13). The larger eigenvalue λ+ converges to
the vacancy tracer diffusion coefficient in the limit of di-
lute vacancies. Figure 7a shows that the numerical values
of λ+ and D∗Va match almost exactly. Vacancies in the
Ni-Al alloy are predicted to diffuse more rapidly in the
ordered γ′ phase than in the disordered γ solid solution.

The smaller eigenvalue λ− can be interpreted as an in-
termixing diffusion coefficient in a perfect crystal without
vacancy sources and sinks.35,47 Figure 7b shows that the
intermixing diffusion coefficient is higher in γ than in γ′.
Furthermore, λ− exhibits a strong concentration depen-
dence in γ′, having a minimum at a concentration that
is slightly richer than the stoichiometric L12 composition
and increasing rapidly with increasing Al concentration.
Also shown in fig. 7b is the inter diffusion coefficient, D̃,
that is a measure of the rate of intermixing when there
are sufficient vacancy sources and sinks to regulate an
equilibrium vacancy concentration throughout the solid.
These behave similarly to λ−, especially within the γ
phase.

The metric φ, eq. (12), tracks the bias of a vacancy flux
to exchange with Al rather than with Ni. In a thermo-
dynamically and kinetically ideal alloy, φ is equal to the
atomic fraction of Al in the crystal35. Figure 7c shows
that φ is larger than the average concentration in the γ
phase, indicating a preference for vacancies to exchange
with Al atoms. The opposite is true in the γ′ phase,
and vacancies prefer exchanging with Ni atoms, espe-
cially near stoichiometric compositions of L12.

The fourth diffusion metric δ, eq. (13), is akin to a
“Kirkendall coefficient”, and leads to a vacancy flux in
the presence of an intermixing driving force between Ni
and Al (in the absence of a vacancy flux driving force).35

In a kinetically and thermodynamically ideal alloy δ =
0, and intermixing induces no vacancy flux. The values
in fig. 7d show that intermixing of Ni and Al in the γ
phase causes a net vacancy flux in the “positive” direction

(counter to ~JAl). Since Al is the faster diffuser as revealed
by the tracer diffusion coefficients, more vacancies will
exchange with Al and travel in the opposite direction.
Within the γ′ phase, we see that Ni rich compositions
lead to the opposite behavior, and intermixing causes a
vacancy flux counter to Ni. For Al rich compositions, δ
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FIG. 7. (a) Comparison of λ+ with the vacancy tracer diffusion coefficient D∗Va, and (b) λ− with the interdiffusion coefficient

D̃ at 1300K. Values of φ (c) and δ (d) as a function of alloy concentration at 1300K. Dashed lines denote values for a kinetically
ideal alloy.

becomes positive again. The steep rise in δ as the Al
composition increases is consistent with the values of the
tracer diffusion coefficients in fig. 5b, which show that Al
becomes increasingly mobile as the L12 ordering becomes
Al rich, even surpassing the mobility of Ni.

The trends in the calculated diffusion coefficients as
a function of alloy concentration are in good qualitative
agreement with experiment. While measured values for
D∗Ni at elevated temperatures show little to no depen-
dence on alloy composition, experimental observations
by Shi76 and, to a lesser extent, by Hoshino77,78, show
a pronounced dip at 1173K near stoichiometric compo-
sitions of L12 Ni3Al. Furthermore, the position of the
minimum of the calculated D∗Ni at xNi = 0.76 (slightly
above the stoichiometric composition of L12) is consistent
with experimental measurements by Shi76. A similar dip
was observed for In radiotracers in L12, which were used
to simulate Al diffusion76. Measurements by Hancock79

revealed that D∗Ni is 7-10 times lower in the L12 ordered

γ′ phase than in pure Ni, in good agreement with calcu-
lations.

There are quantitative discrepancies between calcu-
lated and experimentally measured diffusion coefficients,
with tracer and interdiffusion coefficients being systemat-
ically underpredicted by an order of magnitude compared
to their experimental counterparts. Several sources for
the quantitative discrepancies can be identified. While
systematic errors in calculated vacancy formation ener-
gies and migration barriers may be one source, we esti-
mate these to be no larger than 50-100 meV based on
numerical convergence tests. At 1300 K, systematic er-
rors of this order would only affect diffusion coefficients
by a factor of 2 or 3. Our calculations, have, how-
ever, neglected vibrational contributions in the determi-
nation of the equilibrium vacancy concentration, which
are likely to become more important at high tempera-
ture. For example, the calculated vacancy concentration
of pure Ni at 1300 K is approximately an order of magni-
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tude lower than experimental values measured by Sholz
as compiled by Hargather et al80. Diffusion coefficients
scale linearly with the vacancy concentration when the
vacancy concentration is dilute. We have also neglected
the effect of thermal expansion, which has a tendency
to reduce migration barriers as the increase in volume
relieves some of the steric hindrance as an atom passes
through the more constricted activated state. All migra-
tion barriers in this study were calculated at the zero
Kelvin DFT volume. We expect that migration barriers
calculated at larger volumes that are representative of
those at 1300 K will be systematically lower than those
calculated at the zero Kelvin volumes. A systematic re-
duction in migration barriers will result in higher calcu-
lated diffusion coefficients and further close the gap be-
tween predicted and experimentally measured diffusion
coefficients. The experimental studies are also likely to
measure atomic transport due to short-circuit paths, in-
cluding grain boundaries and dislocation cores. Short
circuit diffusion usually results in larger effective diffu-
sion coefficients than those of single crystals.

V. DISCUSSION AND CONCLUSION

We have performed a first-principles multi-scale study
of diffusion in the FCC γ and γ′ phases of the Ni-Al bi-
nary using cluster expansion Hamiltonians and (kinetic)
Monte Carlo simulations. Diffusion in the FCC based
phases of the Ni-Al binary are dominated by nearest
neighbor atom-vacancy exchanges. These hop events are
strongly affected by the local concentration of the alloy
and the local degree of ordering among Ni and Al. A
useful metric to analyze the environment dependence on
an activation barrier is the kinetically resolved activation
(KRA) barrier31. Our systematic calculations show that
the KRA barriers are very sensitive to the composition
in the activation coordination environment (ACE), which
consists of the sites that directly coordinate the activated
state of a hop. Calculations showed that there is a strik-
ing difference between the dependence of the Ni and Al
KRA barriers on local environment. For Ni hops, the
KRA barriers are almost independent of the local con-
centration and degree of ordering. The Al KRA barriers,
in contrast, depend strongly on both the composition of
the ACE and on the long-range ordering of the crystal
outside of the ACE. In both γ and the ordered γ′ phase,
the Al KRA barrier is lower than that of Ni when the
ACE is composed exclusively of Ni, but increases rapidly
with number of Al atoms in the ACE.

Kinetic Monte Carlo simulations have allowed us to
calculate various diffusion metrics in the Ni-Al binary
for the FCC γ and γ′ phases. These simulations predict
that Al is the faster diffuser in the γ phase, while Ni
is more mobile in the long-range ordered γ′ phase. The
higher mobility of Al in the γ phase is due to its lower
KRA barrier compared to those of Ni in Ni rich envi-

ronments. The Al also attracts vacancies to its nearest
neighbor shell. While this ensures that dilute Al atoms
have easy access to the diffusion mediating vacancies, it
also leads to highly correlated diffusion, both for Al and
vacancies. The thermodynamic attraction between a va-
cancy and Al coupled with the low Al migration barriers
in Ni-rich γ results in many back and forth exchanges
that do not contribute to macroscopic transport. This
manifests itself in low correlation factors for both Al and
vacancies.

Diffusion in γ′ is significantly altered when compared
to that of γ due to important changes in thermodynamic
preferences imposed by the long-range ordering of L12.
Vacancies are predicted to prefer the interconnected Ni-
sublattice of L12 Ni3Al. Hops that restrict the vacancy
to the Ni sublattice preserve long-range order and are,
therefore, thermodynamically favored. A vacancy-Al ex-
change in well-ordered L12 Ni3Al, in contrast, results in
a high energy anti-site defect pair, with Al on the Ni
sublattice and a vacancy on the Al sublattice. A large
thermodynamic driving force is then generated to reverse
the exchange, restoring Al back to its isolated sublattice
and the vacancy back to its preferred sublattice. These
thermodynamic preferences are sufficiently strong to ren-
der Ni more mobile than Al in γ′, in spite of the fact that
Al has lower KRA barriers when the ACE is exclusively
occupied by Ni, as is the case when it hops away from its
Al sublattice site.

The diffusion metrics λ+, λ−, φ, and δ, extracted from
the diffusion matrix D, are useful for interpreting dif-
fusion mechanisms. While the eigenvalues λ+ and λ−

provide information about the vacancy mobility and in-
terdiffusion coefficients respectively, φ and δ measure the
degree with which the alloy deviates from kinetic ideality
and its susceptibility to the Kirkendall effect35. We have
successfully calculated these metrics for Ni-rich FCC Ni-
Al alloys, rigorously accounting for the effects of long and
short-range order on migration barriers and hop correla-
tions by combining cluster expansions with kinetic Monte
Carlo simulations.
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