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Abstract

The predictive modeling of lattice thermal conductivity is of fundamental importance for the
understanding and design of materials for a wide range of applications. Two major approaches,
namely molecular dynamics (MD) simulations and calculations solving approximately the Boltz-
mann transport equation (BTE), have been developed to compute the lattice thermal conductivity.
We present a detailed direct comparison of these two approaches, using as prototypical cases MgO
and PbTe. The comparison, carried out using empirical potentials, takes into account the effects of
fourth order phonon scattering, temperature-dependent phonon frequencies (phonon renormaliza-
tion), and investigates the effects of quantum vs. classical statistics. We clarify that equipartition,
as opposed to Maxwell Boltzmann, govern the statistics of phonons in MD simulations. We find that
lattice thermal conductivity values from MD and BTE show an apparent, satisfactory agreement;
however such an agreement is the result of error cancellations. We also show that the primary effect

of statistics on thermal conductivity is via the scattering rate dependence on phonon populations.
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I. INTRODUCTION

Thermal transport properties are important for myriad materials, including thermo-
electrics, (opto)electronics, photovoltaic and photoelectrochemical cells, and batteries. To
facilitate fundamental understanding and materials design, the accurate prediction of ther-
mal transport coefficients is critical. A multitude of methodologies have been introduced to
facilitate such prediction. Of particular significance are two categories of methods, based
either on considering atomic motion (molecular dynamics, MD) or collective vibrational

excitations, i.e. phonons in solids (anharmonic lattice dynamics, ALD).

Over the years, several MD-based approaches have been developed to compute the ther-
mal conductivity in bulk crystalline and amorphous materials, nanostructures, and fluids,
with the central premise of tracking heat flow through atomic motion. In the Green-Kubo
(GK) method, based on the fluctuation-dissipation theorem, the thermal conductivity is
calculated from the fluctuations of the heat correlation function during an equilibrium sim-
ulation, in the NVE ensemble. Non Equilibrium (NE) methods compute the thermal con-
ductivity in the steady state from the response of the system to a perturbation. They
can be classified according to the nature of the perturbation: in the older direct method
it is a temperature gradient causing a heat flux [1]; in reverse NEMD, also known as the
Muller-Plathe approach,the constant heat flux acts as the perturbation [2]. The ”approach
to equilibrium” methods compose the third class of MD based method. In these approaches,
the thermal conductivity is computed from the time response of the system to an instan-
taneous perturbation. This perturbation can be in the form of a square [3, 4] or sinusoidal
temperature profile [5]. Meanwhile, phonon-based ALD approaches for calculating lattice
thermal conductivity, applicable to crystalline systems, have been developed based on the
Boltzmann transport equation (BTE), with the central assumption that collective vibrations
can be thought of as quasi-particles termed phonons which have explicit group velocities and
scatter with each other [6—8]. Within these approaches, the lattice thermal conductivity is
calculated by solving the BTE, under the relaxation time approximation, with relaxation
times obtained using perturbation theory and considering anharmonic phonon-phonon in-
teractions, such as three- and four-phonon scattering processes [9-13]. While MD and ALD
are fundamentally distinct and practically disparate approaches, they have nonetheless both

been shown to give reasonably accurate predictions for similar systems [13-15].
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Typically, GK calculations are performed using classical MD where the potential energy
is given by an interatomic potential as a function of the positions of the atoms. Recently,
Marcolongo et. al. [16] and Carbogno et al. [17] showed that the Green-Kubo formalism
can be applied to ab initio MD, although the method of Ref. [17] is limited to solids and
contains approximations on the partition of slow and fast vibrational modes. We note
that the Green-Kubo formalism does not rely on the definition of phonons and is generally
applicable: indeed it can describe conductive heat transport in crystalline or amorphous
materials, materials with defects, nanostructures, and fluids. The GK method implicitly
accounts for all anharmonic terms in the potential energy. In BTE language, this would
translate to including all phonons processes in the perturbative expansion (instead of only
up to the third or fourth order), thus allowing for greater accuracy at high temperatures.
Nonetheless, the GK method suffers from three deficiencies: (i) being based on classical MD,
it is not known how to include quantum effects such as zero point energy or quantization of
the phonon energy levels, leading to lower accuracy at low temperatures. This problem is
of a theoretical nature and, to our knowledge, has not been solved, although semi-empirical
corrections have been proposed [18, 19]; (ii) long simulation times (order of ns) are needed for
convergence, especially for systems with high values of thermal conductivity, mostly due to
noise in the long time tail of the heat flux autocorrelation function. Acceleration is possible
based on the methods proposed in Ref. [20] or [17], although the latter one is limited
to crystals and based on phonon theory; and (iii) the value of the thermal conductivity
calculated in a GK simulation is a function of the number of atoms included in the MD cell,
converging in the infinite limit to the bulk value. Currently, no theory or model exists to
predict or extrapolate to the thermodynamic limit, leading to the necessity of simulating at
various cell sizes with increasing numbers of atoms until satisfactory convergence is obtained.

We refer to [15] for a detailed study.

The BTE-ALD approach is more advantageous compared with MD-based method in the
following respect: (i) the quantum (Bose-Einstein) statistics is utilized, thus (presumably)
attaining better accuracy at low temperatures; (ii) first-principles calculations may be used
to obtain third and fourth order force constants in a relatively straightforward manner for
a variety of systems, to accurately model heat transport in bulk crystals with relatively low
computational costs, and computation for larger systems in some cases can be parallelized

[10, 21-23]; and (iii) convergence issues with respect to system size and sampling are less
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severe than in MD. However, BTE-ALD suffers from several deficiencies: (i) the approach
depends on the assumption that lattice vibrations can be treated as quasiparticles, i.e., both
the anharmonic frequency shift and broadening (real and imaginary part of the phonon self-
energy) are relatively small compared to the phonon frequency, and fails when quasiparticles
are not well-defined, such as in the localization limit in systems with strong intrinsic disorder
(24, 25]; (ii) the approach is based on perturbation theory, which is accurate only in the
perturbative limit and may fail in severely anharmonic systems or at high temperatures
since the scattering processes are limited to third or at most fourth order; and (iii) it is
difficult to use the phonon BTE method to model heat transport in non-crystalline systems
including defects and nanostructures, and the approach cannot be applied to fluids or even

solids when diffusion occurs.

In an earlier study [14], Turney et al. presented and compared methods in several cate-
gories: (1) quasiharmonic and anharmonic lattice dynamics calculations, (2) a combination
of quasiharmonic lattice dynamics calculations and molecular dynamics simulations, and
(3) Green-Kubo and direct molecular dynamics, to assess their validity. They pointed out
that the lattice dynamics calculations tend to underestimate lattice thermal conductivity
at above half of the Debye temperature. However, their lattice dynamics calculations ex-
cluded higher-than-third-order anharmonic phonon-phonon interactions. In addition, the
impact of different statistics (quantum vs. classical) on calculated thermal conductivity was
not clarified. In a follow-on study, the same authors [20] assessed different corrections to
MD simulations to account for quantum statistics, using silicon and the Stillinger Weber
potential. They found that these corrections failed at low temperatures due to the classical
distribution of phonon modes. He et. al.[l15] compared the GK-MD and BTE approaches
for the computation of thermal conductivity of Si, Ge, and Si-Ge alloys, and found that the
results are consistent for the pure compounds, though alloy systems prove to be problematic
for BTE. In this study, some investigations into the effects of quantum statistics were carried
out via the use of classical statistics in BTE. In addition, the effects of temperature-induced
anharmonic phonon renormalization or higher-than-third-order interactions were again not
considered. Since several of the previous studies were carried out on Si or related systems,

it is of interest to test the results on more diverse types of systems.

In the current work, we aim to provide a controlled, comprehensive, and systematic

comparison of MD vs. ALD-BTE based approaches for the prediction of lattice thermal
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conductivity. In order to accomplish a meaningful comparison, we select two representative
systems: a small-gap semiconductor with low lattice thermal conductivity (PbTe), and an
insulator with higher lattice thermal conductivity (MgO). These two materials have the fur-
ther advantage of having simple structures. For each material, we use MD and BTE-ALD,
with the same interatomic potential, to evaluate the temperature-dependent values of the
lattice thermal conductivity well below, near, and well above their respective Debye temper-
atures. We further investigate the source of the differences between the two approaches by
deriving lifetimes from MD simulations, considering heat capacities and phonon occupancies
under different treatment of statistics, and using these quantities in the BTE expression.
The goal is to determine the underlying physical reasons for divergences and convergences

between the two approaches.

II. METHODS

A. Model Systems and Interatomic Potentials

To ensure that any differences in computed thermal conductivity arise solely from the
treatment of heat transport (i.e. atoms vs. phonons), we used the same interatomic poten-
tial for both MD and BTE calculations. For MgO, we used the potential described in Ref.
[27]; for PbTe, we used the potential from Ref. [28]. Both potentials are of the Buckingham-
Coulomb type. The MgO potential was shown [27] to predict experimental lattice constant,
thermal expansion and thermal conductivity reasonably well in the 300K-1500K range. The
PbTe potential developed by Qiu et al.[28] was shown to reasonably reproduce the mechan-
ical and vibrational properties of PbTe bulk crystal, as well as lattice thermal conductivity.
We studied MgO at 500K, 750K, and 1000K and PbTe at 100K, 150K, and 300K. The exper-
imental Debye temperatures of MgO and PbTe are 743K [29] and 177K [30], respectively. To
account for thermal expansion, the lattice parameters computed from NPT MD simulations

at each temperature were used.



B. Calculation of Thermal Conductivity using Molecular Dynamics

In the GK formalism, the thermal conductivity is given by

<3 UL 0
where the brackets (-) indicate the thermodynamic average and .J is the heat flux due to
spontaneous fluctuations.

All classical simulations were performed using LAMMPS [31]. The MgO samples contain
32768 (500-750K) or 4096 (1000K) atoms, with the smaller number of atoms for higher
temperature due to the shorter mean free path at higher temperature. The PbTe samples
contain 8192 atoms. For all systems, Nose-Hoover NVT equilibration runs of 20 ps for MgO
and 100 ps for PbTe were followed by NVE simulations of 3 ns to obtain the lattice thermal
conductivity (k). For each temperature and material, 4-9 GK MD runs were performed, to
give a total of 12-27 ns of statistics. The time step used for MgO is 1 fs whereas that for
PbTe is 0.5 fs. The MgO 500K and 1000K data are from the Supporting Information in
Ref.[5].

1. Calculation of Phonon Lifetimes

Before starting our simulations, we compute the phonon frequencies and eigenvectors for
the target temperature using the phonon renormalization (PRN) scheme described in Ref.
[32]. Once the phonon frequencies wy and eigenvectors e, are known, the energy of each
phonon mode can be computed during a MD simulation as a function of time. The energy

of a phonon mode A is calculated as
Ex(t) = K\(t) + Ux(t) (2)

where K and V are, respectively, the kinetic and potential components of the energy of the
phonon mode. The kinetic component is calculated from the projection ¢ of the phonon
mode on the velocities v of the atoms. The potential component is calculated by projecting
onto the displacement u of the atoms from their equilibrium positions rg, i.e.
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Here, | and b are indices over the primitive cells and the atoms inside a primitive cell,
respectively. NN is the number of atoms in the system, m, is the mass of atom b, and w, is
the frequency of the phonon mode A. The displacement u is given by u(t) = r(t) — ro(t).
The vector €, \ describes the direction and phase of the displacement of atom b due to the

phonon with wavevector k and polarization A.

The lifetime of each phonon mode is then calculated from the normalized autocorrelation

of the energy:
B0 E®)
e (EN0)E(0) ©)

In order to reduce the noise due to the tail of the autocorrelation, we compute the lifetime

from a fit to the equation
(BAOBAD) _ i, -
(Ex(0)EX(0))

with the lifetime 7, as a single fitting parameter. Lifetimes are computed as described above
during an NVE simulation, once the system is prepared at the target temperature using a
Nose-Hoover thermostat. The approach described to obtain lifetimes relies on the definition

of phonons in the quasi-harmonic approximation.

2. Awerage Phonon Occupation

The classical Hamiltonian of the system can be rewritten, in the harmonic approximation,

as a sum of kinetic and potential energy over phonon modes:

Hram(la,0) = 3 [gelrl + gedllanl?] 0

As a consequence of the equipartition theorem, the average kinetic and potential energy for
each phonon mode is equal to kg7 /2. Each phonon mode has an average energy and phonon

number given by:
kgT

(Ex) =kgT  (ny) = Tior 9)



From the procedure used to calculate the phonon lifetimes, described above, we can obtain

the phonon energy averaged over time

=1 [ B (10)

where I' is the total simulation time, and the mode-by-mode average phonon occupation

number (n,) is
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FIG. 1. Phonon occupation per mode as a function of frequency for MgO at 500K (a), 750K (b) and
1000K (c) and PbTe at 100K (d), 150K (e) and 300K (f). For all materials and temperature, we
compare the energy distribution calculated in our molecular dynamics (MD) simulations against
three possible statistics: Bose-Einstein (BE) (blue dot-dashed lines), equipartition (EQ) (solid

black lines) and Maxwell-Boltzmann (MB) (orange dashed lines).

Our results for phonon numbers for MgO and PbTe at various temperatures are shown
in Figure 1, where we compare the distributions obtained in our calculations against those
predicted by equipartition, as well as the Maxwell-Boltzmann (MB) and Bose-Einstein (BE)
statistics. The computed distributions deviate significantly from those of the MB distribu-

tion, illustrating that classical phonons in MD are distributed not via MB but equipartition



(EQ). The computed distributions deviate also from BE statistics but the agreement im-

proves with increasing temperature, as expected.

3. Frequency Shifts

Phonon frequencies are dependent on temperature due to different degrees of atomic
displacements from their equilibrium positions as a function of T, amounting to sampling
different portions of the anharmonic potential energy surfaces. This change in phonon
frequencies as a function of T (which we call shift in phonon frequencies relative to their
T=0 value, or phonon renormalization) manifests in MD simulations. In our analysis, we
compute the frequency shift from the kinetic part K (¢) of the phonon mode energy. We fit
its normalized time autocorrelation function to the equation

(ko) ~ ®
where we added the dependence (T') to the frequency wy. The frequency shift is then defined
as the difference between the frequency obtained during MD simulations and that obtained
from diagonalizing the dynamical matrix at T=0. Note that this procedure does not include

effects arising from the temperature-dependent change in lattice constant, as we compute

both frequencies at the same lattice constant.

C. Anharmonic Lattice Dynamics and Boltzmann Transport Equation
1. Boltzmann Transport Equation

The Boltzmann transport equation (BTE) can be used to describe the time evolution of
the positions and momenta of a system of particles, e.g. phonons. According to the BTE,
at equilibrium the evolution of the occupation probability n) of a specific phonon mode A

due to diffusion, scattering, and the presence of an external heat current must balance:

Oy
ot

O
ot
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Under the relaxation time approximation (RTA), the scattering term can be expressed as

ony, ny —nl
- W(r)scatt = 7——)\)\’ (14)



where n9 and 7, denote the equilibrium occupation probability and relaxation time, respec-
tively. Under an external temperature gradient AT, the deviation of the occupation number

from its equilibrium value A is given by

0
ny — n())\ = V)\%VTT)\, (15)

where v, is the phonon group velocity vector. In the linear regime, the lattice thermal

conductivity tensor is defined by
J ==Y wA(VT), (16)
B
where J is the heat current along « direction and can be obtained as

dk
JOC — Z/n/\hu})\vgw, (17)
A

where k denotes the phonon wave vector. The resulting lattice thermal conductivity tensor

within the RTA is

(67 1 o
5= N ;nﬁ(ni + 1) (Fiwr) o305, (18)

where kg is the Boltzmann constant, V' is the volume of unit cell, N is the total number
of phonon wave vectors included in the summation, wy and v, are the frequency and group
velocity of phonon mode A, with Cartesian coordinates indexed by « and . Typically, wy
and vy are extracted from phonon dispersions in the harmonic approximation, assuming
small atomic displacements, by computing second-derivatives of the potential energy with
respect to atomic displacements. Within the framework of anharmonic lattice dynamics, 7y
is assumed to arise primarily from intrinsic phonon-phonon scattering events [33], with the

lowest-order contribution being three-phonon processes.

2. Anharmonic Lattice Dynamics

Most recently, Feng and Ruan [13, 34, 35] performed rigorous calculations of four-phonon
scattering rates in the ALD-BTE framework including fourth order IFCs by extending the
derivation of Maradudin et al. [9]. Their studies reveal that even for diamond, silicon,
and germanium, which are generally considered low-anharmonicity materials, the contribu-

tion of four-phonon scattering rates is comparable to that of three-phonon scattering rates
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FIG. 2. A schematic representation of three-phonon processes: (top) the splitting process ((_ :

A — A1 + A2) and the combination process ((+ : A+ A1 — A2); and (bottom) four-phonon

processes: combination ((y+ : A+ A1 + A2 — A3), redistribution ((4—A + A1 — A2 + A3), and

splitting (C—— : A — A1 + A2 + A3).

near/above the Debye temperature. Following their derivation based on Fermi’s golden rule

(FGR) [13], the scattering rates (7 ) and . 1) associated with three- and four-phonon pro-

cesses (see Fig. 2) in the single mode relaxation time approximation (SMRTA) are given

by
_ 1
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In the above equations, [, b, and « are indexes of primitive cells, basis atoms, and cartesian

coordinates, respectively; m is the atomic mass, and r is the lattice vector of the primitive
cell; k, n, wy, and e* are phonon wave vector, equilibrium occupation number, frequency,
and eigenvector, respectively; g% 9, and ®§Y 5%, - are the third and fourth order
[FCs, respectively. In the three-phonon processes, (_ represents the splitting process (A —
A1 + A2) and ¢, indicates the combination process (A + A\ — A2). Similarly, (__, ¢, and
(44 represent the splitting (A — Ay + Ay + A3), redistribution (A + A\ — Ay + A3), and
combination (A + A; + A2 — A3) in the four-phonon processes [13]. In both three- and four-
phonon processes, momentum conservation is strictly enforced as indicated by A4 and A4,

and energy conservation is enforced by ¢ functions, which are approximated by adaptive and

regular Gaussian smearing [22, 36] in computing 75 ; and 7, ;, respectively.

3. Computational Details for BTE

In the BTE-ALD calculations, for both MgO and PbTe, we used 6x6x6 supercells to
extract harmonic and anharmonic interatomic force constants (IFCs) up to the fourth order
using compressive sensing lattice dynamics [23]. There is no explicit cutoff distance enforced
on the harmonic IFCs [37]. To further verify the extracted harmonic IFCs, we compare the
calculated phonon dispersions with those independently obtained by Phonopy [38]. The
cutoff distance of the third order IFCs is limited to the seventh nearest neighbour shell,
which leads to converged lattice thermal conductivity when only three-phonon interactions
are accounted for. Considering the short-range nature of 4th-order anharmonicity [23] and
the associated combinatorial growth in the number of parameters, the 4th-order IFCs are
limited to the second nearest neighbour shell. We also verified that the additional inclusion
of the third nearest neighbour shell in the fourth order IFCs leads to negligible changes in
both frequency shifts and lattice thermal conductivity. The phonon BTE with renormalized
harmonic [FCs and anharmonic IFCs as input were solved using g-point mesh of 16x16x16
and 12x12x12, respectively, which are deliberately chosen to be equivalent to the supercell

structures used in MD simulations.
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4. Iterative and non-iterative solutions of BTE

Phonon BTE under RTA can be linearized; when solved non-self-consistently, their so-
lutions are within the so-called single mode relaxation approximation (SMRTA) and when
solved iteratively, they are within the relaxation time approximation (IRTA), respectively.
Within the SMRTA, scattering rates arise from both normal (N) and Umklapp (U) pro-
cesses, which lead to underestimation of x; since N processes do not introduce thermal
resistance directly. For systems with significant N processes, an iterative solution to the
linearized BTE should be pursued by accounting for nonequilibrium phonon distribution
through iteratively refining phonon populations [12, 39, 10]. In this study, we calculate
three-phonon scattering rates by solving the phonon BTE in an iterative manner. Consid-
ering the extremely high computational cost of including additional four-phonon scattering
in the iterative solver, we treat four-phonon scattering non-iteratively, and combine them
with three-phonon scattering rates based on Matthiessen’s rule to give the total scattering
rates. We found that this strategy leads to reasonably accurate lattice thermal conductivity
for compounds which are dominated by U processes, such as PbTe, as discussed in detail
in an earlier study [32]. It is worth noting that fully iterative soluation of BTE including
both three- and four-phonon scatterings has been recently developed and implemented by

Feng et al. [!1] and Ravichandran et al. [12],respectively.

5. Temperature-dependent Frequencies: Anharmonic Phonon Renormalization

Several first-principles phonon renormalization (PRN) schemes based either on real or
reciprocal space formalisms have been introduced to treat strong anharmonicity effects on
phonon frequencies [13—17]. In this work, we utilize the real space based PRN scheme intro-
duced by some of us to compute temperature-dependent phonon freqeuncies and eigenvectors

[32]. The temperature effects are taken into account via constructing temperature-dependent

effective harmonic potential coefficients [18] which includes the temperature-dependent cor-
rections from higher-order IFCs on top of harmonic IFCs [32]. We refer the reader to Refs.
[32 and 419] for detailed discussions.
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FIG. 3.  Constant volume heat capacity as a function of temperature for MgO. Blue dashed
lines display the results computed using Bose-Einstein (BE) statistics and black solid lines denote
equipartition (EQ) as demonstrated in MD simulations. The dashed red lines indicate 500 K, 750

K and 1000 K.

D. Statistics

In the expression of the thermal conductivity obtained from the BTE, the phonon statis-
tics enter both the definition of the heat capacity and that of the scattering rates (inverse
of relaxation time). According to Bose-Einstein (BE) statistics, the phonon population of

mode A in equilibrium is
1

0 _
n)‘ - ehw)\/kBT _ 1’ (25)
which leads to a mode heat capacity of
Fieo 2 elw/ksT
Ch=k . 26
=i (7) &

In the classical (equipartition) limit, each phonon mode has an energy of kg7 and popula-
tion of kgT'/hwy, thus giving rise to a temperature-independent mode heat capacity of kg.
The classical limit always overestimates the heat capacity (see Fig. 3), particularly at low
temperatures. Specifically in the case of MgO, the classical limit leads to overestimates in

the heat capacity of 11.2%, 5.3% and 3.1% at 500 K, 750 K and 1000 K, respectively.
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As rigorously derived by Feng and Ruan [13], phonon population in the classical limit
(equipartition) cannot be directly used to compute three- and four-phonon scattering rates in
Eq. 19 and 20, since the resulting relaxation time is not properly defined from the linearized
BTE. However, since classical limit and BE statistics do converge to the same limit at high
temperature, we utilized the equipartition phonon occupation in Eq. 19 and 20 to compute
scattering rates in order to compare with molecular dynamics simulations performed at high

T.

III. RESULTS AND DISCUSSIONS

A. Comparison of temperature-dependent phonon frequencies

It is instructive to compare the phonon frequencies and their changes as a function of
temperature obtained using the two different approaches. Fig. S2 in the Supplemental
Materials (SM) shows comparisons of phonon dispersions, showing that the fitted potential
using CSLD gives similar dispersions to those obtained using finite displacements with the
original interatomic potential. In Fig. 4, we show the mode-resolved frequency shifts as cal-
culated in ALD and in MD, relative to the frequencies obtained from direct diagonalization.
Fig. S3 in the SM displays the phonon density of states for these three cases. As expected,
the frequency shifts increase with temperature. With the exception of high frequency MgO
modes, the frequency shifts in MD are found to be smaller than the ones in ALD. The dif-
ference in frequency shifts between MD and ALD increases at high frequency, likely because
of the different phonon distributions. This difference persists at high temperatures, despite
an expected decrease in the difference between the two phonon distributions with increasing
temperatures. Moreover, we note that the agreement between ALD and MD approaches is
better in MgO, where frequency shifts are large (~1 THz), than in PbTe, where frequency
shifts are on average 10 times smaller (~0.1 THz). To further confirm the ALD results,
we performed additional self-consistent phonon (SCPH) calculations of frequency shifts in
reciprocal space, as derived from many-body Green-function theory [33, 16, 50]; the results
are found to agree with those obtained by the real space-based PRN scheme. This indicates

that part of the discrepancies between MD and ALD may be numerical in nature.
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FIG. 4. Mode-resolved frequency shift of MgO at finite temperatures [(a): 500 K; (b): 750 K; (c):
1000K] relative to the 0 K. Mode-resolved frequency shift of PbTe at finite temperatures [(d): 100
K; (e): 150 K; (f): 300K] relative to the 0 K. The solid magenta disks and empty blue circles denote
results from molecular dynamics simulations and anharmonic phonon renormalization, respectively.
The frequency shift from anharmonic phonon renormalization is computed using Bose-Einstein
statistics. We also find that replacing Bose-Einstein with classical statistics leads to only very
small changes in computed frequency shift (e.g, a relatively change of 8% and 2% for MgO at 500

K and 1000 K, respectively).

B. Comparison of phonon lifetimes

We compare the phonon mode-resolved scattering rates of MgO and PbTe obtained from
MD and ALD at various temperatures in Fig. 5. To perform a valid comparison, we enforce
equipartition for phonon population in ALD calculations, thus following the same statistics
as in MD simulations. Overall, good agreement is found between MD and ALD results,

despite the rather different formalisms based on atomic motion or phonon quasiparticles.
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FIG. 5. Comparison of mode-resolved scattering rates of MgO between molecular dynamics (MD)
simulations and anharmonic lattice dynamics (ALD) calculations at (a) 500 K, (b) 750 K and (c)
1000 K. (d)-(f) the same as (a)-(c) but for PbTe at 100 K, 150 K and 300 K, respectively. Phonon

populations were assumed to follow equipartition in ALD calculations.

In general, acoustic modes show much smaller scattering rates than those of optical modes,
primarily due to the limited scattering phase space of low-frequency phonon modes. Scatter-
ing rates of both acoustic and optical modes increase with enhanced phonon populations at
higher temperatures. We notice that, for both MgO and PbTe, scattering rates of acoustic
modes obtained from the two methods agree well with each other, while those of optical
modes are found to be smaller from MD simulations, but with decreased discrepancy be-
tween MD and ALD at high temperatures. We note that the larger discrepancy associated
with the high-lying optical modes at relatively low temperatures might be due to the break
down of the relaxation time approximation when equipartition is assumed for phonon pop-
ulation in the linearized BTE, while high temperature tends to reduce such discrepancy, as

pointed out by Feng and Ruan [13]. To shed light on the impact of statistics on lifetimes in
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ALD calculations, we also compare the scattering rates calculated using phonon populations
obeying Bose-Einstein statistics and equipartition, respectively, in Fig. S5 (see Supplemen-
tary Materials). Consistently, we find that equipartition leads to higher phonon scattering
rates, and again, with decreased difference from those obtained by assuming Bose-Einstein
statistics at higher temperatures. This discrepancy is deeply rooted in the fact that phonon
populations from Bose-Einstein statistics and equipartition are different, particularly for the
high-frequency optical phonons. It is the overall increased phonon populations in the case of
equipartition that leads to higher phonon scattering rates. Our results suggest that phonon
scattering rates calculated using Bose-Einstein statistics compare better with MD simula-
tions than those from equipartition, particularly for the high-lying optical phonon modes.
This agreement, however, may be accidental or suggest error cancellations.

To reveal the role of the higher-than-third-order phonon scattering processes in deter-
mining overall phonon scattering rates, we show the decomposed total scattering rates by
separating them into contributions from three- and four-phonon processes for MgO and
PbTe in Fig. 6. The MgO results reveal that the contribution of four-phonon scattering is
comparable to that of three-phonon scattering at all temperatures studied here. Particularly,
four-phonon scattering rates of optical modes with frequency of about 10 THz are even higher
than those of three-phonon processes, highlighting the importance of including four-phonon
scattering processes to accurately predict the thermal conductivity. It is also evident from
the PbTe results that four-phonon scattering rates have a stronger temperature-dependence
than three-phonon scattering rates, with increasing relative contributions to total scattering

rates at higher temperatures.

C. Thermal Conductivity

Here we discuss our finding, summarized in Table I, in which we use lifetimes obtained
from MD simulations (7pp), as well as from three- and four-phonon scattering (7pg, in the
BTE expression for thermal conductivity (Eq. 18). We also use the classical equipartition
(Cpg) and Bose-Einstein (Cpg) expressions for heat capacity in Eq. 18. All the above
results are listed in comparison to the Green-Kubo (GK) thermal conductivity, and labeled
approximations 1-7 or A1-A7 in Table I. For MgO, the thermal conductivity values obtained

from BTE using three- and four-phonon scattering processes, and Bose-Einstein statistics

18



(8)102 T T T (b)m? T T T (0)102 T T T
MgO 500 K MgO 750 K MgO 1000 K
) L]
10, oy _10°) o
-8-: .: . " @:egg' El-: ° 74'?&’;‘“;}‘:” ®
= L i1 p= t“ e
T @ T o
1072 o 10721,
e 3—phonon
4—phonon
10—4 i " n f 1 10—4 i 1 1 " i 10—4 1 " 1 L L
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Frequency (THz) Frequency (THz) Frequency (THz)
0 0
d) 1o T ' T T 10
(d) PbTe 100 K PbTe 150 K (f)
% o rgint
w5 ° 7
i e =
=L S ﬂr‘{gm =
v .'. '-r : '
10°® i 107 107
e 3-phonon
- 4—-phonon
-4 1 L L " _4 " " N -4 ! M "
1075 1 2 3 4 % 1 2 3 4 1075 1 2 3 4
Frequency (THz) Frequency (THz) Frequency (THz)

FIG. 6. Decomposed three- and four-phonon scattering rates for MgO at (a) 500 K, (b) 750 K
and (c) 1000 K, and PbTe at (d) 100 K, (e) 150 K and (f) 300 K.

(A4 in Table I), agrees strikingly well (to within 3%) with the Green-Kubo results (AT7).
For PbTe, however, the agreement is only satisfactory (within 16%). This agreement is
better than previous comparisons (e.g. Ref. [11]), likely due to the inclusion of fourth-order
phonon scattering in the BTE-ALD treatment. The agreement, however, may be due to a

number of error cancellations, as explained below.

One significant difference between the MD and BTE approaches is the inclusion of phonon
scattering processes to all orders in MD, as opposed to the order-by-order expansion in BTE.
Because the rate of scattering processes at different orders are summed, i.e. via Matthiessen’s
rule, the inclusion of higher order should reduce the lifetimes and therefore the thermal
conductivity. Indeed, substituting lifetimes from MD into the BTE expression with the BE
expression for heat capacity (A2) results in lower thermal conductivity values compared

to using BTE lifetimes (A4), due to the inclusion of higher-order scattering processes in

19



Al A2 A3 A4 A5 A6 AT
Compound | Temperature|7yp Crg|™vp CBE|TBE CEQ|™BE CBE|TEQ CEQ|TEQ CBE|GK
MgO 500K 294 27.0 35.5 32.8 27.1 25.2 32.6 (2.1)
MgO 750K 16.3 15.6 20.9 20.2 174 16.8 19.6 (0.5)
MgO 1000K 10.4 10.2 14.7 14.4 12.6 12.4 14.1 (0.7)
PbTe 100K 11.2 10.7 13.0 12.4 10.2 9.8 10.4 (0.8)
PbTe 150K 7.0 6.8 7.9 7.7 6.6 6.5 6.5 (0.6)
PbTe 300K 3.1 3.1 3.4 3.4 3.0 3.0 3.2 (0.2)

TABLE I. Computed thermal conductivity of MgO and PbTe using different expressions for life-
times (7) and heat capacities (C'). All thermal conductivity values are in W/mK. The lifetimes
TymD’s are obtained from MD simulations according to Equation 6, 7pg’s are obtained from BTE
according to phonons in a Bose Einstein distribution, whereas 7pg’s are obtained from BTE ac-
cording to phonon population obeying equipartition. All BTE calculations include three- and
four-phonon processes. The heat capacities Crg and Cpgg correspond to those obtained from
equipartition and Bose-Einstein statitics, respectively, as shown in Fig. 3. Finally, the thermal
conductivity obtained from Green-Kubo (GK) is listed. The different approximations are labeled

Al to AT in the first row.

MD. Because of the computation of the lifetimes using energy autocorrelation functions, the
dissipative vs non-dissipative effects of umklapp vs normal processes, respectively, are also

preserved.

The effects of statistics on the heat capacity and the corresponding effects on thermal
conductivity can be made apparent by considering the changes in predicted values as the
heat capacity is evaluated using equipartition (A1, A3, A5) or Bose-Einstein statistics (A2,
A4, A6), when the treatment of the lifetimes is held constant. Since classical heat capacities
are consistently higher, and especially so at low temperatures, than Bose-Einstein heat
capacities, the thermal conductivity values are also higher in A1, A3, and A5 than in A2,
A4, and AG, respectively. The difference decreases with increasing temperature as expected.
Moreover, we find that using BE heat capacities with MD lifetimes (A2) worsens rather than
improves the agreement with the BTE-ALD results (A4). In agreement with Ref. [26], BE

treatment of heat capacities together with MD lifetimes is ruled out as a possible quantum
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correction for classical MD simulations of thermal conductivity.

As mentioned above, phonon occupations also directly affect scattering rates calculated
from three- and four-phonon scattering processes. This effect is apparent from a comparison
between A4 and A6. It is seen that changing the occupation numbers to those corresponding
to equipartition (A6) rather than the Bose-Einstein distribution (A4), without changing the
heat capacity, changes the thermal conductivity significantly (up to 24%). Note also, that
the effect of statistics on scattering rates is significantly larger than the effects of statistics
on heat capacities. For example, the differences between A5 and A6 is smaller than those
between A4 and A6.

Attempting to remove the effects of statistics, a comparison can be made between BTE
and MD approaches by comparing the results of BTE with equipartition (A5) to the Green-
Kubo values (A7). Here, one finds that the agreement is reasonable with MgO and excellent
with PbTe. We note, however, that the relaxation time approixmation in BTE is not strictly
valid when equipartition is enforced in phonon populations.

Interestingly, substituting MD lifetimes as well as heat capacities evaluated with equipar-
tition into the BTE expression (A1) results in thermal conductivity values which are signifi-
cantly different from those obtained from the Green Kubo expression (A7). The difference is
likely due to the single-mode approximation used in the BTE approach. This highlights the
fact that apart from treatments of lifetimes and heat capacities, the summation according
to phonon modes in and of itself introduces a difference between BTE and MD methods for

computing thermal conductivity.

IV. CONCLUSION

In conclusion, we have presented a detailed comparison between molecular dynamics
(MD) and Boltzmann Transport Equation using anharmonic lattice dynamics (BTE-ALD)
approaches for the computation of thermal conductivity. Improvements in BTE-ALD such
as the inclusion of fourth-order phonon scattering processes, and treatment of temperature-
dependent phonon frequency shifts (phonon renormalization) were included. Issues regarding
the proper treatment of statistics in MD simulations, namely classical equipartition rather
than Maxwell Boltzmann, were addressed. Thermal conductivity values were found to agree

well between BTE-ALD and Green-Kubo (GK) MD, but a detailed analysis showed that
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such agreements are introduced by cancellations of different errors. By substituting lifetimes
derived from energy-energy autocorrelation function from MD simulations into the BTE ex-
pression, we determined the effects of higher-than-4th-order phonon processes, the effects
of statistics via the lifetimes and heat capacities, and the effects of single-mode relaxation
time approximation itself, to the calculation of thermal conductivity. Significantly, we find
that the effects of statistics on thermal conductivity is primarily due to effects on scattering
rates. We also find that a full substitution of MD lifetimes and heat capacities in the BTE
expression fails to reproduce GK results, indicating a significant effect of single-mode relax-
ation time treatment on thermal conductivity. One significant lesson from this comparison is
that for integrated properties such as transport coefficients, apparent agreement may mask

fundamental physical differences, thus caution is advised in the interpretation of the results.
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