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Both simulations and experiments have suggested that Cu/CuZr nanolaminates are stronger and
more ductile than their individual constituents due to interface-mediated interactions between plas-
ticity carriers. In this work, we use the effective-temperature theories of dislocation and amorphous
shear-transformation-zone (STZ) plasticity to study amorphous-crystalline interface (ACI) interface-
mediated plasticity in Cu/CuZr nanolaminates under mechanical straining. The model is shown to
capture reasonably well the measured deformation response when strained either in tension par-
allel to or in compression normal to the amorphous-crystalline interface. Our analysis indicates
that increasing CuZr or decreasing Cu layer thickness increases the maximum flow stress for both
perpendicular and parallel loading cases. For the cases of parallel and perpendicular loading, the
maximum flow stress values are 3.4 GPa and 2.5 GPa, respectively. Furthermore, increasing the
strain rate for the parallel loading case decreases the slip strain in the amorphous and crystalline
layers. For the perpendicular loading case, an increase in strain rate decreases the amorphous layer
slip but increases the crystalline layer slip. In all slip strain analyses, maximum slip strain occurs
at the ACI, thus indicating that plasticity carriers accumulate at the interface and are absorbed
there. These findings indicate a significant anisotropy in strength with greater sensitivity to layer
thickness for the case of tensile loading parallel to the ACI. Further findings signify that slip strain
is more sensitive when the nanolaminate is compressed perpendicular to the ACI.

PACS numbers: 1234

I. INTRODUCTION

Amorphous/crystalline nanolaminates are drawing the
attention of many scientific studies, defense industries,
and aerospace industries due to an attractive combina-
tion of both high strength and toughness1–7. As a novel
material, questions still remain regarding the appropriate
choice of microstructural features, such as layer thick-
nesses, and their effect on strength, as well as on the
anisotropy of strength. This work aims to better define
the space of microstructural parameters leading to high
strength and low anisotropy.

There have been several experimental studies on
amorphous-crystalline nanolaminates – mostly Cu/CuZr
or Zr/CuZr – in which the nanolaminate composite is
either subjected to uniaxial tensile loading parallel to
the amorphous-crystalline interfaces (ACIs)4,6, or uni-
axial compression or nanoindentation perpendicular to
the interfaces7–9. In most experimental studies, amor-
phous/crystalline nanolaminates are made via deposition
methods, thereby producing a thin film, and then tested
in either tension (in the plane of the film) or compres-
sion normal to the layers. While inexpensive to make and
amenable to scientific study, such thin film samples are
too small for making practical sized structures and this
method is not feasibly scalable. Very recently, a group

demonstrated the ability to apply the metal forming
technique, accumulative roll bonding, to form bulk-sized
amorphous/crystalline nanolaminates with layer spacings
less than 40 nm10. Thus far, these studies reveal the in-
hibition of shear band formation and propagation in the
amorphous glass due to the presence of the nanocrys-
talline layers, and in some cases homogeneous deforma-
tion in the amorphous material4. These observations de-
pend, in turn, on the thickness of the amorphous and
nanocrystalline layers. These findings suggest that the
layered architecture, and in particular the interface, may
provide the novel physics that is crucial in accounting for
the exceptional strength and ductility of these materials.

In order to shed light on the mechanisms of failure
and the role of the interface in deformation, a number
of researchers have employed molecular dynamics (MD)
simulations. The use of MD simulations to study STZ
and dislocation plasticity has become feasible thanks to
the advent in computing power over the past decade, en-
abling a revelation of microstructural changes not acces-
sible by experiments. The seminal work by Wang et al.4

and a subsequent study by Arman et al.5 revealed a co-
operative slip transfer mechanism, whereby the interface
between the nanocrystalline and amorphous layers emits
STZs that move into the amorphous layer, upon absorb-
ing dislocations arriving from the crystalline side. Recent
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systematic studies conducted by Cheng and Trelewicz2,3

further confirmed this phenomenon. These authors inves-
tigated the effect of different layer thicknesses for both
amorphous and nanocrystalline layers on the response of
the material under tensile strain parallel to the interface
at a constant strain rate, and found that the amorphous-
to-crystalline thickness ratio is the primary factor that
controls the flow stress. In addition, they quantified the
contributions of the amorphous and crystalline materials
to the overall plastic response, and noted that most of
the slip resides in the portion of the amorphous mate-
rial immediately adjacent to the amorphous-crystalline
interface. They concluded that the layered configuration
impedes shear band localization, thereby accounting for
the increased toughness of the composite material.

In prior modeling work1, we applied the effective-
temperature concept to study the effect of layer size
on the deformation response under tension parallel to
the interface. The effective (or fictive) temperature,
based upon nonequilibrium thermodynamics, quantifies
the configurational disorder in a material, thus providing
a systematic, mesoscopic description of the evolution of
its microstructural state under external work and, specif-
ically, the evolution of defect densities, which feed back
into the mechanical response of the composite to exter-
nal loads. Our earlier work was based on macroscale
property measurements reported in6. Recent MD sim-
ulation results reported in2,3, in contrast, offer insight
into the heterogeneity of slip strain at different positions
throughout the deforming sample. This microscopic in-
formation, inaccessible in laboratory experiments, reveals
important physics that underlie the interfacial strength
between the amorphous and crystalline layers and pro-
vides constraints to several model parameters.

In this work, we refine the prior model to calculate
the strain distribution across the layers in amorphous-
crystalline nanolaminates and use it to investigate the
effects of individual amorphous and crystalline layer sizes
and the amorphous-to-crystalline layer thickness ratio on
the deformation response of a Cu-CuZr nanolaminate.
We further vary the loading orientation and strain rates
within the range of 10−3 s−1 to 108 s−1, in order to ex-
trapolate findings in the MD simulations to realistic load-
ing rates not accessible by simulations alone. As in previ-
ous work1, we incorporate into the effective temperature
evolution equations a conduction term to describe the in-
teraction between STZs in the amorphous layers and dis-
locations in the crystalline layers, and to account for the
flow of configurational disorder during deformation. Our
assumptions of reduced material strength near the inter-
face, motivated by MD simulations, results in increased
STZ activity and a significantly increased slip strain in
the amorphous layer near the interface, compared to the
interior of the amorphous layer, in agreement with sim-
ulations. These observations can only be explained in
terms of the motion of plasticity carriers (STZs and dis-
locations), and cannot be captured by macroscopic mod-
els alone – hence the need for our present multiscale ap-

proach which provides a mesoscale, thermodynamically
consistent representation of STZ and dislocation densi-
ties.

Through these calculations, we find that the stress-
strain behavior of the Cu-CuZr nanolaminate depends
primarily on the amorphous-to-crystalline thickness ra-
tio, and only very slightly on the actual thicknesses of
the two constituent materials for a given thickness ra-
tio. Specifically, increasing the amorphous-to-crystalline
thickness ratio increases the flow stress and generally in-
creases the peak stress under tensile loading parallel to
the interfaces and uniaxial compression perpendicular to
the interfaces. However, the absolute layer thickness of
the two layers considerably alters the slip strain distri-
bution across the interface. In addition, maximum slip
strain occurs in the amorphous CuZr adjacent to the
Cu/CuZr interface, for both tensile loading parallel to
the interfaces, and at slow strain rates for compression
loading perpendicular to the interfaces. For compression
at fast loading rates almost all of the deformation is in
the crystalline Cu. This shift of maximum slip strain
from CuZr to Cu as the loading rate increases occurs in
the compression loading case for slower strain rates com-
pared to the tensile loading case.

This paper is structured as follows. Since the formula-
tion builds on the effective-temperature theory of plastic-
ity, we begin in Sec. II with a brief review of the effective
temperature, and demonstrate how it can be used to de-
scribe STZs and dislocations. Next, in Sec. III, we turn
our attention to the amorphous-crystalline nanolaminate
material, and specialize to the cases of loading paral-
lel and perpendicular to the interfaces. In Sec. IV we
present the effects of phase thickness ratio and strain
rate. We conclude this paper Sec. V with a discussion of
the implications of our findings for the microstructural
design of composites for practical applications.

II. METHODS

In this section we review the effective-temperature
theories of dislocation and STZ plasticity, which pro-
vide a means to quantify the influence of plasticity
carriers on material deformation. We will show how
a thermodynamically-defined effective temperature con-
trols the defect densities in the amorphous and crystalline
layers, and facilitates a description of defect interaction
and flow of disorder across the ACI.

A. Effective temperature

We begin by introducing the notion of the effective
temperature. Interested readers may consult11 for fur-
ther details.

The effective temperature provides a tool to describe
configurational disorder as well as flow of disorder across
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the material. Defects such as dislocations in the crys-
talline layer and Shear Transformation Zones (STZs) in
the amorphous layer are manifestations of configurational
disorder. The effective temperature is defined as

χ =

(
∂UC
∂SC

)
, (1)

where UC and SC are the configurational energy and
entropy, respectively, of the material. Here, we use
units such that the entropy is dimensionless and the en-
ergy and temperature share the same units, in effect
setting the Boltzmann constant equal to unity. Thus
[S] = [kB ] ln(w) and [E] = [kB ][T ], where w is the num-
ber of microstates.

The need for an effective-temperature (or fictive-
temperature) description arises from the fact that a de-
forming material is out of equilibrium by definition; me-
chanical force drive the configurational degrees of free-
dom, which include the positions of atoms and there-
fore defect densities, out of equilibrium with the kinetic-
vibrational degrees of freedom. The latter set of degrees
of freedom of the material are described by the thermal
temperature, while the former, which evolve on a sub-
stantially slower time scale than thermal motion, are de-
scribed by the effective temperature, which may not be
equal to the thermal temperature. (See11 for a technical
discussion of this point.) When undergoing deformation,
the system dynamically minimizes its configurational free
energy

FC = UC − χSC , (2)

so that the accumulated strain steady-state defect densi-
ties {ρssα } is given by

ρssα ∝ e−eα/χ, (3)

where eα is the formation energy of a single defect of type
α. Thus, for dislocations with formation energy eD, the
steady-state dislocation density is given by

ρss ∝ e−eD/χ. (4)

The steady-state STZ density takes on a similar form.
In addition, STZs can be classified into two states de-
pending on the likelihood of atomic rearrangement for
a given deviatoric stress configuration; reversing the de-
viatoric stress returns an STZ which has just undergone
rearrangement to its prior configuration. Thus, these two
states give rise to a prefactor of two for the steady-state
STZ density1:

Λss = 2e−eZ/χ, (5)

with eZ being the characteristic STZ formation energy.

The evolution equation for the effective temperature is
given by the first law of thermodynamics11:

ceffχ̇ = σε̇pl
(

1− χ

χ0

)
. (6)

Here, ceff is the effective specific heat capacity and χ0 is
the steady-state effective temperature. In what follows,
the effective temperature concept will be used to describe
plasticity and the kinetics of STZs and dislocations.

B. STZ plasticity in amorphous solids

Here we provide a brief overview of the shear transfor-
mation zone theory, as discussed in11–13 in greater detail.

At room temperature, below the glass transi-
tion4,6,11–13, STZs fluctuate into and out of existence
solely by mechanical work. Plasticity in the amorphous
material is associated with the non-affine rearrangement
of atoms at STZs, and the plastic strain rate is given by

τ γ̇plij = ε0C(s)Λ
sij
s

(T (s)−m). (7)

Here, m denotes the orientational bias, defined as the
difference between the densities of the STZs in the two
states, divided by the total STZ density. The quantity
sij is the deviatoric stress tensor, related to the Cauchy
stress tensor by sij = σij− 1

3 tr(σij). The stress invariant

is s ≡
√

1
2sijsij . For the case of uniaxial deformation in

the x-direction, sxx = 2
3σ and syy = szz = − 1

3σ, where σ

is the tensile stress, and σ =
√

3s. Also, τ is the atomic
time scale, ε0 is the ratio of STZ plastic core volume to
atomic volume, and C(s) and T (s) are combinations of
the forward and backward STZ transitions rates R(±s):

C(s) ≡ 1

2
(R(s) +R(−s)), (8)

and

T (s) ≡ R(s)−R(−s)
R(s) +R(−s)

. (9)

Assuming plastic incompressibility, the only nonzero
components of the plastic strain rate tensor are

γ̇plxx = ε̇pl; γ̇plyy = γ̇plzz = −1

2
ε̇pl, (10)

with ε̇pl being scalar version the plastic strain rate.
The tensile or compressive stress σ evolves according

to Hooke’s law:

σ̇a = Ea(ε̇a − ε̇pla ), (11)
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where Ea is the Young’s modulus and the subscript “a”
indicates reference to the amorphous material. With
equation (10), equation (7) becomes

τ ε̇pla =
2√
3
ε0ΛC(σa)(T (σa)−m), (12)

where we use, for simplicity, C(σa) ≡ C(s) and T (σa) ≡
T (s). Based on constraints associated with the second
law of thermodynamics, we choose the forward and back-
ward STZ transition rate functions4,6 to be

C(σa) = cosh

(
ε0σaa

3

√
3χ

)
, (13)

and

T (σa) = tanh

(
ε0σaa

3

√
3χ

)
, (14)

where a is the atomic radius.
According to11 there is a direct proportionality be-

tween the heat dissipation per STZ and the mechanical
noise strength Γ, or the rate at which STZs are created
and annihilated

Γ =

√
3τσaε̇

pl
a

ε0σ0Λ
. (15)

Direct computation of the steady-state value of the
orientational bias13 gives

m =

{
T (σa), σaT (σa) ≤ σ0;
σ0/σa, σaT (σa) > σ0.

(16)

Thus, σ0 emerges as the parameter that controls the
yield stress parameter. It originates from the relationship
between the plastic dissipation per STZ and mechanical
noise strength Γ.

The equations described in this subsection, as well as
equations (6) and (11), completely describe the mechan-
ical response of the amorphous material.

C. Dislocation plasticity in crystalline solids

In this subsection, we briefly review the effective-
temperature description of the kinetics of dislocations14.
Many parallels can be seen with the STZ theory outlined
in the prior section, making it a convenient and consistent
framework for modeling the plasticity of a/c composites.

The stress evolves according to Hooke’s law:

σ̇c = Ec(ε̇c − ε̇plc ), (17)

where the subscript “c” now refers to the crystalline ma-
terial.

To find ε̇plc , we start with the Orowan equation. The
plastic strain rate, in the case of simple shear, is given by

γ̇pl = ρbv, (18)

where ρ is now the scalar areal density of mobile dislo-
cations, b is the Burgers vector value, and v = l/τP (s) is
the average speed of the dislocations. l = 1/

√
ρ is the av-

erage dislocation spacing and 1/τP (s) is the rate that dis-
locations jump between pinning sites. This mechanism
motivates definition of a depinning rate with a stress-
dependent energy barrier, i.e.,

UP (s) = kBTpe
−s/σT , (19)

with s being a scalar value shear stress and σT being the
Taylor depinning stress, which takes the form

σT = µT b
√
ρ, (20)

where µT is the effective shear modulus, which is about
1/30 times the shear modulus µ. Then it follows that the
depinning rate is given by

1

τP (s)
=

1

τ
fp(s), (21)

with

fp(s) = exp(−TP
T
e−s/σT ). (22)

The tensorial generalization for the deviatoric plastic
strain rate is

γ̇plij =
b
√
ρ

τ

sij
s
fp(s). (23)

Converting from simple shear to uniaxial tensile or
compressive stress, we replace the stress s in the expo-
nential by a scalar stress σ. Then, along the lines of
the arguments presented above for tensile or compressive
deformation in the amorphous solid, it follows that

ε̇plc =
ρ

2

2σc/3

σc/
√

3
v =

1√
3
ρbv, (24)

so that

qc ≡ τ ε̇plc =
√
ρ̃fp(σc), (25)

where ρ̃ = b2ρ
3 , which is the dimensionless version of ρ,

and qc is the dimensionless plastic strain rate12,15, and
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fp(σc); = exp

(
− Tp
T
e−σc/σT

)
, (26)

with

σT = µT
√
ρ̃, (27)

where µT =
√

3µT .
The dislocation density evolution equation follows

from the second law of thermodynamics and the propor-
tionality between the plastic work rate of deformation
and the rate at which dislocations are formed15:

ρ̇ = κp
σcε̇

pl
c

γD

[
1− ρ

ρss(χc)

]
. (28)

Here, γD is the dislocation energy per unit length and
κρ is a dimensionless conversion factor for the fraction of
energy inputs that is converted into dislocations. From15,
we know that ρss(χc) = (1/a2)e−eD/χc . The effective
temperature evolution equation follows from the follow-
ing equation (6):

ceff
c χ̇c = σcε̇

pl
c

(
1− χc

χ0

)
. (29)

According to the strain-hardening analysis presented
in14,15, κρ assumes the form

κρ =
κ̃ρ

ν(T, ρ̃, qc)2
, (30)

where κ̃ρ is of order unity. The quantity ν(T, ρ̃, qc) is
given by

ν(T, ρ̃, qc) =
σc

µT
√
ρ̃

= ln

(
TP
T

)
− ln

[
ln

(√
ρ̃

qc

)]
. (31)

Combining equations (28), (30), and (31), the equation
for the evolution of ρ becomes

ρ̇ =
κ1σcε̇

pl
c

ν(T, ρ̃, qc)2µTa
2

(
1− ρ

e−β/χc

)
, (32)

where

κ1 = κ̃ρ
a2µT
γD

. (33)

Here, κ1 is of order unity and is related to the fraction
of energy input stored in newly-formed dislocations.

III. COUPLING THE AMORPHOUS AND
CRYSTALLINE MATERIALS

Simulations and experimental data in2–4,6 suggest that
there is more plastic deformation associated with in-
creased dislocation and STZ activity level near the in-
terface. Furthermore, the data suggest that the interface
mediates the conversion of dislocations into STZs. As
such, we incorporate into the effective temperature evo-
lution equations a conduction term to describe this in-
teraction1, which accounts for the flow of configurational
disorder. The dislocation flux in this event can be de-
scribed by

(
dχ

dt

)
diff

= Da2ε̇pl
∂2χ

∂y2
, (34)

where D is the effective temperature diffusion constant
and as before, a is the atomic diameter, ε̇pl is the plastic
strain rate, and χ is the effective temperature.

A. Dimensionless form of the equations for
uniaxial loading

It is both convenient and insightful to present the evo-
lution equations in dimensionless form. To this end, we
first replace time derivatives with derivatives with respect
to the total strain ε at constant strain rate by applying
the chain rule d

dt = d
dε
dε
dt . We define the dimensionless

plastic rate to be q = τ ε̇pl, for the respective layers, and
q0 = τ ε̇.

For parallel loading, the two types of layers co-deform
so that ε̇a = ε̇c ≡ ε̇. We also divide by Young’s modu-
lus such that σ̃a = σa/Ea and σ̃c = σc/Ec, and rescale
µ̃T = µT /Ec. Finally, χ̃ is made dimensionless by rescal-
ing with the STZ formation energy eZ and dislocation
formation energy eD for the respective layers. Thus we
arrive at the complete set of equations:

dσ̃a
dε

= 1− 1

q0La

∫ La

0

qa(y)dy, (35)

dχ̃a
dε

=
κaσ̃aqa
q0

(
1− χ̃a

χ̃0

)
+
Daa

2qa
q0

∂2χ̃a
∂y2

, (36)

dχ̃c
dε

=
κcσ̃cqc
q0µ̃T

(
1− χ̃c

χ̃0

)
+
Dca

2qc
q0

∂2χ̃c
∂y2

, (37)

dρ̃

dε
=
κ1qcµ̃T ρ̃

q0σ̃c

(
1− ρ̃

e−β/χ̃c

)
, (38)

dσ̃c
dε

= 1− 1

q0Lc

∫ Lc

0

qc(y)dy. (39)
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TABLE I. Table of thicknesses analyzed

Sample Set La (nm) Lc (nm) La/Lc

A 2.5, 5, 7.5 5 0.50, 1.00, 1.50

B 2.5 2.5,5,7.5,10 1.00, 0.50, 0.33, 0.25

FIG. 1. Our domain for modeling the nanolaminate. Through
symmetry and the assumption that interactions between the
layers do not vary along the amorphous-crystalline interface
(ACI), we can model from the midpoint of the amorphous
layer to the midpoint of the crystalline layer

These expressions completely describe uniaxial tensile
loading.

For perpendicular loading, the stress is uniform
throughout the material and we cannot assume co-
deformation. Thus we use for our stress variable σ̃a = σ̃
and σ̃c = Ea

Ec
σ̃. We can determine σ̃ by taking the aver-

age total strain ε̇ and finding ε̇c and ε̇a

ε̇ =
Lcε̇c + Laε̇a
Lc + La

. (40)

By using Hooke’s law for both layers, as in equations
(11) and (17), and then eliminating ε̇a and ε̇c to get ε̇,
we obtain

dσ̃

dε
=

Ec
La
Lc
Ec + Ea

[(
La
Lc

+ 1

)
−

1

q0Lc

(∫ La

0

qa(y)dy +

∫ Lc

0

qc(y)dy

)]
. (41)

The other evolution equations are

dχ̃a
dε

=
κaσ̃qa
q0

(
1− χ̃a

χ̃0

)
+
Daa

2qa
q0

∂2χ̃a
∂y2

, (42)

dχ̃c
dε

=
κcEaσ̃qc
Ecq0µ̃T

(
1− χ̃c

χ̃0

)
+
Dca

2qc
q0

∂2χ̃c
∂y2

, (43)

dρ̃

dε
=
κ1Ecµ̃T ρ̃

Eaq0σ̃

(
1− ρ̃

e−β/χ̃c

)
. (44)

IV. RESULTS

A. Discretization

Fig. 1 shows the model domain for the amor-
phous/crystalline composite. The domain over which we
solve the equations stretches from the middle of one layer
to the middle of the next by virtue of symmetry. The
half-layer thicknesses (Fig. 1) are designated as La and
Lc. The domain is discretized into grid points, where Na
and Nc are the number of grid points in the amorphous
and crystalline layer respectively. These points are finely
spaced by ∆y = 5Å. Thus, the entire domain contains
Na+Nc grid points, with Na = La/∆y and Nc = Lc/∆y.
The particular layer thicknesses we study here are given
in Table I.

Using an adaptive time-stepping scheme, we obtain
a finer time resolution near yielding, when the stress
changes dramatically, without incurring longer calcula-
tion run times as we approach the steady state.

B. Parameter characterization

To characterize the material parameters introduced in
the formulation, we fit the parameters by comparing
simulation data from tensile deformation of nanocrys-
talline (polycrystalline) Cu alone to experimental tests
provided in the literature. For the amorphous ma-
terial, the parameters are selected so that the two-
phase amorphous/crystalline model qualitatively pro-
vides trends reported in the literature for tensile parallel
to the amorphous-crystalline interface (ACI).

The values of parameters for the nanocrystalline layer,
namely κ1, ρ(0), and χc(0), are determined by compar-
ing the stress versus strain curves from the MD simula-
tions for pure Cu tensile deformation2 to the curves ob-
tained from the effective-temperature theory applied on
Cu alone. Fig. 2 shows the comparison for an imposed
strain rate of 108 s−12.

Cheng and Trelewicz2 performed MD simulations of
the amorphous CuZr and nanocrystalline (polycrys-
talline) Cu composite loaded under uniaxial tension par-
allel to the interfacial direction, and measured the slip
strain profiles and stress-strain behavior. To character-
ize the material parameters for the amorphous layer and
the diffusion constants, namelyDa, Dc, ε0, εZ , and χa(0),
we compare the nanolaminate results from the effective-
temperature theory to the simulations with varied thick-
nesses according to Table I3. In this case, we exploit that
fact that it is known that increasing the amorphous layer
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TABLE II. Table of parameter values. The asterisk (*) indicates tunable parameters that we adjusted.

Variable Description Value

χ̃0* Steady-state effective temperature 0.04

T Thermal temperature 298K

Ea Young’s modulus 72GPa

Ec Young’s modulus 110GPa

τ Atomic time scale 10−12 s

TP Depinning energy 40800K

κ1* Conversion factor 185

κc* Conversion factor 11

κa* Conversion factor 80

ε0* STZ core volume in units of a3 4

ε̃Z* Rescaled STZ formation energy 0.195

β Dislocation-STZ energy ratio 0.16

Da* Diffusion constant 10000

Dc* Diffusion constant 1.5

a Atomic size 0.167nm

µT * Rescaled depinning reference stress 6.5GPa

σ̃a(0) Initial dimensionless stress 10−5

σ̃c(0) Initial dimensionless stress 10−5

χ̃a(0)* Initial dimensionless effective temperature 0.025

χ̃c(0)* Initial dimensionless effective temperature 0.040

ρ̃(0)* Initial dimensionless dislocation density 0.002

thickness gives rise to a greater maximum flow stress
(Fig. 3). A higher yield strength for greater CuZr thick-
nesses can be attributed to their lack of atomic crystalline
order16.

As mentioned in the development of the formulation,
σ0 emerges as an important parameter. Based on exper-
imental results for stress versus strain curves for single-
phase pure Cu11, σ0 is around 0.02 times the Young’s
modulus Ea except near the interface; we use

σ0(x)

Ea
= 0.02− 0.0001e6−x, (45)

where x is the position from the interface in nanometers.
σ0, as chosen according to Eq. (45), is smaller near the
amorphous-crystalline interface. This choice is further
validated from the expression for the strain rate, Eq. (12)
along with Eq. (16), which is necessary to account for the
increased slip activity observed near the interface com-
pared to further in the amorphous layer. This, in turn,
suggests that the amorphous material is weaker there2.
The exponential in Eq. (45) ensures that σ0 is bounded
and does not depend on interfacial physics at positions
far from the interface. The remaining parameters used
in the present simulations can be found in1. All other
parameters are listed in Table II.

As a final verification of the parameters, we compare
in Fig. 4 the slip strain from2 to our slip strain results
at different levels of applied strain in tension. Here we

borrow the same definition of slip distance S, namely

S = d

∫ t

0

dt′ε̇pla (t′), (46)

where d = 6.5Å is a microscopic length scale determined
by direct parameter fitting. As shown in Fig. 4, the agree-
ment between theory and simulation from2 is reasonable
indicating that the model parameters are reliable for fur-
ther use in extrapolating to other loading configurations.
There are, however, some discrepancies. We slightly un-
derestimated the slip distance in the crystalline Cu layer
at the early stages of strain hardening and, in the absence
of finer resolution in the data for slip distance, were only
able to provide an estimate of the slip strain deep inside
the amorphous CuZr.

C. Results for compressive loading perpendicular
to the interface

From the parameter values we deduced from compar-
ing the simulation data in2,3, we predict the material re-
sponse under uniaxial compression perpendicular to the
interfaces.

For perpendicular compression, peak flow stress in-
creases as the amorphous-to-crystalline layer thickness
ratio La/Lc increases, as in the case of tensile loading
parallel to the interfaces. (Figs.6 and 7).
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FIG. 2. Parallel loading stress versus strain curve from the
effective-temperature theory in Cu plotted over the Cheng
(2016) result for Cu for an imposed strain rate of ε̇ = 108 s−1.
The quantities κ1, ρ(0), and χc(0) are constrained through
this comparison.
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FIG. 3. Parallel loading stress versus strain curve for sample
set A (solid) plotted over the Cheng (2018) result (dashed)
for thickness variations and an imposed strain rate of ε̇ = 108

s−1. Increasing the thickness in the amorphous layer increases
the maximum flow stress. The parameters Da, Dc, ε0, εZ , and
χa(0) are constrained through this comparison.

Next, we use the parameters listed in Table II to pre-
dict the effect of layer thickness and strain rate on the
spatial distribution of slip across the layers and the flow
stress for uniaxial compression perpendicular to the ACI.
At all accumulated strains, almost all of the slip is ac-
cumulated in the crystalline Cu as opposed to the amor-
phous CuZr (Fig. 8), increasing nearly linearly with the
total strain. This is in stark contrast to the observation
under tensile loading parallel to the interfaces (Fig. 4),
in which case the maximum slip strain is observed in
the amorphous CuZr immediately adjacent to the inter-
face. This anisotropy is interesting and may have impor-
tant practical implications in the design and fabrication
of mechanical metamaterials that absorb shock and are
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FIG. 4. Parallel loading slip profile from the effective-
temperature theory (solid) plotted over simulation data
(dashed) for an imposed strain rate of ε̇ = 108 s−1. The max-
imum slip lies in the amorphous layer for both theory and
simulation results suggesting that the nanolaminate’s plas-
tic flow is Cu dominated. This slip profile further validates
our parameter values constrained from the stress versus strain
comparisons. MD simulation results are taken from2
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FIG. 5. Parallel loading stress versus strain curve for sample
set B and an imposed strain rate of ε̇ = 108 s−1. Similarly to
sample set A, we find that increasing the La/Lc ratio increases
the maximum yield strength, further validating our parameter
values.

damage-resistant in some directions but not others.

D. Layer thickness dependence for parallel loading

Our analyses thus far indicate that increasing the La /
Lc ratio results in greater maximum flow stress (Figs. 3
and 5), for both tensile loading parallel to, and compres-
sion perpedicular to, the Cu/CuZr interfaces, for fixed La
or Lc. We now allow La and Lc to change concomitantly
and study how changing the layer thickness while keep-
ing the La/Lc ratio fixed alters the response to parallel
loading.
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FIG. 6. Sample set A stress versus strain curve for perpendic-
ular loading and an imposed strain rate of ε̇ = 108 s−1. We
constrained our parameters with experimental results in par-
allel loading. The onset of plasticity is at a strain of around
0.02 and the ultimate strength is around 2.6 GPa. Also, an
increased amorphous-to-crystalline layer thickness ratio gives
rise to greater maximum flow stress similar to the case of
parallel loading.
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FIG. 7. Sample set B stress versus strain curve for perpendic-
ular loading and an imposed strain rate of ε̇ = 108 s−1 that
is compatible with the observation that greater amorphous
layer thickness gives rise to greater flow stress. The onset of
plasticity is around a strain of 0.02 and the ultimate strength
is around 2.6 GPa.

In Fig. 9, the two stress versus strain curves are nearly
identical despite the absolute thicknesses varied by a fac-
tor of 2. Yet in Fig. 10, we find that increasing the strain
for La = 5nm and Lc = 10nm increases the overall slip
strain in the amorphous layer more than the case for
La = 2.5nm and Lc = 5nm. This increase is most promi-
nent near the interface, where the maximum slip distance
for La = 2.5nm and Lc = 5nm is around 1.3 Å, whereas
for La = 5nm and Lc = 10nm it is around 2.0 Å. This
implies that the overall slip profile in the amorphous layer
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FIG. 8. Slip profile prediction based from the effective-
temperature theory applied to perpendicular loading for an
imposed strain rate of ε̇ = 108 s−1. Most of the slip accumu-
lates in Cu because this layer is weaker than the amorphous
layer in terms of flow stress.

is affected more strongly by absolute thickness than the
maximum flow stress, which is affected more strongly by
thickness ratio.
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FIG. 9. Parallel loading stress versus strain curves for an
imposed strain rate of ε̇ = 108 s−1. The curves are nearly
identical despite the amorphous and crystalline layer thick-
nesses doubling with maximum flow stress at 3.2 GPa.

Fig. 11 demonstrates the effects of amorphous layer
size on the calculated slip profile for 16 % strain in the
case of parallel loading, using the same cases as sample
set A. Increasing the amorphous layer thickness increases
the maximum slip in the amorphous CuZr, while increas-
ing the slip strain in the crystalline Cu only very slightly.
We speculate that this size effect is associated with an
increase in the capacity for the amorphous layer to act
as a dislocation sink17.

Likewise in Fig. 12, we show the effects of crystalline
layer size for sample set B at La = 2.5nm, Lc = 2.5nm
(Fig. 5). Here we observe that the greatest slip dis-



10

0 1 2 3 4 5
Position (nm)

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
S

lip
 D

is
ta

n
ce

 (
Å

)

Interface

16%
14%
12%
10%
16%
14%
12%
10%

FIG. 10. Parallel loading slip profile for La = 2.5nm, Lc =
5nm (solid lines) against La = 5nm, Lc = 10nm (dashed
lines) for an imposed strain rate of ε̇ = 108 s−1. Doubling
the layers thicknesses increases the maximum slip strain in
the CuZr layer. Note that the position in the slip profile for
La = 5nm, Lc = 10nm is translated by 2.5nm to the left.
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FIG. 11. Parallel loading slip profile for 16% strain with var-
ied thicknesses according to sample set A for an imposed
strain rate of ε̇ = 108 s−1. Increasing the amorphous layer
thickness increases the maximum slip in the amorphous and
crystalline layers. Note that for La = 5nm, Lc = 5nm, the
slip profile is translated 2.5nm to the left and for La = 7.5nm,
Lc = 5nm, the slip profile is translated 5nm to the left.

tance occurs at the same thickness values as the max-
imum stress. Generally, overall slip increases with a
greater La/Lc ratio except when increasing Lc from 5nm
to 7.5nm.

Taken together, between slip profiles for set A and B
(Fig. 11 and 12), we see that increasing the amorphous
layer thickness does not affect slip in the crystalline layer.
However, increasing the crystalline layer thickness ad-
justs slip throughout the entire nanolaminate, further
suggesting that plasticity for an imposed strain rate of
108 s−1 is dominated by Cu. Furthermore, the maxi-
mum slip strain corresponds with highest La / Lc ratio

values.
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FIG. 12. Parallel loading slip profile for 16% strain with var-
ied thicknesses according to sample set B and for an imposed
strain rate of ε̇ = 108 s−1. The thicknesses associated with the
greatest slip strain is La = 2.5nm, Lc = 2.5nm. Generally,
the slip distance decreases as the crystalline layer increases
except between Lc = 5nm to Lc = 7.5nm.

E. Layer thickness dependence for perpendicular
loading

Similar to the parallel loading case, an increase in
La/Lc gives rise to an increase in maximum flow stress
(Fig. 6 and 7). Yet, as demonstrated in Fig. 13, a
change in the absolute thickness values while keeping
La/Lc fixed, say if La and Lc are doubled, does not al-
ter the flow stress versus strain response. Similarly, as
shown in Fig. 14, doubling La and Lc does not alter the
slip strain profile near the interface. These results would
indicate that the slip profile is controlled by the relative
layer thickness rather than absolute layer thickness for
the perpendicular loading case. From Figs. 9 and 10, we
may conclude that the ratio of layer thicknesses affects
the maximum flow stress and slip distance much more
than the absolute thickness does.

As in the case of parallel loading, at 16% strain, an
increase in La/Lc ratio values gives rise to an increase
in maximum slip strain with the maximum in the amor-
phous layer (Figs. 9 and 10). However, for perpendicular
deformation at 108 s−1, most of the slip strain is in the
crystalline layer (Fig. 15 and 16). Also for both parallel
and perpendicular loading, decreasing the layer thickness
ratio by increasing the crystalline layer while keeping La
fixed generally decreases overall slip distance except be-
tween an increase from Lc = 5nm and Lc = 7.5nm.

The slip strain in the amorphous layer layer is minimal
because the amorphous layer is stronger than the crys-
talline layer, as seen from Figs. 6 and 7 for an imposed
strain rate of 108 s−1 under perpendicular loading.
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FIG. 13. Perpendicular loading stress versus strain curves for
an imposed strain rate of ε̇ = 108 s−1. The curves are iden-
tical despite the amorphous and crystalline layer thicknesses
doubling.
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FIG. 14. Perpendicular loading slip profile for La = 2.5nm,
Lc = 5nm (solid) against La = 5nm, Lc = 10nm (dashed)
for an imposed strain rate of ε̇ = 108 s−1. Doubling the
layers thicknesses does not affect the overall slip strain for
the nanolaminate.

F. Strain rate dependence for tensile deformation
parallel to the interface

Next we investigate the effect of strain rate on the de-
formation behavior of the nanolaminate. We study a
broad range of strain rates, from 10−3 s−1 through 108

s−1. This range encompasses strain rates used in labora-
tory tests as well as rates employed in MD simulations.
Figure 17 presents flow stress results from the theory at
different rates in parallel loading. As can be seen, the
maximum flow stress occurs at increasing strain values
for higher imposed strain rates. At an imposed strain
rate of 108 s−1, we find that the maximum flow stress
is around 3.2 GPa, whereas lowering the imposed strain
rate lowers the maximum flow stress.

For imposed strain rates 10 s−1 through 103 s−1, we
find that increasing the imposed strain rate has little ef-
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FIG. 15. Perpendicular loading slip profile for 16% strain
with varied thicknesses according to sample set A and for an
imposed strain rate of ε̇ = 108 s−1. Increasing the amorphous
layer thickness increases the maximum slip. The slip in the
amorphous layer is minimal because it is stronger than the
crystalline layer.
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FIG. 16. Perpendicular loading slip profile for 16% strain
with varied thicknesses according to sample set B and for an
imposed strain rate of ε̇ = 108 s−1. The thicknesses associated
with the greatest slip strain is La = 2.5nm, Lc = 2.5nm.
However, decreasing the layer thickness ratio by increasing the
crystalline layer thickness generally decreases the slip distance
except between Lc = 5nm to Lc = 7.5nm.

fect on the slip strain in Cu near the interface, but sig-
nificantly decreases the slip strain near the interface in
CuZr (Fig. 18).

At lower strain rates, the plastic response of the
nanolaminate is dominated by Cu because of the stress
threshold σ0 for flow in the amorphous layer, implying
that the onset of plasticity takes longer in the amorphous
layer. The decrease in slip strain near the interface in Cu,
as the imposed loading rate increases, suggests that this
domination by Cu is most prominent at an imposed strain
rate of 10 s−1. As the imposed strain rate increases from
104 s−1 to 108 s−1, the domination of Cu over CuZr di-
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minishes, as evidenced by the increase of slip strain deep
in the CuZr.
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FIG. 17. Parallel loading stress versus strain for varied im-
posed strain rates and La = 2.5nm, Lc = 5nm. As the
strain rate increases, the maximum flow stress increases up
to around 3.2 GPa at 108 s−1.
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FIG. 18. Parallel loading slip profile for 16% strain and
La = 2.5nm, Lc = 5nm with varied imposed strain rates. For
imposed strain rates 10 s−1 through 103 s−1, the nanolami-
nate’s plasticity is Cu dominant. At around an imposed strain
rate of 108 s−1, the nanolaminate’s plasticity begins to shift
to CuZr dominant.

G. Strain rate dependence for compressive
deformation perpendicular to the interface

Figure 19 presents the flow stress computed at different
rates for compressive deformation perpendicular to the
interface. In this case, we observe that the maximum flow
stress for each imposed strain rate occurs around a strain
of 0.02. Also, higher imposed strain rates result in higher
maximum flow stresses. At an imposed strain rate of 108

s−1, the maximum flow stress is around 2.6 GPa (Fig. 19).
Up to a strain rate of 102 s−1, the slip profile has a peak

in the amorphous CuZr adjacent to the interface, while
there is little plastic deformation in the crystalline Cu
(Fig. 20). At loading rates of 103 s−1 and above, how-
ever, the slip profile peak in amorphous CuZr disappears.
The crystalline Cu, which absorbs much of the plastic de-
formation, shields the amorphous CuZr from plastic flow.
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FIG. 19. Perpendicular loading stress versus strain for varied
imposed strain rates and La = 2.5nm, Lc = 5nm. As the
strain rate increases, the maximum flow stress increases up
to around 2.6 GPa at 108 s−1.
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FIG. 20. Perpendicular loading slip profile for 16% strain and
La = 2.5nm, Lc = 5nm with varied imposed strain rates. In-
creasing the strain rate decreases the domination of Cu plas-
ticity, and at 103 s−1, plasticity in the nanolaminate is dom-
inated by CuZr.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we present a modeling framework for
deformation in amorphous-crystalline nanolaminates. It
combines the effective-temperature models for disloca-
tion plasticity in polycrystalline materials and shear-
transformation-zone plasticity in amorphous materials,
both of which are based upon the idea that the defect
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density in a material is controlled by its state of con-
figurational disorder. In addition, the model provides a
straightforward tool to describe the interface-mediated
interaction between STZs on the amorphous side and
dislocations on the nanocrystalline side, and explicitly
represents the increased rate of STZ activity near the
interface via a position-dependent yield stress parame-
ter σ0 which is inversely proportional to the rate of STZ
formation and annihilation.

A direct implementation of the simplified, one-
dimensional version of the framework closely reproduces
the stress-strain behavior and cross-sectional slip profiles
observed in MD simulations3 of the Cu/CuZr nanolam-
inate structure undergoing tensile deformation parallel
to the interfaces, and reveals system parameter val-
ues indicative of a lower resistance to plastic flow in
the nanocrystalline Cu layers than in amorphous CuZr.
These parameters are then used to provide predictions for
the stress-strain behavior of the Cu/CuZr nanolaminate
material at various loading rates, as well as for uniax-
ial compressive loading perpendicular to the Cu/CuZr
interfaces, which can be verified by simulations and ex-
periments, such as micropillar compression tests.

Despite the small thickness of the nanocrystalline
Cu layers, a dislocation-density representation and the
isotropic Orowan equation for the plastic strain rate are
still appropriate and of practical utility for the present
set-up. First of all, the thickness of the Cu, on the or-
der of 5 nm, is roughly several dozen atomic diameters,
and exceeds the minimum separation between disloca-
tion lines; the dislocation density ρ remains a meaningful
quantity at this length scale. Secondly, this is a simplified
one-dimensional model; we are in effect averaging over

many cross sections perpendicular to the amorphous-
crystalline interfaces, so the statistical concept of mean-
field coarse-graining in our representation of dislocations
do apply with useful validity. Finally, the simulation
set-up contains nanocrystalline grains whose orientation
varies from one grain to the next. In the absence of heavy
textures, an isotropic plasticity description, which de-
scribes dislocation motion primarily through thermally-
activated depinning of dislocations, suffices. Grain ori-
entation is averaged over many grains, and it is largely
unnecessary to capture slip system activation within the
dislocation depinning model.

Crucially, the model reveals the anisotropy of mechani-
cal response of the nanolaminate structure, which should
not come as a surprise because of the different strengths
and deformation mechanisms of nanocrystalline Cu ver-
sus amorphous CuZr. In particular, we predict that when
compressed perpendicular to the interfaces at a strain
rate of 103 s−1 or above, the nanocrystalline Cu ab-
sorbs practically all of the plastic deformation, leaving
the amorphous CuZr largely undamaged. This stands in
contrast to the case of loading parallel to the interfaces,
in which the amorphous CuZr immediately adjacent to
the Cu/CuZr interfaces experiences the greatest amount
of slip. This anisotropy may be useful for designing next-
generation energy and memory storage devices in which
the need for mechanical insulation becomes a prime con-
cern.

We conclude by calling for further experiments and
simulations that reveal rate and anisotropy effects and
may verify the model predictions made here. Such exper-
iments and simulations may in addition reveal important
new physics that would enrich the modeling framework.
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