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 Abstract: The Pd, and Pt based ABO2 delafossites are a unique class of layered, triangular oxides with 2D 

electronic structure and a large conductivity that rivals the noble metals. Here, we report successful growth 

of the metallic delafossite PdCoO2 by molecular beam epitaxy (MBE). The key challenge is controlling the 

oxidation of Pd in the MBE environment where phase-segregation is driven by the reduction of PdCoO2 to 

cobalt oxide and metallic palladium. This is overcome by combining low temperature (300 °C) atomic 

layer-by-layer MBE growth in the presence of reactive atomic oxygen with a post-growth high-temperature 

anneal. Thickness dependence (5-265 nm) reveals that in the thin regime (<75 nm), the resistivity scales 

inversely with thickness, likely dominated by surface scattering; for thicker films the resistivity approaches 

the values reported for the best bulk-crystals at room temperature, but the low temperature resistivity is 

limited by structural twins. This work shows that the combination of MBE growth and a post-growth anneal 

provides a route to creating high quality films in this interesting family of layered, triangular oxides. 
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Confining 3-dimensional (3D) electron systems to 2D or 1D is a well-established route to observe 

and control quantum phenomena. Such effects arise naturally in a wide range of materials systems where 

the dimensionality of the crystal lattice naturally gives rise to 2D or 1D electronic structure. An interesting 

example is the unique ABO2 delafossite oxides. The electronic structure is highly 2D due to natural A-BO2 

layering, where the BO2 layer is composed of edge sharing BO6 oxygen octahedra, and the A layers are 

ionically bonded vertically above and below the oxygen atoms [1]. The delafossites come in two electronic 

motifs [2]. The first is the insulators, which have been extensively studied as p-type transparent conductors 

when degenerately doped [3,4]. Here, the A-site cations are, for example, Ag or Cu, and the B-site cations 

are typically either a transition metal or a trivalent p-block metal, for example, Al or Ga. The second class 

is the metallic compounds where A = Pd or Pt, and the B-site cations are transition metals Co, Cr, or Rh 

(AgNiO2, a delafossite polytype, is also metallic [5,6]). In the metallic phase the A-site cations are in a 1+ 

valence state, which is unusual for elements like Pd and Pt. The low temperature conductivity reported in 

these metallic compounds are the highest reported for any oxide material, as high as 1.3×108 S/cm, and 

exhibit mean free paths in excess of 20 μm  [7]. Further, the triangularly connected, highly localized states 

on the BO6 octahedra offer an interesting platform for exploring effects of frustrated magnetism coupled 

with the itinerant electrons in the A-layer [8]. Together, these unique characteristics have combined to give 

rise to numerous exotic phenomena [6], including large interfacial Rashba-like spin splitting at the 

surface [9] as well as quantifying electron viscosity  [9]. Yet, there is no report on growth of these materials 

by molecular beam epitaxy (MBE), and only one report by pulsed laser deposition (PLD) in the ultrathin 

limit [10]. Metallic delafossite films can be utilized for various electronic applications ranging from low-

resistivity bottom electrodes for 2D materials to correlated transparent conductors [10,11]. Creation of well-

controlled delafossite films will also enable answering many fundamental questions that cannot be readily 

addressed with bulk crystals such as the effects of strain on electronic and magnetic properties and 

dimensional confinement from 3D to 2D with reduced film thickness.    

Here, we report the growth of the prototypical metallic delafossite PdCoO2 by MBE on c-plane 

Al2O3 substrates (see Ref. [12] for experimental details). The growth required overcoming the challenge of 
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oxidizing palladium in the high temperature and ultrahigh vacuum environment typical of MBE. It was 

found that using atomic oxygen plasma at pressures up to 4×10-6 Torr enabled PdCoO2 to be grown only 

up to temperature of about 300 °C. Beyond this temperature, PdCoO2 spontaneously decomposed by losing 

oxygen and forming Pd metal and CoO, as confirmed by surface sensitive reflection high-energy electron 

diffraction (RHEED) and x-ray photoemission spectroscopy (XPS), and bulk sensitive X-ray diffraction 

(XRD). As such, confining the growth to low temperature resulted in poor crystalline quality, thus 

necessitating a post-growth high-temperature anneal in an oxygen atmosphere. After annealing  to 

TAnn = 700 °C in air and 800 °C in oxygen  (as detailed in the Ref. [12], films were annealed in air or in 

oxygen and TAnn, unless otherwise stated, refers to the air-annealing temperature), the crystalline quality 

improved substantially, the resistivity decreased and the surfaces became atomically flat. Above this 

temperature, however, the films were found to phase-segregate, likely driven by sublimation of volatile 

PdO. The balance dictated by the behavior of oxidation of Pd places a narrow window where high-quality 

single phase PdCoO2 can be grown.  

In order to find the optimal growth condition, various temperatures were used, and Fig. 1 shows 

examples of growth monitoring by RHEED at three different growth temperatures (300, 400, and 600 °C). 

The first attempts to grow PdCoO2 were at a substrate temperature of 600 °C, which was motivated by two 

aspects: (1) For ternary oxides, typical growth temperatures around or above 600 °C are necessary to drive 

surface kinetics to enable crystallization, and (2) the reaction of Pd with oxygen to form volatile PdO  [13] 

on the growing surface can enable adsorption controlled growth, for example, in PbTiO3 [14,15] and 

ruthenate perovskites [16] (see also Ref.  [17,18] and references therein for more examples); the possible 

formation of volatile PdO is highlighted by PLD growth of PdCoO2 where synthesis of Pd deficient films 

necessitated alternating depositions from a PdCoO2 target and a Pd-O target [10]. The real-time results from 

RHEED for deposition at 600 °C are shown in Fig. 1(a-c), which provides structural and morphological 

information. Starting with Al2O3 along the <100> crystal direction in Fig. 1(a), RHEED shows bright well-

defined spots and Kikuchi lines, indicating flat morphology and high-structural quality. Under plasma 

oxygen at a pressure of 4×10-6 Torr at 450 W, a monolayer (ML) of Co was initially deposited, followed 
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by a ML of Pd, shown in Fig. 1(b-c), respectively. RHEED measurements showed that immediately the 

crystal quality degraded (loss of peak intensity), and 2D morphology became 3D (streaks gave way to 

spots), and the targeted phase was lost (additional peaks appeared off the main peaks). This was most 

apparent during the Pd deposition, which indicated metallic Pd clusters form on the surface rather than the 

oxide.  

The formation of metallic Pd clusters suggests the growth temperature was too high, which 

motivated the following strategy. The rule-of-thumb for achieving a conformal epitaxial metal film requires 

the growth temperature to be around 3/8 of the melting point of the metal [19]. For Pd, this temperature is 

400 °C, which would enable the formation of a conformal film of Pd, and, when deposited in an oxygen 

environment, likely enables formation of PdCoO2. As such, it was found that a lower temperature of 400 °C 

combined with layer-by-layer deposition (Co-Pd-Co…Pd-Co), which followed the natural PdCoO2 

layering, was successful: on the other hand, codeposition failed to form the delafossite phase. To show the 

successful growth, RHEED images for the growth at 400 °C are shown in Fig. 1(d-f). In panel (d), at 3 ML 

the resulting film (i) is single phase (no extra spots off the main peaks), (ii) has a 2D morphology (streaky 

pattern), and (iii) is structurally consistent with PdCoO2 (this point will be confirmed later). As the thickness 

was increased, however, additional crystal phases appeared, as can be seen in Fig. 1(e-f) for 8 ML and 

18 ML; this is seen as the appearance of distinct half-order-like additional peaks, which resembles RHEED 

images previously reported for the growth of Co3O4 on Al2O3 [20] (see also Fig. S1 for corresponding XRD 

scan). This suggests that 400 °C is on the boundary of stability. It is interesting, however, that the film is 

initially stable in the thin limit but gradually becomes unstable as the thickness increases, suggesting that 

proximity to the substrate, thickness, or both affect the thermodynamic stability. By lowering the 

temperature to 300 °C, it was found with RHEED that single phase PdCoO2 can be grown, as shown in Fig. 

1(g) at 3 ML. As the thickness was increased, however, the morphology changed from 2D to 3D, but the 

phase remained that of PdCoO2 (since no additional peaks appear), as can be seen by comparing Fig. 1(g-

i) for thicknesses of 3 ML (g), 18 ML (h), and even up to 42 ML (i).  
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Figure 2(a) shows XRD 2θ-θ scans for PdCoO2 films grown at 300 °C (labeled as-grown), as well 

as a sample that was annealed to 475 °C in vacuum. Other than the substrate peaks (marked by *), the lower 

black curve shows the 003n set of peaks, where n is an integer. This set of peaks is characteristic of the 

3 ML periodicity of the unit cell of PdCoO2 along the c-axis [1]. Furthermore, the lower, black-colored 

curves in Fig. 2(b) and (c) show XPS results for the as-grown film (see Ref. [12] for experimental details), 

where Fig 2(b) and (c) show the results for Pd 3d and Co 2p states, respectively. The overall shape and 

binding energy agree with the results reported for bulk PdCoO2 [21] with Pd1+ and Co3+. Both the XRD and 

XPS data agree with the interpretation of the RHEED data and confirm that the as-grown films at 300 °C 

are single phase PdCoO2. These observations, however, indicate that the oxidation capabilities inherent to 

the MBE growth process (mainly pressure) limit the growth temperature and thus the structural quality of 

the PdCoO2. Hence, a secondary post-growth anneal is likely to improve the quality.   

To see this, we systematically explored annealing conditions in vacuum and ex situ in air and 

oxygen: we first discuss the results for vacuum annealing and later return to ex situ anneal. Shown in Fig. 

2(b-c) are the temperature dependence of XPS spectra that were annealed in vacuum at 120, 360, 425, and 

475 °C. With increasing annealing temperature, the peak positions of the Pd 3d3/2 and 3d5/2 shifted between 

360 °C and 425 °C to lower binding energies. Similarly, Co 2p1/2 and 2p3/2 peaks shifted towards higher 

binding energies. This is consistent with the reduction of Pd1+ to metallic Pd0+, and the Co3+ reducing to 

Co2+ [21]. This is confirmed by XRD that was performed after the XPS anneal to 475 °C, the upper red 

curve shown in Fig. 2(a). The PdCoO2 peaks were gone, and additional peaks appeared at 36.5°, 40.2°, 

46.8°, and 77.7° in 2θ: the peaks at 36.5° and 77.7° are CoO, either the 101 and 202 peaks of wurtzite or 

the 111 or 222 peaks of rocksalt [22,23], and the peaks at 40.2° and 46.8° agreed, respectively, with the 111 

and the 200 Pd peaks. This confirms that more oxidizing conditions are needed to improve the properties 

of PdCoO2.  

We now show the results for annealing PdCoO2 films in air by starting with structural data and 

below discuss effects on transport data. The evolution of XRD 2θ-θ curves for as-grown PdCoO2 and air-

annealed to 700 °C and 800 °C are shown in Fig. 3(a). In comparing the as-grown and 700 °C curves, it can 
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be seen that both are free from any secondary phases (for annealed films, it is noted that a peak emerges in 

some thick films at 61°, which may be related to formation of PdO). In going from 700 °C to 800 °C, an 

additional peak appears at around 39° in 2θ. This is most likely the 222 peak of Co3O4 [24]. The Co3O4 

phase segregation is likely driven by the formation and evaporation of palladium oxide. The detailed 

structural evolution is shown in Fig. 3(b), where the intensity of the PdCoO2 006 and 0012 peaks and the 

222 peak of Co3O4, normalized to the substrate 006 peak, are plotted versus annealing temperature. The 

intensity of the delafossite peaks are nominally constant until about 600 °C, and sharply increased in going 

from 600 °C to 800 °C by nearly an order of magnitude, indicating a large improvement to the structure of 

the film. However, by 800 °C the rise of the intensity of the Co3O4 peak shows that, although the structural 

quality of the PdCoO2 continues to improve, it becomes unstable. When the film was annealed in pure 

oxygen instead, the film remained in single phase up to 800 °C (see Ref.  [12]).  

High resolution XRD scans around the 006 and the 012 peaks of PdCoO2, shown in Fig. 3(c-d), 

respectively, reveal two additional effects that occur during the annealing process. The first is the overall 

change of the in-plane and out-of-plane lattice parameters. In going from the as-grown film to the 700 °C 

and 800 °C, the 006 peak shifted towards smaller 2θ, indicating a shift toward larger out-of-plane lattice 

parameter (17.724→17.753 Å at 700 °C). As shown in Fig. 3(d), the in-plane lattice parameter showed the 

opposite trend, shifting toward larger 2θ, smaller lattice parameter (2.873→2.834 Å at 700 °C). The 

annealed values are closer to bulk PdCoO2, indicating that either the films grow partially strained and 

annealing relaxes some of the residual strain, or defects, accumulated during the low temperature growth, 

are accommodated by lattice distortion and relieved through annealing. Strain due to the Al2O3 substrate 

with an effectively smaller in-plane lattice parameter of 2.763 Å (i.e. 4.785/√3), would tend to contract 

the PdCoO2 to an in-plane lattice parameter that is smaller than bulk (2.830 Å), which would thus cause an 

expansion of the out-of-plane lattice parameter to a value larger than bulk (17.837 Å). Since this is 

inconsistent with the experimental observation for the as grown films, the observed shift in lattice parameter 

is likely due to elimination of defects through annealing. Further, this also confirms that the films are fully 

relaxed with respect to the Al2O3 structure. 
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The second observation that can be made from the data shown in Fig. 3(c) is the absence of Laue 

oscillations in the as-grown films, their appearance at 700 °C, and finally their partial suppression at 800 °C. 

The origin of Laue oscillations is coherent scattering from the surface of a film and the interface between 

the film and substrate, which requires atomically smooth surfaces. As discussed previously, and shown in 

Fig. 1(i), the surfaces of the films grown at 300 °C become rough and 3D-like for thick films. This is 

consistent with the absence of Laue oscillations in the as-grown films. Annealing mobilizes the surface 

atoms, likely favoring the formation of the low-energy 001 plane of PdCoO2. This further can be seen in 

RHEED measurements performed on ex situ annealed films, shown in Fig. 3(e) (the film was taken out of 

the MBE chamber, annealed, then put back into the MBE system for subsequent RHEED measurements). 

The comparison of the as-grown film (top of the panel) with the post-annealed (bottom), shows that the 

surface flattened and the crystal quality increased (indicated by much sharper diffraction peaks and 

appearance of Kikuchi lines); it is noted that the post annealed films exhibit a weak second-order 

reconstruction. For the film annealed to 800 °C the Laue oscillations were suppressed and became barely 

visible. This indicates surface roughening, which correlates with the XRD data shown in Fig. 3(a), where 

Co3O4 appeared at 800 °C. The two factors are likely connected and provide interesting insight into the 

synthesis of PdCoO2. The Co3O4 formation was likely formed by out-diffusion of palladium oxide, which 

may be predominately confined to the surface, and as such, gives rise to roughening of the surfaces as 

Co3O4 nucleation likely starts there. In comparison to synthesis of bulk PdCoO2, which utilizes air annealing 

up to 950 °C [1,2,25], the observed formation of Co3O4 at 800 °C in thin films further suggests that it is 

confined to the surface region (this conjecture is also supported by transport measurements, discussed next). 

More precisely, if this was dictated by equilibrium thermodynamics, bulk crystals would show similar 

impurities, and it is possible that bulk PdCoO2 crystals likely have intrinsically Co-rich surfaces.  

The residual resistivity for temperature near absolute zero is a very sensitive probe of crystal quality 

for metals as it only depends on the density of static disorder (crystal defects). Figure 4(a) shows 

temperature dependent resistivity for the same 25 nm-thick PdCoO2 used for the XRD measurements in 

Fig. 3. The overall trend is a decrease in resistivity with decreasing temperature, reaching a finite resistivity 
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as the temperature goes towards zero, which is typical of a metal. The overall trend with annealing is that 

the resistivity drops with increasing annealing temperature. The room temperature resistivity decreases with 

increasing annealing temperature, going from around 98.0 μΩcm for the as-grown films down to about 

20.0 μΩcm for the films annealed to 700 °C in air. For films annealed in oxygen at 800 °C, the room 

temperature resistivity drops further to 4.7 μΩcm (see Ref. [12]), which is comparable to the bulk crystal 

values, 2-8 μΩcm [6,7,25–28]. With annealing, the low temperature value changed from 90.0 μΩcm for the 

as-grown film down to 13.0 μΩcm with 700 °C air annealing and to 1.1 μΩcm with  800 °C oxygen 

annealing.  

To expound on the evolution with increasing annealing temperature in air, the residual resistivity 

taken at T = 7 K, ρ7K, is plotted versus annealing temperature TAnn in Fig. 4(b). With increasing annealing 

temperature, ρ7K does not change in going from as-grown to 300 °C, but beyond this it monotonically drops 

until 800 °C. Further, for the as-grown films it can be seen that ρ7K does not coincide with the minimum 

resistivity, as the minimum occurs at finite temperature TMin, below which there was a very shallow increase 

in the resistivity with decreasing temperature: the values of TMin are plotted versus TAnn in Fig. 4(c). The 

resistive minimum originates from, most likely, disorder-induced localization effects. This is consistent 

with the behavior of TMin shown in Fig. 4(b), where TMin is constant at about 40 K to 300-400 °C, and 

monotonically decreases towards zero up to 800 °C. Overall the dependence of ρ7K and TMin on TAnn parallel 

each other, but differs with respect to the structural evolution shown in Fig. 3(b); more precisely, the 

structure is nominally constant up to about 600 °C, above which the diffraction peaks increase as the crystal 

structure improves. The lower onset for the drop in ρ7K and TMin with increasing TAnn suggests that defects 

begin to reduce right above the growth temperature (300 °C). The difference between transport and XRD 

with annealing stems from the fact that transport and XRD are not sensitive to defects in the same way. For 

example, transport shows that defects began to be eliminated above 300 °C, but this is only evident in XRD 

for temperatures above 600 °C, pointing to either multiple types of defects with separate temperature 

dependency or that transport is more sensitive to defects; this interesting point requires a future systematic 

study of defect structures in PdCoO2 thin films. Lastly, returning to the issue of Co3O4 segregation in the 
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800 °C sample, the improvement in resistivity in going from 700 °C to 800 °C shows that the Co3O4 

segregation is not the limiting defect for the transport properties of these films, suggesting that they form 

highly localized islands, possibly confined to the surface: note also that with oxygen annealing, the film 

remains in single phase up to 800 °C (see Ref.  [12]).  

To understand the growth mode and defect structures in annealed films, thickness-dependent 

transport measurements are shown in Fig. 5(a-b), where ρ7K and RRR are plotted versus thickness, 

respectively. These data show that between 5-75 nm there is a strong thickness dependence, implying that 

the dominant scattering mechanism is from the surface. Above a thickness of about 100 nm, the resistivity 

saturated to a value of about 0.25 μΩcm, which is the lowest among any metallic oxide thin films but still 

well-above the best values attainable in bulk PdCoO2 crystals (0.0075 μΩcm) [7]. This is further reflected 

by the RRR value which saturated to a maximum value of 16, for example Fig. S5, whereas bulk crystals 

can reach as high as ~400 [7,27].  

Saturation of the resistivity in the thick limit indicates that bulk defects, instead of surface scattering, 

are the limiting factor of the transport at low temperature in thick films. The most likely factor is epitaxial 

twins. These can be seen in the azimuthal (ϕ) scan about the {012} family of XRD peaks, which is shown 

in Fig. 5(c) for the PdCoO2 film annealed to 700 °C. The Al2O3 substrate shows only 3 peaks, reflecting the 

3-fold symmetry. In contrast, the PdCoO2 film shows 6 peaks, indicating that there are two structural twins, 

labeled T1 and T2. The 012 T1 and the 012 T2 peaks of PdCoO2 peaks appear at ϕ= ±30° relative to the 012 

peak of the Al2O3 structure. These twin domains can be explicitly seen in high-angle annular dark-field 

scanning transmission electron microscopy (HAADF STEM) images taken on an annealed film along the 

<100> crystal direction, shown in Fig. 5(d-e) (see Ref. [12] and [29] for details). In the wide scan, shown 

in Fig. 5(d), the Al2O3 substrate is the darker region and the PdCoO2 film is the lighter upper portion. Here, 

the brightest atoms are the heavier Pd, and the lighter Co are the more diffuse atoms. In this image the high 

crystalline quality of these films is apparent, as the layered PdCoO2 structure is clearly visible. Moreover, 

domain boundaries are clearly visible both vertically and horizontally relative to the PdCoO2 layers. In the 

zoomed-in image in Fig. 5(e) (taken from the box in Fig. 5(d)) these boundaries are highlighted by yellow 
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arrows. These domains are clearly identified as T1, and T2, by overlaying the crystal structure of PdCoO2 

projected along the <100> direction, and <-100> direction on top of the STEM data, where there is excellent 

agreement on the atom positions. The origin of the twins is either due to equivalent ways for both T1 and 

T2 to epitaxially match Al2O3, as shown in the Fig. S6 in the Ref. [12], the formation of stacking faults (see 

for example refs. [30,31]), or a combination of the two. Such twins are also observed in previous PLD 

grown films [10]. 

To conclude, we have shown that, although challenging, there is a route to growing PdCoO2 

epitaxial films by MBE on Al2O3. This required overcoming the primary challenge of oxidizing Pd. It was 

found that this limited the in situ growth temperature to about 300 °C, which was insufficient to drive 

diffusion, and thus, necessitates an ex situ post-growth anneal to high temperatures to create films with high 

crystalline quality. These films exhibit improved transport properties compared with the previous PLD 

grown films [10]. Specifically, the room temperature resistivity of the annealed films approaches that of 

the best single crystals, suggesting comparable crystalline quality, as confirmed by the STEM data. 

However, the transport properties at low temperature were likely limited by the formation of structural 

twins, which originates from the epitaxial relationship between the film and the substrate: there are two 

equivalent motifs to orient PdCoO2 on Al2O3. In the context of future research directions, this work points 

out several key factors. (1) Growing the full class of metallic delafossites, including the Pt compounds and 

AgNiO2, is likely more challenging than the Pd-based material shown here, since both Pt and Ag are more 

difficult to oxidize than Pd. But as the current work has shown, it may be possible with a low temperature 

growth followed by a post anneal in high oxygen pressure. Moreover, since Pt-oxides and Ag-oxides are 

non-volatile, unlike PdO, higher oxygen pressures and higher temperatures may enable formation of high 

quality films of these delafossites. (2) Improving crystal quality of PdCoO2 may require moving away from 

Al2O3 as a substrate. Although a delafossite-based buffer may seem viable, such domains would always be 

present as they result from the structural mismatch between delafossite and Al2O3; thus, realizing single 

domain PdCoO2, and other metallic delafossites, likely necessitates a development of delafossite single 

crystal substrates. (3) Due to the rich surface physics in these materials [9,32], there are many open 
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questions regarding structural and electronic effects of surface termination and layering sequence.  

Altogether, the successful synthesis of high-quality metallic delafossite films as demonstrated here will 

enable a range of fundamental studies that cannot be accessed with bulk crystals in this rich family of 

layered, triangular oxides. 
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Figure 1  

 

Fig. 1. Reflection high-energy electron diffraction (RHEED) images for the growth of PdCoO2 on 

Al2O3 at various conditions. Images in (a-b) are taken along the Al2O3 <100> and (d-i) are along the 

PdCoO2 <100> azimuthal direction; temperature, material, and thickness are indicated in the figure. (a) 

Al2O3 substrate, (b-c) Co-O monolayer (ML) then a Pd-O ML grown at 600 °C; (d-f) 3 ML (d), 8 ML (e), 

18 ML (f) PdCoO2 grown at 400 °C; (g-h) 3 ML (g), 18 ML (h), 42 ML (i) PdCoO2 grown at 300 °C.   
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Figure 2 

 

Fig. 2. Effect of vacuum annealing on the properties of PdCoO2 films. (a) X-ray diffraction 2θ-θ scans 

for 25 nm thick PdCoO2 as grown at 300 °C (lower black curve labeled as-grown) and annealed in vacuum 

to 475 °C (upper red curve). The 003n labels mark the delafossite peaks and the asterisk(*) mark peaks 

belonging to Al2O3, and the subscripts on CoO indicate wurtzite (W) and rocksalt (RS). Curves are 

vertically offset for clarity. (b-c) X-ray photoemission spectroscopy about the Pd 3d (b) and Co 2d (c) for 

the as-grown film and while annealing in vacuum. Curves are vertically offset for clarity. 
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Figure 3  

 

 

Fig. 3. Effect of air/oxygen annealing on crystallographic properties for PdCoO2 films. (a) X-ray 

diffraction 2θ-θ scans for 25 nm thick PdCoO2 as grown at 300 °C (lower black curve labeled as-grown), 

annealed in air to a temperature of TAnn = 700 °C and 800 °C (orange and red curves, respectively). The 

003n labels mark the delafossite peaks and the asterisk(*) mark peaks belonging to Al2O3. Curves are 

vertically offset for clarity. (b) Intensity extracted from the curves in (a) plotted versus annealing 

temperature TAnn for the 006 and 0012 delafossite and 222 Co3O4 peaks. (c-d) High resolution x-ray 

diffraction about the 006 (c) and 012 (d) delafossite peaks. (e) Sample RHEED images taken along the 

PdCoO2 <110> azimuthal direction for a 36 nm-thick film for as-grown (upper panel) versus oxygen 

annealed (lower panel) (see Ref. [12]).   
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Figure 4  

 

Fig. 4. Effect of air annealing on the transport properties of a PdCoO2 film. (a) Resistivity versus 

temperature data for a 25 nm-thick PdCoO2 film as-grown and annealed in air to a temperature of, 

TAnn = 300-800 °C. (b) Resistivity as a function of TAnn taken at temperature 7 K. (c) The temperature at 

which the minimum of resistance occurs (extracted from the data in a) plotted as a function of TAnn.  
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Figure 5 

 

Fig. 5. Transport and structural properties of air/oxygen annealed PdCoO2 films. (a-b) Resistivity 

versus film thickness plots, of PdCoO2 films annealed in oxygen at 800°C, taken at a temperature of 7 K 

(a) and the residual resistivity ratio (RRR). (c) X-ray diffraction azimuthal scan (ϕ) taken about the {012} 

peaks for a PdCoO2 film annealed to 700 °C (orange curve) and the {012} peaks Al2O3 substrate (black 

curve). The PdCoO2 twin domains are distinguished by the labels T1 and T2. (d-e) HAADF STEM taken 

along the <100> zone axis. (d) Wide scale image showing the PdCoO2 film and the Al2O3 substrate. (e) 

Zoom-in of the boxed region in (d). In this image the PdCoO2 atomic positions are overlaid on the image 

where both T1 and T2 domains are shown, and domain boundaries are highlighted by the yellow arrows.  


