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Abstract

We derive a dielectric-dependent hybrid functional which accurately describes the electronic

properties of heterogeneous interfaces and surfaces, as well as those of three- and two-dimensional

bulk solids. The functional, which does not contain any adjustable parameter, is a generalization of

self-consistent hybrid functionals introduced for homogeneous solids, where the screened Coulomb

interaction is defined using a spatially varying, local dielectric function. The latter is determined

self-consistently using density functional calculations in finite electric fields. We present results for

the band gaps and dielectric constants of 3D and 2D bulk materials, and band offsets for interfaces,

showing an accuracy comparable to that of GW calculations.
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I. INTRODUCTION

Density Functional Theory (DFT) was first applied to compute the structural and elec-

tronic properties of condensed systems more than 35 years ago1–3, using the local density

approximation4,5 of the exchange and correlation (xc) energy functional. Approximately

ten years later, when gradient corrected approximations (GGA)6–11 for the xc energy were

derived, DFT was adopted for some molecular investigations by the quantum chemistry

community. Shortly after the first GGA molecular calculations, hybrid functionals were

proposed12–18 and most DFT applications for finite systems, which use localized basis sets,

have been carried out with hybrid functionals19,20, most notably B3LYP13,21,22. These are

functionals where the exchange energy is defined as a linear combination of exact (Hartree-

Fock) and local exchange23. The condensed matter physics community adopted hybrid

functionals later than the quantum chemistry community, due to computational difficulties

in evaluating the Hartree-Fock (HF) exchange energy using plane wave (PW) basis sets;

these are the basis set of choice in most of the codes used for materials24–31, although peri-

odic DFT codes using localized basis sets are also in use32–35. The difficulties in evaluating

HF exchange in PW basis sets have now been largely overcome, with the advent of fast

algorithms based on bisection techniques36–39 or maximally localized Wannier functions40,41.

Nevertheless periodic DFT calculations with hybrid functionals and PW basis sets remain

substantially heavier, from a computational standpoint, than local or semi-local DFT calcu-

lations. The functionals PBE042 and HSE43–45 are among the most popular hybrid function-

als used for condensed systems, and lately dielectric dependent hybrid functionals46–57 have

been increasingly used to predict structural and electronic properties of solids53,55,57–64 and

liquid65–67 and of several molecules55,56,68. Another category of orbital dependent functionals

recently proposed is that of Koopmans-compliant functionals, used for both molecules and

solids69–72.

A drawback of most of the functionals mentioned above is that while they work well

for certain classes of homogeneous systems, e.g. solids, they are usually not as accurate for

heterogeneous systems, e.g. surfaces and interfaces, where the dielectric screening of different

portions of the system differ substantially. For heterogeneous semiconductors, Shimazaki et

al.54 introduced an estimator of the electrostatic environment surrounding the atoms in a

semiconductor leading to the definition of position-dependent atomic dielectric constants.
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For solid/solid interfaces, Borlido et al.73 introduced a non-local mixing fraction, based on

an estimator of a local dielectric function that contains parameters to be evaluated with

system-dependent fitting procedures.

In this work, we propose a hybrid functional that describes equally accurately three- and

two-dimensional solids, as well as surfaces and interfaces, and which is derived entirely from

first principles, with no need to define any adjustable parameter. The functional is based

on an approximation of the screened Coulomb interaction using a local dielectric function,

which is derived from first principles by minimizing a dielectric enthalpy functional. We first

discuss (Section II) the foundation of dielectric disentanglement by showing that the dielec-

tric screening of a system composed of two subsystems interfaced with each other, may

be decomposed into the screening of the two subsystems plus an interfacial contribution.

The disentanglement is carried out using a localized representation of the eigenvectors of

the dielectric matrix, obtained using bisection techniques originally proposed for the eigen-

functions of Kohn-Sham Hamiltonians36. Our results on dielectric decomposition are used

to justify the definition of a local, spatial dependent dielectric function (Section II), which

in the bulk portion of the subsystems coincides with their respective dielectric constants.

We then use this local dielectric function to define a dielectric hybrid functional for hetero-

geneous systems (Section III); the functional is derived from first principles, without any

adjustable parameter, by carrying out calculations in finite electric field. Finally we present

results for 3D and 2D solids in Section V A and for surfaces and interfaces in Section V B,

with focus on the calculations of band gaps, dielectric constants and band-offsets.

II. SPATIAL DISENTANGLEMENT OF DIELECTRIC SPECTRA

In this section, we address the following question: can the dielectric matrix of an het-

erogeneous system (composed, e.g. of two solids or a liquid and a solid) be expressed in

terms of the dielectric matrices of the subsystems? For simplicity we restrict our attention

to a system of volume Ω composed of two subsystems, A and B interfaced with each other

and we consider a single interface between A and B. We address the question by writing

a spectral decomposition of the dielectric matrices of the heterogeneous system and of A

and B, and then we use bisection techniques36 to localize the eigenvectors of the dielectric

matrices in desired regions of space.
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According to linear response theory, the density-density response function χ and the

irreducible polarizability χ0 are related to the dielectric matrix (ε) of the system by the

following equation:

ε̄ = 1− χ̄0, χ̄ =
χ̄0

1− χ̄0
, (1)

where the bar in Eq. (1) indicates that the functions have been symmetrized with respect to

the Coulomb potential (see, e.g. Ref.74). We represent χ̄0 using its spectral decomposition,

χ̄0(r, r′) =
∑
n

λnφn(r)φ∗n(r′) , (2)

where φn and λn are eigenvectors and eigenvalues, respectively. In the following we focus on

static dielectric responses.

Fig. 1 shows the eigenvalues of χ̄0 (left panels) for two representative interfaces, H-Si/H2O

and Si/Si3N4, one where the two subsystems are non-covalently bonded and one where there

are covalent bonds at the interface (the geometry of the model slabs and how they were

obtained are described in the SM75). The square moduli of selected eigenvectors projected

in the direction perpendicular to the interface (z) and their corresponding eigenvalues (dots)

are shown on the right and left panels of Fig. 1, respectively. For both surfaces, we see that

some eigenmodes are predominantly localized on one side of the slabs while other modes,

especially those corresponding to |λi| → 0 (green and red curves) are localized over the

entire slab.

In order to express response functions of the entire system in terms of those of the

subsystems, we represent the dielectric matrix in terms of localized functions, instead of

eigenfunctions. We first define two subsystems using the projection of the electronic charge

density on the z-axis perpendicular to the interface, as illustrated in Fig. 2. The use of

the charge density to define regions A and B introduces a certain degree of arbitrariness,

as a criterion is required to determine charge density minima, in correspondence of which

interface planes are defined. Such a criterion is system dependent. While the charge density

is used in this section to define interfacial planes for the purpose of illustrating the concept

of disentanglement of the dielectric response, it will not be used in practical calculations.

As we will see in Section IV, a general, system independent procedure can be defined to

compute local dielectric functions.

After partitioning the full system into subsystems using the charge density, we obtain a

set of localized functions from the set of eigenvectors φi by constructing and diagonalizing
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FIG. 1. Spectral decomposition of the response function χ̄0 of H-Si/H2O (upper panels) and

Si/Si3N4 (lower panels) interfaces. Left: eigenvalues of χ̄0; the points correspond to eigenvectors

shown on the right panel. Right: selected eigenpotentials (labeled by different colors) projected

on the axis (z) perpendicular to the interface: |φi(z)|2 = 1
LxLy

∫
dxdy|φi(x, y, z)|2. The black

vertical dashed lines denote the position of the interface and are determined according to the

spatial variation of the charge density (see Fig. 2)

the filtered overlap matrix M,

Mij :=

∫
r∈ΩS

drφ∗i (r)φj(r),

M · Vm = wmVm, wm ∈ [0, 1] , (3)

where wm and Vm are eigenvalues and eigenvectors of M, and ΩS is the volume of either

subsystem A or B as defined using the electronic charge density (see Fig. 2). The set of

eigenvectors of M provides the transformation matrix from the set of φi(r)’s to a set of

localized orbitals. The eigenvalues wm represent the weights of the localized orbital φloc
m (r)

within the subspace ΩS:

wm =

∫
r∈ΩS

dr|φloc
m (r)|2∫

dr|φloc
m (r)|2

. (4)

If wi ' 1, φloc
i is localized on ΩS; if wi ' 0, φloc

i is localized on Ω − ΩS. We classify the
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FIG. 2. Charge density ρ (e/Bohr3) of four slabs representing solid/liquid and solid/solid interfaces

projected on the axis z perpendicular to the interface [ρ(z) = 1
LxLy

∫
dxdydzρ(r)]. Vertical red lines

represent the position of the interfaces and were determined based on the spatial variation of the

charge density.

φloc
i (r)’s into three subsets:

FA =
{
φloc
i

∣∣∣wi < wthr

}
,

FB =
{
φloc
i

∣∣∣wi > 1− wthr
}
,

FI =
{
φloc
i

∣∣∣wthr < wi < 1− wthr
}
, (5)

where wthr is a chosen localization threshold that can be systematically varied to verify the

robustness and convergence of the localization procedure (it was chosen to be 0.01 in the

examples shown in the figures).

6



Fig. 3 displays the weights w and the square moduli of localized basis functions for the

H-Si/H2O and Si/Si3N4 interfaces: we found that most of the basis functions are localized

in one of the two subsystems, with the rest of them localized near the interface.
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FIG. 3. Weights (w, left panels) of bisected localized potentials for two interfaces, as defined

in Eq. (4), and representative bisected localized potentials (φloc, right panels), projected on the

direction z perpendicular to the interface. The localized potentials have been obtained from the

eigenpotentials of χ̄0 for the H-Si/H2O (upper panels) and Si/Si3N4 (lower panels) interfaces.

The dots on the left panels correspond to the localized potentials shown on the right panels. In

our calculations we included 10,240 eigenpotentials in the spectral decomposition of the irreducible

polarizability and we verified that such number yielded a converged results for the localized orbitals

and weights shown in the figure.

After obtaining the localized basis set F (FA∪FB∪FI), we expressed the matrix elements

of χ̄0 as χ̄0 = χ̄0
A + χ̄0

B + χ̄0
I + χ̄0

off-diag., where χ0
off-diag. includes all the off-diagonal blocks

representing the coupling between the two subsystems. By diagonalizing χ̄0
A, χ̄0

B and χ̄0
I in

the respective subspaces FA, FB, and FI defined in Eq. (5), we found that the response of

the whole system can be disentangled into contributions from the subsystems, i.e. we found

that for all systems studied here:

eig(χ̄0
A) ∪ eig(χ̄0

B) ∪ eig(χ̄0
I) ' eig(χ̄0) . (6)

Fig. 4 shows decomposed spectra [Eq. (6)] compared with the spectrum of the whole
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system. It is seen that [eig(χ̄0
A) ∪ eig(χ̄0

B) ∪ eig(χ̄0
I)] and eig(χ̄0) give very similar results,

with small differences in the low eigenvalue regions, due to the neglect of the elements

of χ0
off-diag.. As expected neglecting these elements is a better approximation for aqueous

interfaces than for the Si-Si3N5 interface, where covalent bonds are formed. Therefore, we

conclude that the dielectric screening of the whole slab may be approximated as the sum of

contributions from the subsystems plus an interfacial dielectric screening contribution.
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FIG. 4. Disentanglement of the dielectric spectra of several interfacial systems. The eigenvalues

(λ) of the subsystems (dots) are compared with those of the whole system (solid curve) to verify

the validity of Eq. (6).

The results of this section indicate that it is reasonable to approximate the screening of

the entire slab by a local dielectric function ε(r), a smooth function expected to describe

accurately the screening of the two separate subsystems in their respective bulk regions.

We will see in the next section that these assumptions lead to a definition of a generalized

dielectric hybrid functional which yields accurate band gaps and dielectric constants for 2D

and 3D systems and band offsets for complex interfaces.

We now turn to describing a procedure to obtain ε(r) which does not rely on the definition

of an interface plane based on the electronic charge density, nor on any parameters defining

subsystems A and B.
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III. DIELECTRIC-DEPENDENT HYBRID FUNCTIONALS

The results on dielectric disentanglement described in the previous section led to the

idea of defining a local dielectric function whose limiting values in the two subsystems is

expected to coincide with the dielectric constants of the respective bulk subsystems. Such

a local dielectric function can then be used to generalize the hybrid functionals introduced

in Refs.46–57. In the following, we define the local dielectric function from first principles.

In Refs.46–57, the screened Coulomb interaction in a homogeneous system is approximated

as W (r, r′) = 1
ε∞|r−r′| , where ε∞ is the macroscopic static dielectric constant. This approx-

imation is used in the definition of a hybrid functional similar to PBE0 but with mixing

fraction α = 1/ε∞ instead of 0.25. Several authors have suggested using α as an adjustable

parameter to reproduce the experimental band gap of solids46,48,49,51,57,76,77.

Following the definition of exchange in Ref.53,73, if we write the screened Coulomb poten-

tial as

W (r, r′) = α(r, r′)
1

|r − r′|
, (7)

the exchange energy of the entire system takes the following form73

Ex = −
∑
i<j

∫
drdr′α(r, r′)

ψ∗i (r)ψ∗j (r
′)ψj(r)ψi(r

′)

|r − r′|

+

∫
dr
[
1− α(r, r)

]
ρ(r)ePBE

x [ρ(r)] . (8)

We assume that the function α(r, r′) is a simple separable function of ε(r) and ε(r′), with

α(r, r) = ε(r) and we write:

α(r, r′) ' 1√
ε(r)ε(r′)

. (9)

We then arrive at the following ansatz for the exchange and correlation energy:

Exc = −
∑
i<j

∫
drdr′

1√
ε(r)ε(r′)

ψ∗i (r)ψ∗j (r
′)ψj(r)ψi(r

′)

|r − r′|

+

∫
dr
[
1− 1

ε(r)

]
ρ(r)ePBE

x [ρ(r)]

+

∫
drρ(r)ePBE

c [ρ(r)] . (10)

where we have chosen the PBE approximation to represent the local part of the exchange

and correlation energy.
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The exchange-correlation functional defined in Eq. (10) is similar, in spirit, to the lo-

cal functional proposed in Ref.73. However we emphasize two important conceptual and

practical differences: we have provided a theoretical justification of Eq. (10) based on the

decomposition of the screened Coulomb interaction into that of subsystems and an interfa-

cial region. Next we show that ε(r) may be obtained from first principles by carrying out

calculations in finite field, eliminating the need to tune any arbitrary parameter, or adopt

any fitting, system-dependent procedure, which are necessary instead in the formalism of

Ref.73.

IV. SELF-CONSISTENT DETERMINATION OF LOCAL DIELECTRIC FUNC-

TIONS USING A FINITE FIELD APPROACH

Here we describe a finite field approach to compute ε(r). In general, the macroscopic

dielectric tensor of any condensed system can be obtained by carrying out calculations in a

finite electric field and by minimizing the functional78–80:

F (E, [ρ]) = EKS[ρ] +

∫
V (r)ρ(r)dr = EKS[ρ]−

∫
E · rρ(r)dr , (11)

where
∫
E ·rρ(r)dr is called the electric enthalpy, and EKS is the Kohn-Sham energy of the

system. Alternatively one could minimize the functional:

U(D, [ρ]) = EKS[ρ] +
1

8π

∫
dr(D − 4πP )2 , (12)

where D = E + 4πP = ε ·E, and P is the polarization of the system; the components of

the dielectric tensor ε are:

εαβ = δαβ + 4π
∂Pα
∂Eβ

, (ε−1)αβ = δαβ − 4π
∂Pα
∂Dβ

, (13)

where α and β are Cartesian coordinates. In periodic systems, the induced polarization can

be computed from the shift of the centers of the Wannier functions (∆ric) of the unperturbed

system when an electric field is applied81,82. For a homogeneous system of Ns occupied states,

the average change in macroscopic polarization is given by

∆P =
−e
Ω

Ns∑
i=1

∆ric . (14)
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This allows us to define a spatial dependent polarization for heterogeneous systems (e.g.,

2D materials, surfaces and interfaces):

∆P (r) = −e
Nc∑
i=1

Ni∆R
i
cδ(r −Ri

c) , (15)

where Ns Wannier centers have been grouped in Nc clusters: Ni is the number of Wannier

centers in the i-th cluster, ∆Ri
c = 1

Ni

∑Ni

j=1 ∆rjc is the shift of the center of the i-th cluster

induced by the applied electric field. In practical calculations the δ-function is replaced by

a Gaussian function of finite width equal to the average of the spreads of the corresponding

Wannier orbitals belonging to the same cluster. We note that ∆P entering Eq. (14) can be

obtained from ∆P (r) using the following relation:

∆P =
1

Ω

∫
Ω

∆P (r)dr . (16)

The spatial dependence of ε is then defined by the spatial dependence of the polarization,

as given in Eq. (15).

We computed the local dielectric function ε(r) by minimizing the electric enthalpy

[Eq. (11)] with the Kohn-Sham energy defined using the exchange correlation functional of

Eq. (10). The minimization is carried out using a finite field approach, as implemented in

the Qbox code26,83. The function ε(r) is computed self-consistently. The whole procedure

is schematically shown in Fig. 5. At the first iteration we perform a DFT calculation at

the PBE level [α(r, r′) = 0]. At the second iteration we set ε(r) = εPBE(r) in Eq. (9) and

repeat the process until ε(r) and the total energy are converged.

V. VALIDATION OF SELF-CONSISTENT HYBRID FUNCTIONALS FOR 3D &

2D MATERIALS, SURFACE & INTERFACES

A. Three-dimensional and two-dimensional materials

Fig. 6 shows the band gap at each iteration for bulk Si and a 3C-(SiC) computed using

supercells with 512 atoms and the Γ point to sample the Brillouin zone (the corresponding

ε(z) [average of ε(r) in the xy plane] are shown in the supplementary information [SI]).

In both cases, calculations rapidly converge and the computed band gap agrees with the

experimental one within ∼ 0.1 eV (see Table. I). The results for dielectric constants and
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FIG. 5. Dielectric dependent hybrid (DDH) functional calculations. In evaluating ε(r), the deriva-

tives entering Eq. (13) are computed numerically by performing two independent calculations with

E = ±δ a.u. and taking the difference, where δ is chosen small enough so as to insure calculations

in the linear regime.

band gaps of several solids, including covalently, ionic and van der Waals bonded systems,

are shown in Tables. I and II, respectively. Our results for the dielectric constants are all

close to those of self-consistent hybrid calculations reported in Ref.53 [using the functional of

Eq. (10) with ε∞ replacing ε(r)]. The use of the microscopically averaged ε over the whole

cell appear to yield results in slightly better agreement with experiments. Part of the small

differences between column 3 and 4 in Table I is due to the use of pseudopotentials (this

work) versus all electron calculations (Ref.53).

Table II shows band gaps obtained with the functional of Eq. (10) and the procedure

shown in Fig. 5 (column 3) and those obtained with the global hybrid functional defined

in Ref.53 with two different values of ε∞: the bulk average of ε(r) computed in this work

(column 4), and the ε∞ from Ref.53 (column 5). Considering that the all-electron results of

Ref.53 (reported in column 6) are obtained with all electrons and a localized basis set, the

comparison between columns 5 and 6 shows differences arising from the use of pseudopo-

tentials and the plane-wave basis set. The comparison between column 4 and 5 shows the

sensitivity of the band gaps to slightly different values of α. The most interesting compari-

son is between column 3 and 4 which shows that the spatial variations of ε(r) hardly affect

the band gap of covalently bonded systems; however they do influence the computed gap

for ionic and especially van der Waals bonded solids.
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FIG. 6. Fundamental electronic gaps of 3D solids, 3C-SiC and Si (upper panel), and 2D materials,

MoS2 and h-BN (lower panel), computed using the functional of Eq. (10), as a function of the

number of iteration of the self-consistent procedure (see Fig. 5). The horizontal dash lines denote

experimental values. The dotted line (lower panel, right) is the self-consistent GW result for h-BN

from Ref.84.

Fig. 6 shows the band gap for monolayer MoS2 and h-BN. The dielectric hybrid hybrid

functional (DDH) of Eq. (10) predicts a fundamental gap of 3.1 eV for MoS2. The effect of

spin-orbit coupling, known to lead to a splitting of the degenerate valence bands of about

0.1 eV98, was neglected in our calculations. Therefore, we conclude that our quasiparticle

gap is in reasonable agreement with the experimental value of 2.78(2) eV99.

The self-consistent hybrid functional of Eq. (10) predicts a gap of 8.2 eV for h-BN. This

is consistent with that obtained with self-consistent GW calculations (∼ 8.4 eV) in Ref.84.

The Kohn-Sham gap obtained in PBE calculations is about 4 eV smaller, and G0W0 and

GW0 results using PBE wavefunctions also underestimate the quasiparticle gap by ∼ 2 and

∼ 1 eV, respectively84,100.

The dielectric function ε(z) of the 2D systems studied here turns out to be localized at

the monolayers (see Fig. S3 in Ref.75). This provides a physical measure of the “dielectric

thickness” of the 2D layers, which we define as wε =
∫
dz(z−z0)2χ(z)∫

dzχ(z)
where χ(z) := ε(z) − 1 .
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TABLE I. The electronic dielectric constants (ε∞) of three dimensional materials obtained from

PBE and spatial-resolved dielectric dependent hybrid functional (DDH) calculations [Eq. (10)],

compared with the results of Ref.53 and experiment. All calculations (PBE and DDH) were carried

out using ONCV pseudopotentials85 and by sampling the Brillouin zone with the Γ point. The

number of atoms or units used in the supercell calculations are indicated as subscripts for each

solids.

PBE DDH Ref.53 Exp.

Si 12.46 11.80 11.76 11.986

SiC 6.86 6.49 6.50 6.5286

AlP 8.08 7.57 7.23 7.5486

Diamond 5.77 5.58 5.61 5.7086

MgO 3.26 2.99 2.81 2.9687

LiCl 2.93 2.77 2.77 2.7088

Ar 1.73 1.66 1.66 1.6689

Ne 1.29 1.25 1.21 1.2390

We obtain a thickness of 3.4 and 1.6 Bohr for MoS2 and h-BN respectively. The spreads of

the charge density (see Fig. S3 in Ref.75) are 2.3 and 1.3 Bohr respectively, slightly smaller

than those of the respective dielectric functions, but comparable.

B. Surfaces and interfaces

In the case of surfaces and interfaces, we carried out calculations with the scheme outlined

in Fig. 5, applying the E field parallel to the surface/interface, insuring that the tangential

part of the E field is continuous across the interface. (If a constant D field were applied,

when minimizing the functional Eq. (12), the D field would be instead perpendicular to the

interface).

Fig. 7 shows the dielectric function and band offsets for an unreconstructed, hydrogen

terminated silicon (111) surface (H-Si). We find that the dielectric constant in the silicon

bulk regions is ∼ 9, which is smaller than that reported in Table I, due to finite size effects.

Indeed, the silicon slab has only 72 Si atoms, a size insufficient to converge the dielectric
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TABLE II. The fundamental energy gaps (eV) of three dimensional materials obtained from PBE

and spatial-resolved dielectric dependent hybrid functional (DDH) calculations [Eq. (10)], compared

with the results of Ref.53 and experiment. All calculations (PBE and DDH) were carried out using

ONCV pseudopotentials85 and by sampling the Brillouin zone with the Γ point. The number of

atoms or units used in the supercell calculations are indicated as subscripts for each solids. In

columns 4 and 5 we report calculations with a constant mixing fraction (See Eq. (8)), α = 1/ε̄, and

α = 1/ε∞ respectively. The zero-phonon renormalization (ZPR) is reported when available from

experiment60.

PBE DDH α = 1/ε̄ a α = 1/ε∞
b Ref.53 ZPR Exp.

Si 0.603 1.00 1.01 1.01 0.99 0.06 1.1791

SiC 1.38 2.35 2.35 2.35 2.29 0.11 2.3992

AlP 1.56 2.27 2.28 2.32 2.37 0.02 2.5193

Diamond 4.17 5.48 5.54 5.53 5.42 0.37 5.4894

MgO 4.78 7.70 8.08 8.30 8.33 0.53 7.8395

LiCl 6.47 9.38 9.56 9.56 9.62 0.17 9.4096

Ar 8.70 13.93 14.34 14.34 14.67 14.297

Ne 11.62 20.60 22.38 22.72 23.67 21.797

a Hybrid functional calculation with α = 1/ε̄ where ε̄ is the bulk average of ε(r): values reported in

Table I.
b Hybrid functional calculation with α = 1/ε∞ where ε∞ is from Ref.53: values reported in Table I.

constant to the bulk value.

The band gap of the silicon portion of the slab and the band offsets between the sur-

face and vacuum obtained from DDH calculations are in good agreement with those of

G0W0@PBE calculations; we note that there is a slight difference in the spatial varia-

tion of the conduction band at the interface, which is sharper in the case of the hybrid

functional calculations, possibly indicating differences between the PBE wavefunctions and

charge density (not updated in the GW calculations) and the respective quantities computed

self-consistently at the hybrid level.

Calculations for representative interfaces (H-Si/H2O, CH3-Si/H2O, COOH-Si/H2O, and

Si/Si3N4) are shown in Fig. 8. We again observe that the calculation of ε(r) converges
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FIG. 7. The local dielectric function ε(z) of the unreconstructed, H-terminated Si(111) surface (Si-

H), (average of ε(r) over the (x,y) plane) is plotted as a function of z, the direction perpendicular

to the surface, on the upper panel. We show values obtained as a function of the number of

iterations, when using the procedure outlined in Fig.5. The band offsets between the H-Si surface

and vacuum, computed at different levels of theory, are shown on the right panel. We show results

computed with the functional of Eq. (8), PBE and the G0W0@PBE level of theory, obtained with

the WEST code.

rapidly, after 3-4 iterations (see Fig. 8, upper panels). We can clearly see that there are

two distinct average values of ε in the two bulk regions where ε oscillates around a constant

value. The transition regions in the four interfaces, defined as the region where ε(r) changes

sharply, have a thickness of approximately 5 Bohr for aqueous interfaces and 10 Bohr for

the silicon-silicon nitride interface.

As already found for the hydrogenated Si-surface, the DDH functional of Eq. (10) predicts

the band gap in the silicon bulk regions (Fig. 8) in agreement with G0W0@PBE. In the water

region of the aqueous interfaces however, the VBM and CBM are substantially different

from those predicted by G0W0@PBE calculations; this is understandable since the PBE

wavefunctions are not a good approximation of the band edges of water, as shown in Ref.67.

The DDH calculations are instead in good agreement with the values reported in Ref.67 and

obtained at the G0W0@sc-hybrid level, where the mixing fraction was taken equal to the

electronic dielectric constant of water. The band gap (10.5 eV) is also in good agreement

with that found in Ref.67. In the case of Si/Si3N4 (Table III) we compare our DDH results

with experiment, and we find good agreement (the band gap of silicon is again larger than
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FIG. 8. Dielectric function [ε(z), average of ε(r) in the (x,y) plane] and band offsets of four

interfaces computed using the DDH functional of Eq. (8). The dielectric function ε(z) is computed

using the method outlined in Fig. 5; results are shown as a function of the number of iterations. The

direction z is perpendicular to the interface. The electric field is applied along the x direction. The

dashed lines for the band offsets of aqueous interfaces are the results of G0W0@DDH calculations of

water from Ref.67, with the conduction band of H2O aligned with the minimum of the conduction

band of the corresponding interface.

in experiment, due to finite size effects, i.e. to the small slab chosen in our calculations).
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TABLE III. Band offsets (eV) computed at different levels of theory (using the PBE functional

and the functional of Eq. (10), with the procedure of Fig. 5) for the silicon-silicon nitride interface,

compared with experiment (from101 and the references therein)

Si/Si3N4 PBE DDH Exp.

Conduction band offset 1.2 1.9 1.83 − 2.83

Valence band offset 0.7 1.3 1.5 − 1.78

VI. CONCLUSIONS

We introduced a general dielectric-dependent functional, which is applicable to any semi-

conductor and insulator and does not contain any adjustable parameter. The functional is a

generalization of the self-consistent hybrid functional for homogeneous solids introduced in

Ref.53, and it is defined using a local, spatially dependent dielectric function. We justified

the definition of the functional and the spatial variation of the dielectric function using the

disentanglement of the dielectric spectra of heterogeneous systems in terms of the spectra

of subsystems; such a disentanglement was achieved using linear combinations of dielec-

tric eigenvectors localized in real space. The local dielectric function was then computed

self-consistently by carrying our density functional calculations in finite electric fields.

We showed that the dielectric hybrid functional introduced here predicts the band gaps

and dielectric constants of three- and two-dimensional solids, as well as band offsets of

surfaces and interfaces, with an accuracy comparable to that of GW calculations, thus

paving the way to efficient and accurate calculations of the electronic properties of complex

heterogeneous systems.

Finally we note that the formulation introduced in our work provides a definition of the

dielectric thickness of interfaces and 2D systems, and a physical interpretation of the spatial

variations of single particle energy levels upon the formation of interfaces.
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