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ABSTRACT 14 

 Perovskite solar cells based on lead-halide perovskites have attracted significant attention as 15 

prime candidates for next-generation solar cells because of their high-power conversion efficiency. 16 

To avoid the toxicity of lead-based perovskites, alternatives such as tin-halide perovskite have been 17 

investigated. However, the photovoltaic performance of these alternatives is relatively low, and novel 18 

perovskites with low cost, low toxicity, and high performance have not yet been discovered. In this 19 

study, to investigate whether promising alternative perovskites exist, a high-throughput material 20 

search scheme based on materials informatics was developed and performed for novel perovskite 21 

solar cell materials. Using this scheme, over 28 million AA′BB′X3X′3 double perovskite-like 22 

compositions were screened. Among the 24 most promising candidates identified, 5 were 23 

well-known organic-inorganic tin-halide perovskites and 17 were novel sodium-, potassium-, and 24 

ammonium-based tin-halide perovskites. Interestingly, two novel transition-metal-based perovskites 25 

were also identified as promising solar cell materials. The pioneering material search scheme 26 

reported is expected to find use in the identification of practically feasible materials for a number of 27 

real-world applications. 28 

  29 
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Introduction 30 

Organic-inorganic hybrid perovskites such as methylammonium lead iodide (MAPbI3) have 31 

enormous potential as solar cell materials because of their suitable band gaps for solar light 32 

absorption [1], very small exciton binding energies [2], and long carrier diffusion lengths [3]. The 33 

power conversion efficiency (PCE) of perovskite solar cells (PSCs) skyrocketed from 3.8% in 2009 34 

to 23.3% in 2018 [4,5]. Therefore, PSCs are prime candidates for next-generation solar cells and are 35 

expected to provide a solution to the energy problem. However, the toxicity of lead-based hybrid 36 

perovskites is a serious obstacle to their practical application [6]. To avoid the toxicity of lead, 37 

lead-free hybrid perovskites in which other ions are substituted for lead have been examined both 38 

experimentally and using computational simulations [7–15]. However, the PCEs of lead-free PSCs 39 

based on CH3NH3SnI3, which is widely used as an alternative to lead-based perovskites, are 40 

significantly lower than the PCEs of lead-based PSCs [5,7]. Additionally, SnI2, which is the main 41 

degradation product of tin-based perovskites, may present even greater toxicity concerns than 42 

lead-based perovskites [16]. Therefore, the development of novel perovskites with high photovoltaic 43 

performance is required.  44 

Recently, data-driven machine learning and materials informatics have succeeded in the 45 

discovery of novel materials such as solid-state electrolytes [17], organic light-emitting diodes [18], 46 

shape memory alloys [19], piezoelectrics [20], and polymers for organic photovoltaics [21]. These 47 

approaches have also been employed for crystal structure prediction [22–25], physical property 48 
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prediction [26–31], and high-throughput computational screening [32,33]. Accordingly, massive and 49 

efficient material design based on machine learning and materials informatics has attracted 50 

significant attention in the field of materials science. 51 

In this study, we developed a massive and highly efficient material search scheme based on 52 

materials informatics and applied it to the screening of over 28 million AA′BB′X3X′3 double 53 

perovskite candidates. In this material search scheme, in addition to the semiconductor properties of 54 

the candidates such as the band gap and carrier effective mass, the synthetic feasibility, toxicity, and 55 

cost, which were rarely considered in previous studies, were systematically analyzed using an 56 

informatics strategy based on a combination of experimental and the theoretical databases newly 57 

built from our calculations. To date, many lead-free and tin-free perovskites have been reported from 58 

material searches based on computational simulations [13–15]. However, there have been no 59 

successful experimental reports regarding the alternative perovskites proposed from these 60 

computational simulations, possibly because these previous reports used only theoretical databases 61 

from first-principles calculations. In particular, it is difficult to calculate the band gaps of hybrid 62 

perovskites because of the electron correlation and the strong spin-orbit coupling [34]. In this study, 63 

we estimate band gaps based on the experimental databases to guide novel material searches for 64 

PSCs. Through the screening of 28 million candidates, we identified alternative perovskites with 65 

suitable semiconductor properties, stable cubic or pseudo cubic structures, low toxicity, and low cost 66 

for use in PSCs. 67 
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Methods 69 

Machine learning models for band gap prediction 70 

To train the machine learning model for band gap prediction, a training dataset of high 71 

quality is required. Past studies have employed band gap datasets evaluated by first-principles 72 

calculations [35,36]. However, studies indicated that electron correlation and relativistic spin-orbit 73 

coupling (SOC) play important roles in the band gap calculations of PSC materials [34]. To 74 

determine the efficacy of the band gap learning model, we used an experimental band gap dataset of 75 

282 perovskites. The details are summarized in Table S1 and Figure S1 (see Supplemental Material) 76 

[37]. 77 

To define the feature vectors for each AA’BB’X3X’3 double perovskite, we used atomic and 78 

ionic features of the six constituent ions (A, A’, B, B’, X, and X’) of the perovskite. For each ion, we 79 

used nine elemental features (viz. first ionization potential, electron affinity, Mulliken 80 

electronegativity, ionic radius, group number, Pettifor’s Mendeleev number [38], ionic HOMO level, 81 

ionic LUMO level, and ionic HOMO-LUMO gap). Therefore, an AA’BB’X3X’3 double perovskite is 82 

described by a 54-dimensional feature vector in the target chemical space. To determine the first 83 

ionization potentials and electron affinities for organic molecules and ionic HOMO/LUMO levels for 84 

all ions, density functional theory (DFT) calculations were carried out. The computational details and 85 

features for each element and organic molecule are summarized in Table S2 (see Supplemental 86 

Material). 87 
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Using the band gap data set and the feature vectors, we validated machine learning models 88 

for band gap prediction. Figure 1 illustrates the validation process. In this process, the band gap 89 

dataset was randomly split into a training set and a test set in ratios of 80% and 20%. Ten pairs of a 90 

fitting set and a validation set with ratios of 60% and 40% were generated from random splits in the 91 

training set. Using the fitting sets, validation sets, and test sets, the accuracy of the band gap 92 

predictor was validated. As the preprocess for regression coefficient fitting and cross-validation, the 93 

features were scaled by normalization, and the dimension of the feature vector was reduced from 54 94 

dimensions to 15 dimensions by principal component analysis (PCA). After the preprocessing, 95 

machine learning models were trained via fitting and cross-validation using the 10 pairs of the fitting 96 

set and the validation set. Next, the trained machine learning models were tested using the test set. In 97 

order to investigate the generality of the machine learning models, this process was iterated for 50 98 

cycles with different random seeds to split the band gap data set, and the accuracies of the machine 99 

learning models were assessed by averaging R2 values for the training sets (ܴ୲୰ୟ୧୬ଶ ) and test sets 100 

(ܴ୲ୣୱ୲ଶ ). 101 

 The averaged ܴ୲୰ୟ୧୬ଶ , averaged ܴ୲ୣୱ୲ଶ , and root mean squared errors (RMSEs) in the test set 102 

for each regression model are listed in Table 1. In this assessment, we employed multiple linear 103 

regression (MLR), Ridge regression, Lasso regression, support vector machine regression (SVR) 104 

with a linear kernel or Gaussian kernel, and Gaussian process regression (GPR) with a Gaussian 105 

kernel as regression models. These are implemented in the scikit-learn library [39]. In addition, 106 
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ensemble learning models such as random forest and neural network are also known as powerful 107 

regression models. However, in this study, the number of data sets was insufficient to perform these 108 

regressions, and they were not reasonable for this study. For linear-regression-based prediction 109 

models (MLR, Ridge regression, Lasso regression, and SVR with a linear kernel), the averaged 110 

ܴ୲୰ୟ୧୬ଶ  and averaged ܴ୲ୣୱ୲ଶ  are very low; hence, these models cannot predict the band gaps of 111 

perovskites. On the other hand, for nonlinear regression-based prediction models (SVR and GPR 112 

with a Gaussian kernel), the prediction accuracies are dramatically improved. This result implies that 113 

nonlinear correlation between the band gap and the features is important for band gap prediction, and 114 

similar perovskites show similar band gaps. In particular, SVR with a Gaussian kernel shows the best 115 

prediction accuracy in our examination, and the averaged ܴ୲୰ୟ୧୬ଶ , averaged ܴ୲ୣୱ୲ଶ , and RMSE in the 116 

test set are 0.89, 0.65, and 0.81 eV, respectively. We employed this SVR with a Gaussian kernel as 117 

the band gap predictor. To improve the prediction accuracy, additional band gap data are required. 118 

We believe that our machine learning model will be improved by an expanded band gap dataset in 119 

the future. 120 

 121 

Computational details for first-principles calculations 122 

 First-principles calculations were carried out to perform structural optimization and 123 

determine the band gap, electron and hole effective mass, and exciton binding energy. For structural 124 

optimization, the ion positions and cell parameters in a 2 × 1 × 1 cubic-based unit cell (Figure S2) 125 
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were optimized with the convergence threshold for a change of 10-3 eV in the total energy. After the 126 

structural optimizations, the direct band gap, indirect band gap, electron and hole effective mass, and 127 

exciton binding energy were calculated using the optimized structure. These calculations were 128 

performed using the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional with the 129 

DFT-D3 method as a van der Waals correction [40,41], projector augmented wave (PAW) 130 

pseudopotentials, 700-eV plane-wave cutoff, and 10 × 10 × 10 sampling k-point grid in Vienna ab 131 

initio simulation package (VASP) code [42,43]. 132 

 For the most promising novel perovskites, more accurate DFT calculations were carried out 133 

to evaluate the formation enthalpies, light absorption coefficients, and levels of conduction band 134 

minimum (CBM) and valence band maximum (VBM). A computationally inexpensive theoretical 135 

approach based on PBE + U calculations with fitted elemental-phase reference energies (FERE) was 136 

used for reoptimizations of the structure and estimations of the formation enthalpy [44]. Here, the 137 

values of the effective on-site Coulomb interactions (U) were taken from [44], and the most stable 138 

crystal structures of each pure element were taken from the Materials Project [45]. The other 139 

computational details are similar to the above calculations. Furthermore, a Heyd-Scuseria-Ernzerhof 140 

(HSE06) screened hybrid functional with a 2 × 4 × 4 sampling k-point grid was used to evaluate the 141 

light absorption coefficients and the levels of CBM and VBM [46]. The light absorption coefficients 142 

were estimated based on the calculations of the imaginary part of the frequency-dependent dielectric 143 
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matrix implemented in VASP code [47]. The levels of CBM and VBM were determined using 144 

empirical equations [48,49]: 145 

Cܧ ൌ ൫߯A߯A’߯B߯B’߯Xଷ߯X’ଷ ൯ ଵଵ଴ ൅ 12  ,୥    ሺ1ሻܧ
Vܧ ൌ Cܧ െ  .୥    ሺ2ሻܧ

where ܧC and ܧV are the CBM level and VBM level relative to the vacuum level, respectively. ߯A, 146 

߯A’, ߯B, ߯B’, ߯X, and ߯X’ denote the absolute electronegativities of A, A’, B, B’, X, and X’ atoms in 147 

AA’BB’X3X’3 double perovskite, respectively [50], and ܧ୥ is the band gap calculated by an HSE06 148 

functional. 149 

  150 
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Results and discussion 151 

 We developed a high-throughput material search for novel PSC materials. Figure 2 depicts 152 

the novel AA′BB′X3X′3 double perovskite search scheme. In this material search scheme, not only 153 

the feasibility of the perovskite structure and its band gap but also its toxicity and cost were 154 

systematically considered. First, AA′BB′X3X′3 compositions were generated from a library of ions. 155 

For the A and A′ cations, 18 cations including alkali metal, alkali earth metal, group-3 metal, and 156 

organic cations were employed. For the B and B′ cations, 85 cations including transition metals and 157 

p-block metals were employed. For the X and X′ anions, nine anions including chalcogens and 158 

halogens were employed. The specific ions are listed in Figure 2 (a). From the ion library, 159 

28,125,225 AA′BB′X3X′3 compositions were generated. These were screened in a stepwise manner 160 

according to the material search scheme. 161 

In the first screening step of the material search scheme, the ability of the generated 162 

AA′BB′X3X′3 compositions to form a perovskite was evaluated using the general properties of the 163 

constituent ions (viz. ionic valence, valence electron number, and ionic radius). A composition was 164 

considered to be synthetically feasible if it met the following seven criteria: (1) its charge was neutral, 165 

(2) it had an even number of electrons, (3) its tolerance factor TF fell between 0.8 and 1.1 [51], (4) 166 

its octahedral factor OF was greater than 0.4 [51], (5) the ionic radii difference and ratio of its A and 167 

A′ cations met the criteria in eq. (3); (6) the ionic radii difference and ratio of its B and B′ cations met 168 
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the criteria in eq. (4); and (7) its X and X′ anions had the same group number. TF and OF are defined 169 

as 170 

ܨܶ ൌ Aഥݎ ൅ BഥݎXഥ√2ሺݎ ൅  Xഥሻ     ሺ3ሻݎ

ܨܱ ൌ XഥݎBഥݎ      ሺ4ሻ. 
where ݎAഥ  is the average ionic radius of the A and A′ cations, ݎBഥ  is the average ionic radius of the B 171 

and B′ cations, and ݎXഥ is the average ionic radius of the X and X′ anions. Shannon’s ionic radii and 172 

effective radii were used for atomic ions and molecular ions, respectively [52,53]. However, TF and 173 

OF were defined for ABX3 single perovskites, and these factors do not consider the differences 174 

between the ionic radii of A and A′, B and B′, or X and X′ in AA′BB′X3X′3 double perovskites. 175 

Recently, Bartel et al. reported a new tolerance factor to predict the stability of A2BB′X6-type double 176 

perovskites [54]. Even with Bartel’s tolerance factor, it may be impossible to predict the stabilities of 177 

AA′BB′X3X′3 double perovskites because Bartel’s tolerance factor cannot consider the differences 178 

between A and A′ or X and X′. Therefore, the conventional TF and OF parameters and Bartel’s new 179 

tolerance factor cannot simply be applied to AA′BB′X3X′3 double perovskites; additional conditions 180 

are required. The 5th and 6th conditions consider the differences in the ionic radii of A and A′ and B 181 

and B′, respectively, by applying the following rules: 182 

0.73 ൑ AᇲݎAݎ ൑ 1.37, Aݎ| െ |Aᇲݎ ൑ 0.45 Հ     ሺ5ሻ 

0.50 ൑ BᇲݎBݎ ൑ 2.00, Bݎ| െ |Bᇲݎ ൑ 2.00 Հ     ሺ6ሻ. 
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where ݎA, ݎAᇲ, ݎB, and ݎBᇲ are the ionic radii of the A, A′, B, and B′ cations, respectively. The 5th, 183 

6th, and 7th conditions were determined from our dataset of 282 experimental perovskite compounds 184 

(see Table S1 in the Supplemental Material). AA′BB′X3X′3 compositions that satisfy the seven 185 

criteria are expected to be able to form a perovskite structure; 128,357 such AA′BB′X3X′3 were 186 

identified in this step, and only these combinations proceeded to the next screening step. 187 

 In the second screening step, the band gaps of the 128,357 AA′BB′X3X′3 double perovskites 188 

were predicted using a machine learning model. Support vector machine regression (SVR) with a 189 

Gaussian kernel trained on the experimental band gap data of 282 perovskite compounds was 190 

employed as the machine learning model. The band gaps and compositions of 282 perovskites are 191 

listed in Table S1 (see Supplemental Material). The feature vectors for the 128,357 AA′BB′X3X′3 192 

double perovskites were generated from the atomic and ionic information of the constituent elements. 193 

The details are summarized in the Supplemental Material. To identify novel double perovskites with 194 

suitable band gaps, we set a band gap criterion of 1.4 േ 0.8 eV. The values of 1.4 and 0.8 eV 195 

correspond to the ideal band gap for p-n-junction-based solar cell materials according to the 196 

Shockley-Queisser limit and the error bar of our SVR, respectively [55]. Through this screening, 197 

10,918 AA′BB′X3X′3 double perovskites with suitable band gaps were identified. The 10,918 198 

perovskites included conventional hybrid perovskites such as MA2Pb2I6 (=MAPbI3), for which the 199 

band gaps determined experimentally and by our SVR were 1.48 and 1.69 eV, respectively [56]. 200 
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 In many material search studies, the development of such a database of 10,918 201 

AA′BB′X3X′3 double perovskites might be the end goal. However, to target materials with the 202 

potential for practical application, we considered two additional criteria (toxicity and cost) in this 203 

work. These criteria were selected because the toxicity of the widely used Pb-based hybrid 204 

perovskites is a serious problem [6], and low manufacturing cost is a merit of PSCs.  205 

 In the third screening step, the 10,918 identified perovskites were evaluated in terms of their 206 

toxicity and cost. The Guideline for Elemental Impurities Q3D was employed for the toxicity 207 

estimation [57]. These guidelines classify elements into four classes: highly toxic Class-1 elements, 208 

moderately toxic Class-2 elements, low-toxicity Class-3 elements, and low or nontoxic other 209 

elements. Pb, Hg, As, and Cd are Class-1 elements, and Co, V, Ni, Tl, Au, Pd, Ir, Os, Rh, Ru, Se, Ag, 210 

and Pt are Class-2 elements. In this evaluation, AA′BB′X3X′3 perovskites including a Class-1 or -2 211 

element, such as MA2Pb2I6 and other Pb-based perovskites, were rejected, and 2,146 low-toxicity 212 

double perovskites consisting of only Class-3 and other elements were found. After the toxicity 213 

evaluation, the cost of the remaining 2,146 double perovskites was estimated using the Chemicool 214 

database [58]. This database lists the price of each element in pure and bulk form. Using this 215 

database, the cost of each of the 2,146 double perovskites was estimated in US dollars (USD) per 216 

mole, and the 500 AA′BB′X3X′3 double perovskites with the lowest cost were selected. Note that the 217 

prices of each element were collected for these estimations in February 2018 and may change over 218 

time. The latest prices can be seen in the Chemicool database [58]. Here, the toxicities and costs of 219 
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perovskites were considered in the screening scheme. However, we would suggest that this screening 220 

step is not necessarily required in general material studies since the toxicities and costs are not 221 

physical properties and relatively evaluated. 222 

 In the final screening step, first-principles calculations were performed to calculate the 223 

structures, band gaps, carrier effective masses, and exciton binding energies of the 500 AA′BB′X3X′3 224 

double perovskites. The band gaps predicted by machine learning, estimated costs, optimized 225 

structures, and semiconductor properties as calculated by density functional theory (DFT) for the 500 226 

candidates are listed in Table S4 (see Supplemental Material), and the computational details are 227 

summarized in the Supplemental Material. From among the 500 candidates, the 24 most promising 228 

AA′BB′X3X′3 double perovskites were identified and are listed in Table 2 along with their band gaps, 229 

costs, structural properties, hole and electron effective masses, exciton binding energies, and 230 

theoretical PCEs. The 24 perovskites identified meet the following criteria: (1) a cubic or pseudo 231 

cubic optimized structure with Bravais lattice vector length ratios of 1.90 ൑ |܉|  ⁄|܊|  ൑ 2.10, 1.90 232 

൑ |܉|  ⁄|܋|  ൑ 2.10, and 0.95 ൑ |܊|  ⁄|܋|  ൑ 1.05, and angles between the Bravais lattice vectors of 233 

89.0° ൑  α, β, γ ൑ 91.0°; (2) a hole and electron effective mass of less than 1.00 a.u.; and (3) equal 234 

direct band gap and indirect band gap values. Of the 24 perovskites identified, five are organic 235 

tin-halide hybrid perovskites such as methylammonium tin iodide (MASnI3) and formamidinium tin 236 

iodide (FASnI3). These organic tin-halide hybrid perovskites are well-known and are already 237 

employed as alternative perovskites in PSCs. Their identification reproduces the results of alternative 238 



16 
 

experimental perovskite searches in recent years, and suggests that our material search scheme is a 239 

very reliable method. In addition, sodium-, potassium-, and ammonium-based multi-A-cation 240 

tin-halide perovskites that have not been reported in previous studies, namely, KMASn2Br6, 241 

KMASn2Br3I3, KMASn2I6, KNH4Sn2Br6, KNH4Sn2Br3I3, KNH4Sn2I6, and NaNH4Sn2I6, were 242 

identified. Furthermore, 10 inorganic tin-halide perovskites, namely, KSnBr3, K2Sn2Br3I3, K2Sn2Cl3I3, 243 

KSnI3, NaKSn2Br6, NaKSn2Br3I3, NaKSn2I6, Na2Sn2Br3I3, Na2Sn2Cl3I3, and NaSnI3, are first 244 

reported in this study. These perovskites contain the well-known tin-halide framework. Therefore, 245 

the existence of these perovskites is easy to imagine. In addition to the tin-halide perovskites, two 246 

novel inorganic perovskites were identified. One is a copper-halide-based perovskite, CaSrCu2I6, and 247 

the other is a sulfide perovskite, CaBaMnNbS6. These perovskites include divalent A- and A′-cations 248 

and transition metals as the B- and B′-cations. The compositions are significantly different from 249 

those conventionally used in the PSC field, and they have not been investigated as PSC materials. 250 

However, we expect that CaSrCu2I6, CaBaMnNbS6, and similar perovskites will show appropriate 251 

properties for use as solar cell materials. 252 

 For the novel organic-inorganic tin-halide, inorganic tin-halide, CaSrCu2I6, and 253 

CaBaMnNbS6 perovskites, more detailed examinations are needed to investigate the thermochemical 254 

stabilities, light absorbance, and levels of CBM and VBM. Table 3 lists the formation enthalpies 255 

calculated by PBE + U with FERE, band gaps calculated by the HSE06 functional, gap types, and 256 

levels of CBM and VBM relative to the vacuum level for the novel perovskite candidates. In addition, 257 
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Figure S3 illustrates the imaginary parts of the frequency-dependent dielectric function 258 

corresponding to the light absorption spectra for each novel perovskite. Notably, the HSE06 259 

functional might seriously underestimate the band gaps of CaSrCu2I6 and CaBaMnNbS6 because of 260 

the strong electron correlations of Cu and Mn atoms. The formation enthalpies are exothermic for all 261 

novel perovskites, and the candidates discovered in this study can be thermochemically stable as 262 

perovskite structures. All novel organic-inorganic tin-halide and inorganic tin-halide perovskites 263 

show direct band gaps and are expected to have relatively large light absorption coefficients in the 264 

visible light region (see Figure S3). However, the band gaps calculated by HSE06 are smaller than 265 

those predicted by machine learning. Therefore, the HSE06 calculations might underestimate the 266 

band gaps of the novel organic-inorganic tin-halide and inorganic tin-halide perovskites. By contrast, 267 

for the CaSrCu2I6 and CaBaMnNbS6 perovskites, the gap types are indirect band gaps, and the light 268 

absorption coefficients are expected to be relatively small (see Figure S3). However, CaSrCu2I6 and 269 

CaBaMnNbS6 perovskites show thermochemical stability and small effective masses of electrons and 270 

holes. These characteristics are related to high carrier mobility. Therefore, CaSrCu2I6, CaBaMnNbS6, 271 

and similar perovskites can be expected as potential candidates for photovoltaic materials, and we 272 

suggest that experimental studies are needed for these novel perovskites. 273 

  274 
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Conclusion 275 

 In this study, we examined if promising alternative perovskites with low cost, low toxicity, 276 

and high photovoltaic performance exist. To investigate this efficiently, a high-throughput material 277 

search scheme based on materials informatics was developed and applied to the screening of 278 

28,125,225 AA′BB′X3X′3 double perovskite candidates. This scheme systematically considered not 279 

only the semiconductor properties of the candidates (such as the band gap and carrier effective mass) 280 

but also the feasibility of their synthesis, toxicity, and cost, which have rarely been considered in 281 

previous studies. This study used a combination of informatics strategies based on experimental 282 

databases and a newly built theoretical database. 283 

 To accelerate the material search, the synthetic feasibility, toxicity, and cost were estimated 284 

from elemental and atomic information. Furthermore, band gaps were predicted by an SVR machine 285 

learning model with a Gaussian kernel. The machine learning model was trained on the experimental 286 

band gap data of 282 perovskites. We believe that this dataset will be useful in follow-on studies in 287 

material research. Our high-throughput material search scheme can systematically consider the 288 

physical properties, toxicity, and cost, and can be modified for use in other material searches. For 289 

example, it could be extended to search for novel perovskite materials for the water-splitting 290 

photocatalytic reaction by simply changing the band gap screening criteria. Our work represents a 291 

pioneering material search method based on materials informatics that can consider various criteria 292 

with the aim of identifying materials for practical applications. 293 
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 Through the materials search scheme, 24 promising candidates were discovered from 294 

28,125,225 AA′BB′X3X′3-type compositions. Among the 24 discovered perovskites, 22 candidates 295 

were tin-halide perovskites, five of which are already well-known and employed as alternative 296 

materials for PSCs. Their identification is consistent with the results of recent experimental studies 297 

[7,8,59–61] and confirmed the reliability of our material search scheme. Novel sodium, potassium, 298 

and ammonium-based tin-halide perovskites were also identified. Therefore, we propose that not 299 

only MA-, FA-, and caesium-based perovskites but also sodium-, potassium-, and ammonium-based 300 

perovskites represent promising alternative PSC materials. In addition to the tin-halide perovskites, 301 

two novel transition-metal-based perovskites, CaSrCu2I6 and CaBaMnNbS6, were identified. 302 

Therefore, the answer to the question, “Do promising alternative perovskites other than tin-halide 303 

perovskites exist?” is “yes.” We report that there are alternative perovskites other than tin-halide 304 

perovskites that show low toxicity, low cost, and high performance as PSCs from the standpoint of 305 

materials informatics. This result represents valuable information to guide experimental alternative 306 

perovskite searches. 307 

  308 
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Table 1. Averaged R2 values for training set ܴ୲୰ୟ୧୬ଶ  and test set ܴ୲ୣୱ୲ଶ , and root mean squared error 428 

(RMSE) in test set for each band-gap prediction model. 429 

Regression model ܴ୲୰ୟ୧୬ଶ  ܴ୲ୣୱ୲ଶ RMSE

MLR 0.46 0.36 1.11

Ridge regression 0.46 0.37 1.10

Lasso regression 0.45 0.36 1.11

SVR with linear kernel 0.43 0.34 1.12

SVR with Gaussian kernel 0.89 0.65 0.81

GPR with Gaussian kernel 0.90 0.58 0.89

  430 
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Table 2. Band gap predicted by machine learning (ܧ୥), estimated cost, Bravais lattice vector length ratios (|܉| ⁄|܊| |܉| , ⁄|܋| , and |܊| ⁄|܋| ሻ, 431 

angles between Bravais lattice vectors ሺα, β, and γ), electron effective mass ݉ୣכ, hole effective mass ݉୦כ , exciton binding energy ܧୠ, and 432 

theoretical PCE of 24 most promising perovskites identified. 433 

Perovskite ܧ୥/eV Cost/$ mol-1 |܉| ⁄|܊| |܉|  ⁄|܋| |܊|  ⁄|܋|  α/degree β/degree γ/degree ݉ୣכ/a.u. ݉୦כ /a.u. ܧୠ/meV PCE/% 

CaBaMnNbS6 2.18 194 1.91 1.91 1.00 90.0 90.0 90.0 0.55 0.62 0 13.6 

CaSrCu2I6 1.81 171 2.00 2.00 1.00 90.0 90.0 90.0 0.36 0.45 10 19.1 

FASnI3 1.51 122 1.96 2.00 1.02 90.0 90.0 90.1 0.84 0.10 4 22.2 

KSnBr3 1.92 159 2.00 2.00 1.00 90.0 90.0 90.0 0.79 0.09 9 17.4 

K2Sn2Br3I3 1.13 179 1.98 1.98 1.00 90.0 90.0 90.0 0.81 0.07 0 22.1 

K2Sn2Cl3I3 1.75 167 1.98 1.98 1.00 90.0 90.0 90.0 0.98 0.13 5 19.8 

KSnI3 1.14 198 2.00 2.00 1.00 90.0 90.0 90.0 0.74 0.08 2 22.1 

KMASn2Br6 1.99 121 1.99 2.00 1.00 90.5 90.0 90.0 0.94 0.15 33 16.4 

KMASn2Br3I3 1.17 141 1.98 1.98 1.00 90.2 90.3 89.9 0.97 0.13 14 22.2 

KMASn2I6 1.16 160 2.00 1.99 1.00 90.4 90.0 90.0 0.81 0.11 9 22.2 

KNH4Sn2Br6 1.97 121 2.00 2.00 1.00 90.2 90.0 90.0 0.83 0.08 1 16.7 

KNH4Sn2Br3I3 1.14 140 2.00 1.99 1.00 90.8 90.1 90.0 0.79 0.08 0 22.1 

KNH4Sn2I6 1.12 160 2.00 2.00 1.00 90.1 90.0 90.0 0.72 0.07 0 22.0 

MAFASn2I6 1.39 122 1.98 1.98 1.00 90.1 89.4 90.0 1.00 0.09 2 23.0 

MA2Sn2Br3I3 1.33 103 1.99 1.97 0.99 90.4 90.0 90.1 1.00 0.13 13 22.9 

MA2Sn2Cl3I3 1.96 91 1.96 1.96 1.00 89.9 89.8 90.5 0.88 0.12 11 16.8 

MASnI3 1.29 122 2.00 1.98 0.99 90.3 90.0 90.0 0.78 0.15 16 22.3 

NaKSn2Br6 1.94 126 2.00 2.00 1.00 90.0 90.0 90.0 0.78 0.07 0 17.2 



30 
 

 434 

  435 

NaKSn2Br3I3 2.12 135 1.99 1.99 1.00 90.0 90.0 90.0 0.86 0.18 13 14.5 

NaKSn2I6 1.54 138 2.00 2.00 1.00 90.0 90.0 90.0 0.73 0.07 0 21.9 

Na2Sn2Br3I3 1.48 112 2.00 2.00 1.00 90.0 90.0 90.0 0.81 0.18 22 22.3 

Na2Sn2Cl3I3 1.92 100 1.99 1.99 1.00 90.0 90.0 90.0 0.91 0.15 8 17.4 

NaSnI3 1.86 147 2.00 2.00 1.00 90.0 90.0 90.0 0.72 0.07 0 18.3 

NaNH4Sn2I6 1.22 126 2.00 2.00 1.00 90.1 90.0 90.0 1.00 0.07 0 22.3 
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Table 3. Formation enthalpies, direct band gap, indirect band gap, gap type, and levels of CBM and VBM relative to vacuum level of 19 novel 436 

perovskites identified. 437 

  438 

Perovskite Formation enthalpy / kJ mol-1 Direct band gap / eV Indirect band gap / eV Gap type CBM level / eV VBM level / eV 
CaBaMnNbS6 -1664 0.55 0.00 Indirect -4.63 -4.63
CaSrCu2I6 -1125 0.65 0.08 Indirect -4.88 -4.97
KSnBr3 -610 0.70 0.70 Direct -5.04 -5.74
K2Sn2Br3I3 -1053 0.39 0.39 Direct -5.01 -5.40
K2Sn2Cl3I3 -1161 0.46 0.46 Direct -5.31 -5.77
KSnI3 -458 0.46 0.46 Direct -4.80 -5.26
KMASn2Br6 -1158 0.95 0.95 Direct -5.53 -6.48
KMASn2Br3I3 -1002 0.56 0.56 Direct -5.51 -6.08
KMASn2I6 -878 0.54 0.54 Direct -5.33 -5.87
KNH4Sn2Br6 -1117 0.51 0.51 Direct -5.76 -6.27
KNH4Sn2Br3I3 -960 0.29 0.29 Direct -5.66 -5.95
KNH4Sn2I6 -828 0.32 0.32 Direct -5.45 -5.77
NaKSn2Br6 -1075 0.49 0.49 Direct -5.23 -5.72
NaKSn2Br3I3 -919 0.51 0.51 Direct -5.04 -5.55
NaKSn2I6 -785 0.37 0.37 Direct -4.93 -5.29
Na2Sn2Br3I3 -821 0.66 0.66 Direct -5.05 -5.71
Na2Sn2Cl3I3 -941 0.51 0.51 Direct -5.27 -5.78
NaSnI3 -327 0.24 0.24 Direct -5.07 -5.32
NaNH4Sn2I6 -699 0.20 0.20 Direct -5.60 -5.80
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Figure Caption 439 

 440 

 441 

Figure 1. Training and test processes for machine learning models for band gap prediction. 442 

Percentages in figure are split ratios for each set. Random seed for (1) Random was changed every 443 

time in 50 iterations, and random seed for (2) Random was fixed in the iterations. 444 
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 445 

 446 

Figure 2. (a) Ion library for each site, and number of possible AA′BB′X3X′3 compositions using the 447 

library. (b) Diagram of novel AA′BB′X3X′3 double perovskite search scheme. 448 


