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Abstract  
When a shock wave enters a heterogeneous material, local differences in density and 

compressibility drive pressure and velocity gradients which can be nearly as sharp as the incident 

shock.  Subsequent momentum equilibration is comparatively slow, relying on shock 

reverberation, particle collisions and shear flow.  The latter phenomenon depends on constitutive 

behavior that is often poorly known and so the process can be problematic to simulate.  This is 

compounded by the fact that conventional diagnostics, such as velocimetry, blend the response 

of both phases and provide only a homogenized comparison for modeling efforts.  For these 

reasons, we have collected spatially resolved and phase-specific measurements on a model 

particulate composite using in situ synchrotron-based radiography.  This revealed the post-shock 

internal motion, including nanosecond resolution measurement of the metal particles’ trajectories 

and snapshots of the flow field within the polymer.  Comparing this data to analytical and 

numerical predictions allowed the polymer’s shear response to be inferred.  The resulting 

constitutive model was then used in conjunction with direct numerical simulations to 

demonstrate the physical origins of the observed bulk composite response. 
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Introduction 
Strong impulsive loading from an explosive detonation, intense radiation, or high-speed 

impact occurs in fields ranging from ballistics to oil extraction and astrophysics. These events 

launch high amplitude compression waves that travel faster than the ambient speed of sound in 

the host material, i.e. shock waves.  The region of material overrun by the shock is transformed 

into a high-pressure state, with accompanying physical and chemical changes, such as the 

conversion of graphite into diamond [1].  These transformations in turn effect the shape of the 

compression wave front, imprinting it with information about the material.  For example, the 

volume collapse associated with certain phase transformations manifests as a splitting of the 

shock into two waves traveling at different speeds [2].  Characteristic wave signatures have also 

been recognized for many other phenomena, like detonation [3] and plasticity [4], making shock 

wave profiles a valuable diagnostic for studying material behavior.  However, not all phenomena 

are equally amenable to this sort of detection, such as a chemical reaction that results in little 

volume change and therefore leaves only minor evidence in the material’s velocity history [5].  

Alternately, multiple phenomena can interact to leave strong signatures on the wave profile, but 

in a way that obscures their individual origins. 

Heterogeneous materials present a case in which the shock wave profiles are sensitive to 

multiple phenomena that can be difficult to deconvolve. Consider the case of particulate 

composites in which hard/dense inclusions are randomly dispersed inside a soft/light matrix, like 

saturated soil and polymer bonded explosives.  The shock waves moving through these mixtures 

show features that are not seen for the individual constituents. For example, Figure 1 shows a 

recently published example for the shock wave profile of a polymer filled with 5 vol% W 

powder, along with that of the unfilled polymer [6]. Something about the composite nature of the 
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polymer-W blend causes a pronounced rounding of the velocity history which is not seen in the 

pure polymer, nor would it be in the pure W.  Rauls and Ravichandran [7] and  Setchell et al.  [8] 

have shown that such temporal spreading of the shock wave is linked to the size of the particles 

in the composite, with smaller particles producing a shorter rise time.  Anderson et al. [9] have 

shown that the viscosity of the matrix material also influences the time needed for these 

materials to reach equilibrium.  The commonality is that the interaction of the phases is central to 

shaping the wave.  In addition, the phase fraction [6-8] and relative mechanical properties play 

an important role. What remains unsolved is the quantitative link between these distinct 

phenomena and the observed shock response. 

 We believe that this deficit stems from the near exclusive use of 1D velocimetry, which 

has two crucial shortcomings. First, it yields only a spatially averaged measure of the distinct 

phases. This obscures the different paths that they take toward equilibrium and their interactions 

with each other. As was just discussed, these interactions are thought to be a key part of the 

physics.  Second, the mechanisms in question are expected to produce very similar effects on the 

observed wave profiles, and so are a difficult to definitively identify.  As Barker [10] showed in 

1971, a wave reverberation phenomenon can be mimicked by a viscoelastic model given the 

right set of ‘material’ properties. This problem would become more tractable were it possible to 

reverse the typical inference direction by starting with in-situ observations. In the ideal case, the 

state of both phases would be measured at high spatiotemporal resolution, revealing the 

underlying physical mechanisms and leading to accurate wave profile predictions. 

Toward this goal, we collected high speed radiographic images of a model particulate 

composite undergoing shock compression.  The composite consisted of W spheres arranged 

inside a polymer matrix in such a way as to allow their motion to be tracked at nanosecond 
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resolution.  Along with observation of the polymer flow field, this data makes it possible to 

answer basic questions, like whether the polymer acts more like a plastic solid or a viscous fluid.  

This information feeds into the material models used in finite element simulations of the bulk 

composite. The internal states from these calculations illustrate how of the momentum transfer 

process controls the continuum wave profile. 

In the following, we begin by describing how a model material was tailored to the 

available radiographic capabilities in order to access nanosecond timescales.  The momentum 

transfer between constituents will then be analyzed using a velocity history built from the X-ray 

images.  This measurement is then used to evaluate and parameterize candidate models for the 

polymer’s shear response.  Estimating the polymer’s shear resistance will be a primary focus 

because this information is not otherwise available, and it is required for physically grounded 

predictions of the bulk composite response.  Such finite element predictions are then discussed, 

with the resulting wave profiles compared against recently published experimental observations. 

The internal states from these calculations will be used to illustrate the balance of the underlying 

forces. The mechanisms observed will be summarized by a scaling analysis that delineates a 

regime dominated by the matrix shear properties from one governed by impedance mismatch 

between the constituents.  This hopefully begins to reconcile competing schools of thought for 

how to understand the shock response of particulate composites. 

Materials and Methods 
The goal of the first experiment was to measure the acceleration of 20 µm W spheres 

embedded within a block of polymer subjected to high speed plate impact.  This was possible 

because of the high-speed radiography capability at the Dynamic Compression Sector (35-ID) at 

the Advanced Photon Source (APS) at Argonne National Laboratory. Sector 35-ID provides state 
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of the art spatiotemporal resolution not available with more conventional flash X-rays, making it 

possible to image micron scale objects on a 34 ps timescale [11]. The experimental setup is 

illustrated in Figure 2 (a), which shows the arrangement of the sample, projectile and X-ray 

imaging direction. From previous measurements of this composite’s continuum shock response, 

it was hypothesized that the 20 µm particles would reach velocity equilibrium with the polymer 

on the order of 25 ns [6].  This was much less than the synchrotron bunch and camera inter-

frame timing of 153.4 ns and so precluded tracking a single particle with the necessary temporal 

resolution.  This limitation was circumvented by tracking the position of >100 particles, each of 

whose displacement is a function of the time elapsed since the shock overtook its original 

position.  Given identical particles placed in a staggered array, the time resolution of the 

reconstructed trajectory was only limited by the spacing of the particles and the shock speed.  

Their positions were chosen to balance the desire for close spacing along the shock direction 

against the need for large particle-particle separation, non-overlapping X-ray projections, and 

edge effect avoidance.  The configuration chosen is shown in Figure 2 (b) and resulted in a 

minimum spacing of 250 µm between nearest neighbors but arranged such that the shock wave 

would encounter a particle every 3.8 µm.  For a wave speed of ~4 km/s, this implies the particle 

position would be probed every ~1 ns. The particle radii had an estimated standard deviation of 

±1 µm. 

The goal of the second experiment was to measure the flow field in the same polymer-W 

composite by introducing tracers like those used in experimental fluid mechanics.  In the ideal 

case, these move with the surrounding fluid but do not affect it.  To serve this purpose, very thin 

(~100 nm) Au films were placed inside the polymer, aligned parallel to the shock plane.  Their 

projected thickness along the X-ray direction was intended to produce high contrast, while their 
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extreme thinness along the shock direction would lead to negligible mechanical disturbance.  To 

remain visible in the radiographs, these films needed to maintain a single axis of curvature 

parallel to the X-ray direction.  To create such a flow field, three W cylinders were embedded in 

the polymer, with cylinder axis parallel to the X-ray direction.  These had diameters of 12.7, 25.4 

and 50.8 µm, each having an estimated uncertainty of ±0.5 µm in diameter.  This geometry is 

shown in Figure 2 (c). In both experimental geometries, the polymer block was supported on the 

impact side by a 1 mm thick Al buffer plate. Further details of the target fabrication, shock driver 

and X-ray imaging setup are in the supplemental material (Appendix A). 

Results and Discussion 
Observation of particle trajectories and surrounding flow field 
 

Everything that follows stems from two series of radiographs that show the motion of a 

shocked polymer and embedded metal features. The first set of images is concerned with the 

motion of the 20 µm W spheres, shown as dark spots in Figure 3 (a). The shock front is visible in 

each frame as a sharp change in x-ray transmission through the polymer, with the less dense 

unshocked polymer to the right. It moved from left to right at a speed of 3.9 km/s.  The black 

region at the left of each image is the Al buffer, which moves from left to right at 1.4 km/s. 

Stress continuity requires that this must also be the post-shock material velocity of the polymer 

in regions not disturbed by the W.  The W particles appear as an array of dark spots within the 

polymer.  These also swept left to right following the shock, though their motion is less obvious 

to the eye.  Note that this is a projected X-ray image and so the particles in the 3D array are in 

fact much farther from their apparent neighbors than it appears; see Figure 2 (b) for orthogonal 

schematic views.  The labeled frame times are relative to when the first image was acquired.   
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The second series of images focus on the motion of the polymer around included W 

cylinders, as shown in Figure 3 (b).  As before, the shock front can be seen in each frame as the 

sharp change within the polymer, while the buffer is the dark region on the far left, and the 

cylinders are viewed in projection as dark circles.  By design, the Al buffer moves left to right in 

the experiment at 1.4 km/s, and the polymer shock speed is also 3.9 km/s. In addition to these 

now familiar features, Figure 3 (b) also shows 7 dark vertical bands. These are the Au films 

designed to track the motion of the polymer.  To better see the evolution of these tracers, the 

images in Figure 3 (b) have been translated such that the buffer occupies the same location in 

each.  This provides a view as though the camera was flying along with the buffer and thus 

removes the rigid body translation for the compressed material.  At the moment before the shock 

arrives at the W cylinders in frame 1, the Au films are all planar and the cylinders are tangent to 

the 4th one, counting from left to right.  After the shock has passed in frames 2-4, the 4th Au film 

is found to the right of the cylinders.  This is because the W cylinders are slow to accelerate and 

so the faster-moving polymer flows past them, carrying along the Au films.  That the Au films 

do not disturb the hydrodynamics is due to their extreme thinness, being only ~100 nm thick.  

That this is truly the case can be seen by the fact that the Au moves at the same rate as the 

polymer/buffer far from the W.  The flow around the cylinders can be seen via the curvature in 

the Au.  There is a trailing disturbance to the right of the largest two cylinders, and a less 

pronounced leading one to their left, akin to stern and bow wakes.  The lateral extent of this 

disturbance is relatively small, on the order of only 1 diameter.  This validates the previously ad 

hoc assumption of independence between the individual wires and spheres.  The tracers also 

show no sign of vortex shedding or turbulence.  Interestingly, the tracer material that was 

initially tangent to the cylinders later shows a disconnect from them.  This suggests that slip is 
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occurring at the polymer-W interface because a no-slip boundary would cause a layer of Au to 

envelope the W and form a continuous trail.  This presumes low Reynold’s number flow, the 

validity of which will be discussed shortly. 

The relative motion between W particles is difficult to see in Figure 3 (a), and so 

quantitative position tracking was applied.  Figure 4 (a) shows the displacement of the buffer and 

each particle from their pre-shock positions as a function of time since shock arrival at each.  The 

buffer serves as a proxy for the undisturbed polymer because they move together.  This shows 

that the particle motion initially lags the buffer/far field polymer motion (1.4 km/s).  As more 

time elapsed, the particles continued to accelerate and eventually moved with a speed matching 

that of the buffer.  To break down this acceleration process further, it is informative to transform 

reference frames to look at the particle displacements relative to the Al buffer and polymer 

instead of relative to the laboratory frame.  This is shown in Figure 4 (b), where the horizontal 

axis still represents the time elapsed since each sphere encountered the shock.  The initial 

velocity difference between the W and the polymer is very large, as seen by the initially steep 

slope in Figure 4 (b).  As time passed, the particles accelerated enough that they came to rest 

relative to the moving polymer, which is shown by the plateau in Figure 4 (b) starting at ~100 ns. 

The displacements of the cylinders in Figure 3 (b) can be quantified in the same way, 

although the time resolution is limited to the inter-frame time of 153.4 ns.  This data is plotted in 

Figure 5, with the reference frame again taken to move with the buffer.  This is an x-t diagram 

where each point has been extracted from the images in Figure 3 (b).  The positions of the Au 

films, as measured far from the cylinders, are also plotted.  The position of the buffer is 

obviously close to stationary because the reference frame is taken from its average velocity.  The 

Au films will be seen to track with the Al buffer, supporting the idea that they simply follow the 
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polymer without significantly disturbing it.  As would be expected for an inertia dominated 

process, the thinner wires undergo less relative motion than the thicker ones.  This can be seen 

from their differences in motion compared to the Au films. The largest cylinder accelerates so 

slowly that it is overtaken by three Au films.  In other words, the three Au films which were 

originally to the left of the large cylinder are carried to its right.  In comparison, the smallest 

cylinder was only passed by one Au film, indicating less motion relative to the polymer.  

The observations above have been mostly qualitative in nature, using the trajectories to 

illustrate trends that are hard to glean from the raw images. However, the real value of Figure 4 

is that it provides a means to estimate the shear resistance of the polymer.  Though this idea dates 

back at least to Höppler’s invention of the falling-ball viscometer, Al’tshuler, Kanel and Chekin 

[12] were the first to put it into practice for shock compressed condensed matter by 

electromagnetically recording the velocity history of a wire entrained in water.  The wire’s 

trajectory was compared to predictions from Newtonian fluid mechanics and used to estimate the 

viscosity [12].  Kim [13] later incorporated more of the experiment’s dynamic nature into the 

analysis, followed by further measurements on glycerin by Al’tshuler, Doronin and Kim [14].  

Abramson [15] has recently highlighted the importance of accounting for nonmonotonicity in the 

drag curve. The next section will start along the track established by these previous works before 

evaluating a non-Newtonian model and re-introducing the polymer flow field as a 

complimentary diagnostic.  

Polymer shear resistance 
The observed trajectories of the entrained W spheres can be compared against any model 

that predicts the polymer-particle force as a function of time.  Given such a model, all that needs 

to be done is to integrate Newton’s second law once with respect to time to get velocity and then 
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again to get position.  The more difficult task is predicting the polymer-W force.  At short 

timescales, this force is expected to be dominated by the pressure wave of the incident shock.  

The actual interaction time for the incident shock and particles is given by  

  ߬௦ ൌ ௗ௎ೞ        Equation 1 

where ݀ is the particle diameter, and ௦ܷ is the shock speed [16].  Evaluating Equation 1 for the 

spherical particle diameter of 20 µm and the shock speed of 3.9 km/s gives a time of only ~5 ns.  

During this brief interval, Figures 4 (a) shows that the spheres reach only a small fraction of their 

final velocity.  This indicates that the incident shock is not the main driver of momentum transfer 

to the particles.  This occurs because of the extreme impedance mismatch between the phases. 

Subsequent acceleration must be due to a more sustained force, for example fluid drag or shear 

strength.  Unfortunately, not even the qualitative nature of the polymer’s shear response is 

known.  One approach is to pick some trial model, determine the range of possible particle 

trajectories that it predicts for a given parameter set, then check if any of them match the 

experimental observations.   

Newtonian fluid model 

The effect of elastic shear in the polymer can be gauged by how the W displaced when all 

other forces were removed, akin to the interpretation of the unloading portion in other 

mechanical tests. Such conditions were present when the W came to rest relative to the moving 

polymer, a period which is shown in Figure 4 starting at ~100 ns. At that time, whatever drag 

force was previously exerted by the differential flow would vanish and leave only elastic forces.  

Such elastic forces would tend to reverse the particle displacement, causing a spring-back.  In 

Figure 4 (a) this should appear as an upward curvature in the blue line. Likewise, in figure 4 (b), 
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elastic rebound would cause the plateau region to take on a negative curvature, meaning that the 

particles would tend back toward zero displacement in the moving reference frame.  Neither 

trend was observed, and instead the particles remained at rest relative to the surrounding 

polymer, at least to within the experimental resolution. This indicates that elasticity did not 

produce measurable deformation in the relevant timeframe. While such recovery could 

theoretically have occurred later, these slow timescales are neither measurable in these 

experiments, nor relevant to the phenomena being studied. Therefore, candidate models must 

only account for the polymer flow stress and can safely ignore elastic shear. 

A Newtonian fluid model was selected as an initial guess for the polymer response 

because it produces an exponentially decaying trajectory with a single unknown material 

parameter, the dynamic viscosity (µ).  Given some range of viscosities, it is possible to compute 

the drag force on the particle as a function of time. The Clift-Gauvin drag model was selected 

because it covers the appropriate range of Reynolds number, which is discussed along with the 

accompanying assumptions in the supplemental material (Appendix B).  The trajectory predicted 

for a viscosity of 8 Pa·s, the best fitting value, is plotted in Figure 6 (a).  It is accompanied by 

trajectories for viscosities that are scaled by 0.5, 0.67, 0.8, 1.25, 1.5 and 2.  These additional 

trajectories are included to give an idea of the sensitivity to viscosity.  Two additional trajectories 

are also plotted in Figure 6 (a) for a viscosity of 8 Pa·s, but assuming particle radii ±1 µm from 

the mean.  This represents the approximate standard deviation within the population of  particles 

in the experiment.  Individual error bars on each experimental point have been left out for clarity.   

The best fit trajectories for each of the three cylinders are shown in Figure 6 (b-d).  The best fit 

viscosity estimates were 35, 41 and 20 Pa·s, for the 50.8, 25.4 and 12.7 µm diameter cylinders, 

respectively.  Like in Figure 6 (a), additional trajectories have been plotted corresponding to 
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viscosities 0.5, 0.67, 0.8, 1.25, 1.5 and 2 times these best estimates.  There are also trajectories 

shown for cylinder radii of ±0.25 µm from the mean to show the effect of the uncertain cylinder 

size.  The vertical error bars shown on each experimental point represent 2.5 µm, or ~1 pixel.  

Horizontal error bars showing the relative timing uncertainty would be near the marker size and 

so are not included. 

The range of estimated viscosities for the four geometries is larger than the uncertainties 

presented in Figure 6 account for.  The model also consistently underestimates the displacement 

of the particles at early times, i.e. it overestimates the drag force.  These two discrepancies may 

indicate a failure of the Newtonian model or they could be the product of imperfect analytical 

assumptions.  For example, the initial acceleration caused by the shock-particle interaction has 

been neglected. Also, the assumptions of steady flow and a no-slip boundary are not well 

approximated by the experimental conditions.  While the former is obvious from the loading 

conditions, evidence of the latter can be seen in Figure 3 (b) where the Au tracers disconnect 

from the entrained cylinders.  The model itself is also highly idealized, containing none of the 

temperature, pressure or strain rate terms which might be necessary.  Rather than pursue more 

cumbersome analytical models, the next section will apply direct numerical simulation toward 

understanding the particle trajectory, and then also the surrounding polymer flow field. 

Pseudoplastic simulations 

Numerical simulations provide added flexibility for modeling the polymer’s shear 

response, making it relatively easy to explore all manner of pressure, temperature, strain rate and 

damage effects.  However, incorporating each of these effects into a realistic constitutive model 

is a herculean challenge that is still ongoing for even the best studied materials.  Instead, this 
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section aims to identify the most important phenomenology needed to match our observations of 

the polymer behavior.  Even within that limited scope, we are left with basic questions, like 

whether the polymer really behaves like a fluid?  While the Newtonian model produced 

promising agreement with the trajectory data, there is no guarantee that this is a unique result.  In 

fact, substantial strength has previously been reported in shocked polymers [17]. 

A pseudoplastic model provides an intuitive way to explore this question because at one 

extreme it reduces to Newtonian viscosity, while at the other it becomes perfectly plastic.  For 

intermediate cases, it can be thought of as a strain rate dependent strength or viscosity. 

Appealingly, a pseudoplastic model only has two critical material parameters, representing the 

shear resistance and the strain rate dependence.  This provides a means to capture a broad range 

of phenomenology in simple, easily interpretable, terms.  The specific form chosen was, 

ߪ ൌ ݇ ቀ ఌሶఌሶ ೝቁ௡
     Equation 2 (a)    

 ݇ ൌ  Equation 2 (b)      ߤሶ௥ߝ2

where ߪ is the shear stress, ݇ is the shear resistance parameter, ߤ is the dynamic viscosity, ߝሶ the 

strain rate, ݊ is the so-called flow exponent and  ߝሶ௥ is a reference strain rate. Known as the 

Ostwald–de Waele equation, this form is commonly used to idealize shear thinning (non-

Newtonian) fluids.  It has been slightly modified in Equation 2 (a) by the addition of ߝሶ௥. When 

the flow exponent is equal to 1, the model reduces to that of a Newtonian fluid with a viscosity 

of ߤ.  At ݊ = 0, it reduces to a constant shear strength of magnitude ݇.  A reasonable initial guess 

for the values of  ߤ can be made from the analytical results.  The exact value of ߝሶ௥ is relatively 

unimportant, though values close to the maximum encountered will better include the full 

nonlinear effects of ݊.  After initial testing, we chose the value of ߝሶ௥  to be 50 ିݏߤଵ. 
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Iterating through a range of (݊, ݇) parameters, 176 particle trajectories were simulated for 

each geometry.  The range of ݊ covered 0 to 1 in steps of 0.1, and the ݇ values were 0.10, 0.25, 

0.30, 0.40, 0.50, 0.60, 0.75, 1.00, 1.25, 1.50, 2.00, 3.00, 4.00, 5.00, 6.00 and 8.00 GPa. The mean 

absolute deviation of these predictions from the observations was computed and plotted in Figure 

7 as contour maps.  This deviation (݀) was calculated as, 

݀ ൌ ∑ฬ೤ವಿೄష೤೐ೣ೛೤೐ೣ೛ ฬே ,      Equation 3 

where ݕ஽ேௌ and ݕ௘௫௣ are the respective displacement from the simulation and experiments, and 

N is the number of comparisons. The vertical axis represents ݊, which is the unitless strain rate 

sensitivity parameter from Equation 2 (a).  The Horizontal axis represent the shear resistance 

parameter ݇, having units of stress (GPa).  It is equally valid to consider this shear resistance in 

terms of µ and in units of viscosity (Pa·s).  It is perhaps most intuitive to think in terms of stress 

when ݊ ~ 0 and viscosity when ݊ ~ 1, and so both labels have been applied to Figure 7.  The 

conversion is simply that provided in Equation 2 (b).  The blank white area in Figure 7 (a) 

represents values of (݊, ݇) space where the simulations failed to run to completion.  Fortunately, 

this region of phase space is likely not relevant to the study at hand. 

The darkest blue regions in Figure 7 represent the cases where the model predicted 

trajectories that were closest to the observed ones (<5%), and each rising contour marks an 

additional 5% error.  Consider first only the subset of these blue regions where ݊ =1.  This is the 

case in which the pseudoplastic model reduces to Newtonian viscosity.  The values of µ which 

produced the lowest mean error for each map were 15, 40, 50, 25 Pa·s, which correspond to the 

spheres and the 50.8, 25.4, 12.7 µm diameter wires respectively.  The trend in this list is the 

same as in the analytical drag model, where the 25.4 µm cylinder led to the highest viscosity 
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estimate, followed in turn by the 50.8 and 12.7 µm cylinders and lastly the 20 µm spheres.  

When these values were extracted without first time-averaging the errors, the result was viscosity 

estimates that were smaller when estimated from early times and larger when estimated from late 

times.  This is the same trend observed in the analytical model, where the Newtonian viscosity 

overestimated the force at short times.  The repetition of these finding for the simulations 

indicates that they are more likely due to the Newtonian model itself rather than the analytical 

assumptions.  This is because the simulations naturally relax the steady flow assumption, and the 

boundary condition has been made more realistic.  The direct numerical simulations also account 

for the shock-particle interaction that was neglected in the preceding section. 

 Looking at the whole range of (݊, ݇) space, it will be observed that there is a crescent 

shaped band having low error in each map of Figure 7.  Inside these regions, the error gradient is 

high in one direction while very low in the orthogonal one.  That low error gradient makes it 

difficult to confidently determine a local minimum.  In the case of the 50.8 µm cylinder, for any 

value of ݊ from 0 to 1, there exists a ݇ value such that the overall error remains less than 10%. 

The implication is that a perfectly plastic solid, a Newtonian fluid, or a pseudoplastic model 

could all predict the trajectory with similar accuracy.  In other words, the good agreement of the 

analytical Newtonian fluid model with the data is not particularly convincing evidence that the 

polymer is fluid-like.   

To resolve this question with more certainty, we will turn to the flow field within the 

polymer.  In each simulation, bands of polymer were tracked whose initial positions 

corresponded to the Au films imaged in Figure 3 (b).  This provides a direct comparison between 

the experiment and the simulation.  Rather than make another exhaustive comparison though (݊, ݇) space, it is more convenient to look at only values that accurately predict the trajectory.  Six 
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such values were chosen and are marked by the black circles in Figure 7 (b).  The 50.8 µm wire 

was selected for this comparison because the flow field is the largest and so easiest to resolve in 

the images.  For each set of (݊, ݇), the predicted flow field was extracted from the simulations at 

times within 12.5 ns of the experimental observations. These are overlaid in Figure 8, with the 

calculated tracer lines in yellow, and the radiographed Au films shown in grayscale.  The 

simulated and experimental images were aligned using the tracer lines far from the cylinders.  

This reduces any small timing offsets to show the flow field differences, emphasizing the effect 

of the strength model over that of the equation of state.  The images are shown in the same 

moving reference frame as in Figure 3 (b).  Since the selected (݊, ݇) values come from the low 

error region of Figure 7 (b), the simulated and experimental particle positions are close, though 

the average nature of the error in Figure 7 (b) means that the agreement is better at certain 

observation times than others.  For values of ݊ close to 1, the simulated flow field shows a 

disturbance that extends too far radially from the W cylinders. At these more viscous-like ݊ 

values, the simulated tracer lines also stay too closely attached to the cylinders, rather than 

pulling free as seen in the experiment.  This occurs despite the full-slip boundary conditions, 

which would be expected to promote separation.  Both these discrepancies were resolved at 

lower values of ݊, where the constitutive behavior moves away from the viscous and toward 

constant shear strength.  Judging from Figure 8, the best values of (݊, ݇) would be close to ݊ = 

0.2, ݇ = 0.75, or perhaps ݊ = 0.0 and ݇ = 0.5.  Though not shown here, the simulated flow fields 

for the other two wire diameters led to similar conclusions. The effects of alternate simulation 

setups are briefly explored in the supplemental information (Appendix C), including a 

recalibration of these parameters in the practical case of nonconformal meshing and mixed zone 

advection.  
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Endless variations of this analysis could be performed, and incrementally better fits 

obtained at the cost of more free parameters in the model.  With enough effort, it would be 

possible to perform Bayesian optimization to ensure the best possible choice of parameters for a 

given model, along with bounds on their uncertainty (see for example [18]). Instead of 

embarking on such a study, the next section will take the present simple model and see how it 

might be used to better understand the bulk polymer-W composite. 

Application to continuum wave profiles using DNS and scaling analysis 
Continuum simulations 

The preceding discussion aimed to show how the shock response of isolated particles 

depends on the matrix’s shear response but did not connect back to the motivating topic of bulk 

composites.  To do this, fully 3D calculations were performed for comparison against recently 

published data on composites built from the same material system [6].  Briefly, these 

experiments consisted of gun driven plate impacts with continuum wave profiles recorded at a 

composite-LiF interface via VISAR.  The experimental velocimetry traces are reproduced in 

Figure 9 for composites with 5 vol% and 40 vol% W filler by volume.  To match these 

experiments, simulations were setup with 16 µm diameter particles randomly dispersed in a 

polymer matrix to volume fractions of 5-40 vol%, see the supplemental material (Appendix C) 

for more details.    The simulated wave profiles, plotted in Figure 9, report the mean velocity in 

the polymer and W zones initially adjacent to the LiF window.  The red lines in Figure 9 (a, b) 

show the result of a zero-strength/inviscid polymer model, i.e. the inviscid hydrodynamic case.  

The blue lines reflect pseudoplastic parameters of n=0.2, ݇ =0.4 GPa.  These were selected by 

using the n value determined from Figures 7 and 8 and then recalibrating the ݇ value for the 

simulation’s no-slip setup, as described in Appendix C.  
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The inviscid model underpredicts the acceleration for the 5 vol% W composite, while the 

pseudoplastic model is in better agreement with the data.  The pseudoplastic model’s faster 

approach to the steady state is because the matrix shear resistance helps to accelerate the W 

particles, apparently to an extent that is significant relative to the inviscid hydrodynamic effects. 

For the 40 vol% W composite, the pseudoplastic and inviscid models produced similar results 

and were both in good agreement with the experiment, with the pseudoplastic model performing 

slightly better.  In this case, the contribution of the polymer’s shear resistance was apparently 

small compared to wave reverberation effects.  This agrees with Vogler et al.’s [19] conclusion 

that even an inviscid simulation can capture much of the ‘apparent viscosity’ in the response of a 

heavily particle loaded polymer.  The same trends can also be seen in the simulated velocity 

fields shown in Figure 9 (c, d).  In the 5 vol% W composite, the inviscid polymer model leads to 

a velocity field that is less uniform than for the pseudoplastic one.  For the 40 vol% W case, the 

two models again lead to more similar predictions.  Overall, these results indicate that the shear 

resistance of the matrix plays an important role at low filler volumes that diminishes as the filler 

fraction increases. A possible physical basis for this shift will be discussed in the next section by 

way of a scaling analysis. 

Scaling Analysis 

It remains to explain the circumstances in which the matrix shear resistance plays an 

important role, and when the transition to a reverberation dominated response occurs.  The 

relative balance of these two effects can be quantified by comparing their characteristic 

timescales.  Whichever acts over the shorter timescale will control the response because it is the 

one most responsible for driving the composite into equilibrium.  Take the shear response to be 

approximated by Stokes drag because the added accuracy of the Clift-Gauvin solution is not 
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worth the trouble in this scaling analysis.  In this case, the time constant for the particle’s 

asymptotic approach to it steady velocity is, 

߬௦௛௘௔௥ ן  ௟೛మఘ೛ఓ       Equation 4 

where, ݈௣ is the particles length scale, ߩ௣ is the particle density and ߤ is the fluid viscosity.  This 

is the exponential time constant from the solution to the differential equation formed by 

substituting Stokes’ law into Newton’s second law.  Dividing ߬௦௛௘௔௥ by a time characteristic of 

the acceleration due to wave reverberation (߬௛௬ௗ௥௢) provides the following nondimensional 

number, 

ௗܰ ൌ ఛೞ೓೐ೌೝఛ೓೤೏ೝ೚.      Equation 5 

When ௗܰ is small, it indicates that the viscous timescale is the smaller of the two and so the 

shear resistance of the matrix is important.  If on the other hand ௗܰ is large, then the viscous 

effects are slow and can be neglected.  When this occurs, it means that shock reverberation 

drives the composite to equilibrium before viscous drag has time to exert much effect.  To get a 

better sense of this behavior, an expression for ߬௛௬ௗ௥௢ is needed. This has been studied for 

laminate composites by Chen and Gurtin [20], whose results is that, 

߬௛௬ௗ௥௢ ൌ  ൬ ௟೛௎೛ ൅ ௟೘௎೘൰ ൬ఘ೛௎೛ାఘ೘௎೘ఘ೛௎೛ିఘ೘௎೘൰ ,  ߩ௣ܷ௣ ൐  ௠ܷ௠,  Equation 6ߩ

where, ߩ௠, is the matrix density, and ܷ௠ and ܷ௣ are the matrix and particle wave speeds.  In 

applying this result to particulate composites, there is an assumption that laminate thicknesses 

have some equivalent length scales, which is characteristic of the interparticle spacing (݈௠ሻ and 

particle size  ሺ݈௣ሻ.  This may not be rigorously correct, but the existence of a 1D steady wave 

suggests that it is not wholly inappropriate.  This scaling is expected to breakdown as the 
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interparticle spacing approaches 0 and momentum transfer shifts from wave reverberation to 

direct particle-particle contact. This would occur for very densely filled composites in which ݈௠ 

is initially small. It could also occur for less dense cases where a large compression of the matrix 

reduces the spacing between the less compressible particles. 

Equation 5 can now be used, at least qualitatively, to predict the effects of composition 

and microstructure on the relative importance of shear resistance and reverberation.  An increase 

in the composite’s fill fraction will reduce ݈௠, which in turn reduces  ߬௛௬ௗ௥௢ and increases ௗܰ.  

Remember that an increase in ௗܰ indicates that reverberation gains in importance relative to 

shear.  An increase in the particle size (݈௣ሻ will increase both ߬௛௬ௗ௥௢ and  ߬௦௛௘௔௥, but the 

quadratic power in ߬௦௛௘௔௥ makes that term dominate, leading to an increase in ௗܰ .  In terms of 

material properties, an increase in the matrix viscosity should obviously lead to a more shear 

dominated response.   

Further analysis quantifying how composite behavior transitions between ‘low’ and 

‘high’ values of ௗܰ  (Eq. 4) is ongoing.  This effort should provide both numeric values for ௗܰ 

and a sense of the scaling’s domain.  Such results would extend the utility of ௗܰ beyond an 

explanatory role and allow more predictions, like determining if it is appropriate to neglect shear 

strength for a given composite. For the moment, the usefulness of Equation 4 is that it 

conceptually describes how wave propagation and shear stresses compete to shape wave profiles, 

and how that competition is affected by microstructure and material properties. 

Conclusions 
In-situ radiographs showed the momentum exchange process between a shocked polymer 

and W particles embedded in it.  This provided a basis for comparing multiple polymer 
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constitutive models.  While a Newtonian fluid model was successful in approximating the 

particle trajectories, it failed to predict the flow field within the polymer.  A pseudoplastic model 

proved more consistent with the polymer flow field.  This pseudoplastic model led to improved 

direct numerical simulations of the experimental wave profiles for bulk composites, especially 

when the volume of filler was low.  These simulations showed the relative importance of shear 

resistance versus shock reverberation, a transition which was quantified through a scaling 

analysis. These inferences are underpinned by the fact that the simulations used only 

independently estimated material properties, instead of iterative fitting to the wave profile. A 

proposed nondimensional number makes it possible to estimate the relative contribution of these 

forces, though the precise nature of this scaling warrants further analysis. 
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Figures and Captions 

Figure 1: Experimental velocity traces for impact on a pure polymer (solid black) and polymer-5 

vol% W composite (solid blue) under the same impact condition. The velocity history for the 

composite shows orders of magnitude slower acceleration than for the pure polymer. Details of 

this measurement are reported in Bober et al. [6].  

Figure 2: (a) Schematic of the experimental setup showing the impactor arriving from the left, 

the polymer-W sample and the X-ray imaging direction. Detailed views of the two sample 

configurations are shown in third-angle orthographic projections in (b) and (c). In (b) 20 µm W 

spheres are arranges in a regular lattice, and in (c) three W cylinders are encased between layers 

of polymer and thin Au films.  The uppermost projections are of the radiographic imaging 

direction.  The vertical direction is orthogonal to the shock and x-ray directions.  To help 

visualize the particle arrangement, alternating layers of the lattice have been color coded red and 

blue, which explain the stagger visible in the X-ray projection. 

Figure 3: Radiographs of an array of metal spheres (a) and cylinders (b) contained in a polymer 

matrix undergoing shock compression. Flow in the polymer is tracked by Au films in (b). The 

shock wave is visible as a jump from a light to dark background and the Al buffer plate is shown 

by the black region at the far left.  The black area in the extreme right of the fourth frame in (b) 

is a consequence of shifting the images to follow the buffer motion.  This translation brings into 

the frame an area not captured by the camera, which has been colored black.  The images in (a) 

are shown in the laboratory reference frame, while those in (b) are shifted to one fixed to the 

buffer.  This change in reference frame make it appear that the buffer is not moving and so 

highlights the relative motion W wires and Au layers. The labeled times are relative to the first 

frame, not the events depicted. 
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Figure 4: An x-t diagram showing the displacement of the Al buffer and metal spheres, plotted 

as a function of the time elapsed since each was particle struck by the incident shock wave. In (a) 

the displacement is that viewed from the stationary laboratory reference frame, while in (b) the 

reference frame is taken to be moving at the same speed at the Al buffer (1.4 km/s). 

Figure 5:  An x-t diagram showing the displacement of the metal rods, tracer nanofilms and Al 

buffer.  Like in Figure 2 (b), the reference frame has a constant velocity of 1.4 km/s. The time of 

the first available camera frame was set to t=0.  Each observation is marked by a cross. 

Figure 6: Trajectory predictions for the metal spheres (a) and cylinders (b-d) based on a 

Newtonian fluid model for the polymer. The best fit viscosities (solid black) are shown along 

with shaded bands where the best viscosity was scaled by ൈ/ൊ 1.25, 1.5 and 2.  Predictions 

bounding the uncertainty due to the measured radii are shown in dashed red. The data is shown 

as black dots. 

Figure 7: Surfaces representing the error of trajectory predictions for the metal spheres (a) and 

cylinders (b-d) based on a pseudoplastic fluid model. The horizontal and vertical axis represent 

the two input parameters to this model. The white region in (d) is where simulation results were 

not available. The black circles in (b) show a sampling of (n, k) values which produced low 

errors were selected for further examination in Figure 8. 

Figure 8: The observed flow field around the 50.8 µm wire (greyscale) can be compared to 

simulations using a range of pseudoplastic parameters (yellow).  The measured flow field comes 

from the same Au layers described in Figure 3 (b). 

Figure 9: Experimentally determined shock wave profiles for the polymer filled with 5 vol% (a) 

and 40 vol% (b) metal spheres (~16 µm diameter) are shown in black. Predictions from direct 
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numerical simulations using an inviscid polymer model (blue) and a pseudoplastic model (red) 

are also shown. Cross sections of the simulated velocity fields in the 5 vol% (c) and 40 vol% (d) 

composites are shown for both the inviscid and pseudoplastic polymers. 
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