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Abstract

The mechanical and electronic properties of transition metal dichalcogenide (TMD) monolay-

ers corresponding to transition groups IV, VI, and X are explored under mechanical bending

from first principles calculations using the strongly constrained and appropriately normed (SCAN)

meta-GGA (MGGA). SCAN provides an accurate description of the phase stability of the TMD

monolayers. Our calculated lattice parameters and other structure parameters agree well with

experiment. We find that bending stiffness (or flexural rigidity) increases as the transition metal

group goes from IV to X to VI, with the exception of PdTe2. Variation in mechanical properties

(local strain, physical thickness) and electronic properties (local charge density, band structure)

with bending curvature is discussed. The local strain profile of these TMD monolayers under me-

chanical bending is highly non-uniform. The mechanical bending tunes not only the thickness of

the TMD monolayers, but also the local charge distribution as well as the band structures, adding

more functionalization options to these materials.
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I. INTRODUCTION

Layered transition metal dichalcogenides (TMD) offer a wide variety of physical and

chemical properties from metal to insulator [1–3] and are extensively studied [4–7]. An

increasing interest and recent progress towards these materials led to a variety of improved

applications such as sensors, energy storage, photonics, optoelectronics, and spintronics

[8–10]. In particular, atomically thin monolayer TMDs have attracted most of the attention

due to the unique mechanical and electronic properties related to their high flexibility [11–

13]. A large scope of flexible electronics has been realized via applications such as flexible

displays [14–17], wearable sensors [18–20], and electronic skins [21–23]. Each TMD (TX2)

monolayer consisting of 3 atomic layers (X-T-X stacking) can undergo bending deformation,

possessing higher flexural rigidity than graphene (DMoS2 ∼ 7-8 DGraphene [24]). The bending

behavior (curvature effect) of 2D TMD monolayers, especially of MoS2, has been studied

both theoretically [25, 26] and experimentally [12, 27]. For 2D materials such as MoS2,

the bending can induce localization or delocalization in the electronic charge distribution.

This change in the charge distribution results in changes in electronic properties such as the

Fermi level, effective mass, and band gap [28]. However, the bending behavior of other TMD

monolayers is largely unexplored at least from first-principles. Quantitatively, the resistance

of a material against bending is characterized by the bending stiffness. The bending stiff-

ness or flexural rigidity of the TMD monolayers can be estimated using first-principles as

in Refs. 25, 29, and 30. Most of the earlier studies used nanotubes of different radii created

by rolling an infinitely extended sheet to estimate the bending stiffness of 2D monolayers

[29–31]. However, such a scheme has several limitations. (1) It does not mimic the edges

present in the monolayer. (2) The nanoribbons unfolded from differently sized nanotubes

have different widths which contribute to different quantum confinement effects along with

the curvature effect. By utilizing the bending scheme similar to the bending of a thin plate,

we restore the edges as well as fix the width of the nanoribbon, thereby eliminating the

quantum confinement effect resulting from difference in width between various configura-

tions of nanoribbons from flat to bent ones. However, the edge effects due to their finite

width may not be completely eliminated.

Here we report a comprehensive first-principles study of the structural, mechanical, and
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electronic properties of flat and bent monolayer TMD compounds, i.e., TX2 (T = transition

metal, X = chalcogen atom). As in Ref. 1, we represent each TMD (TX2) with its transition

metal group. For example, d0 for group IV, d2 for group VI, and d6 for group X. Their layer

structures have been observed in experiment: group IV (T = Ti, Zr or Hf; X = S, Se or Te)

and group X (PdTe2 and PtX2) TMDs prefer the 1T phase, while group VI TMDs crystallize

in the 1H (T = Mo or W; X = S, Se) as well as the distorted T (1T′) phase (WTe2) [1].

We first investigate the relative stability of a monolayer in three different phases (1H, 1T,

1T′). The mechanical and electronic properties have been studied only for those most stable

phases. The organization of the rest of the paper is as follows. The computational details

are presented in Sec. II. Section III presents our results, followed by some discussion and

conclusions in Sec. IV.

II. COMPUTATIONAL DETAILS

The ground state calculations were performed using the Vienna ab initio simulation pack-

age (VASP) [32] with projected augmented wave (PAW) [33] pseudo-potentials (PS) [34] as

implemented in the VASP code [35], modified to include the kinetic energy density required

for meta-GGA (MGGA) calculations. We used pseudo-potentials recommended in VASP

for all elements except for tungsten (W), where we used a pseudopotential such that the va-

lence electron configuration includes 6s15d5 electrons. The exchange-correlation energy was

approximated using the strongly constrained and appropriately normed (SCAN) MGGA

[36]. It can describe an intermediate range of dispersion via the kinetic energy density and is

proven to deliver sufficiently accurate ground state properties for diversely bonded systems

[37–40], as compared to local density approximation (LDA) and the generalized gradient

approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE). The unit-cell calculations

for all pristine TMD monolayers were carried out using a rectangular supercell consisting of

two MX2-units with three different configurations 1H, 1T, and 1T′-WTe2 to determine the

most stable ground state. We used the energy cutoff of 550 eV and 24 × 16 × 1 and 16 × 24

× 1 Gamma-centered Monkhorst-Pack k-meshes [41] to sample the Brillouin zone. Periodic

boundary conditions were applied along the in-plane direction, while a vacuum of about 20 Å

was inserted along the out-of-plane direction. The geometry optimization of the mono-layer
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FIG. 1: Rectangular unit-cells of types 1H, 1T, and 1T′ (WTe2) used in the calculations.

The first row represents the top view (a-c) while second (d-f) corresponds to the side view;

d(T-X) is metal-chalcogen distance, ∠XTX is an angle made by two d(T-X) sides, and

d(X-X) (or dX−X) is the distance between the outer and inner layer of flat monolayer bulk

TMDs.

unit-cell was achieved by converging all the forces and energies within 0.005 eV/Å and 10−6

eV respectively. To estimate the bending stiffness, we relaxed our nano-ribbons having a

width of 3-4 nm (Supplementary Table S1) with forces less than 0.01 eV/Å, using an energy

cutoff of 450 eV. The Brillouin zone was sampled using Gamma-centered Monkhorst-Pack

k-meshes of 8 × 1 × 1 and 1 × 8 × 1.

To estimate the in-plane stiffness, we applied strain along one direction (say the x-

direction) and relaxed the system along the lateral direction (i.e., the y-direction) or vice

versa (See Figure 1). An in-plane stiffness then can be estimated using

Y2D =
1

A0

∂2Es
∂ε2

, (1)
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where Es = E(ε = s) - E(ε = 0) is the strain energy, ε = Change in length (∆l)
equilibrium length (l0)

is the linear

strain, and A0 is an equilibrium area of an unstrained supercell. We also applied a 5% axial

strain and relaxed the rectangular supercell in the transverse direction to estimate the lateral

strain and hence found the Poisson’s ratio. We first relaxed the flat ribbon using various edge

schemes. The choices of edges are mainly due to either relaxation of the flat nanoribbon

or to satisfy the condition, areal bending energy density u(κ) =
Ebent−Eflat

Area(A)
→ 0 as the

bending curvature κ = 1
radius of curvature (R)

→ 0 (Figure 2 (IV)). We have taken stoichiometric

(n(X):n(T)= 2:1) nano-ribbons (Supporting Figure S4) for most of the calculations in which

TiTe2, MoTe2-1T′, and WX2 (X = S, Se, or Te) were stabilized using hydrogen passivated

edges whereas others were relaxed without hydrogen passivation. We also relaxed TiSe2,

HfS2, PdTe2, and PtSe2 nano-ribbons in symmetric configuration (Figure 2 II). Finally,

the bent structures of different bending curvatures were created by relaxing the ribbons

along the infinite length direction, while keeping the transition atoms fixed at the opposite

end, and applying strain along the width direction. A 20 Å of vacuum was introduced

along the y- and z- direction to eliminate an interaction between the system and its image

(Supplementary Figure S4). The areal bending energy density (u(κ)) vs bending curvature

(κ) curve were fitted with a cubic polynomial to capture the non-linear behavior (Figure 2

(IV)). The quadratic coefficient of the cubic fitting was utilized to estimate the bending

stiffness,

Sb =
∂2u(κ)

∂κ2
|κ=0. (2)

III. RESULTS

A. Relative Stability

Experimentally, it is largely known which phase is preferred in the bulk layer structure.

However, the relative stability of their monolayer structures remained elusive. We have

performed relative stability analysis of monolayer TX2 among 3 different phases, namely

1H, 1T, and 1T′-WTe2, to test the predictive power of SCAN. Energies of TMDs in different

phases relative to the 1T phase are presented in Figure 3. Among two different phases,

1H and 1T, group (IV) and (X) TMD monolayers prefer the 1T phase. We could not
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FIG. 2: (I) A nanoribbon (enclosed by rectangle) is taken to simulate an extended sheet of

1T monolayer; a is the lattice constant with the ribbon extended along the a-axis and a

vacuum of 20 Angstroms is inserted along b- and c- axes (Supplementary Figure S4); bent

sample of 1T nano-ribbon; (III) a schematic bending of a thin plate. d0, d, and R are the

length of a thin plate before bending, length after bending, and radius of curvature

respectively. N is the neutral surface denoted by a dashed line. ttot, tup, and tdn are the

physical thicknesses of the bent nano-ribbon, assuming that the middle layer coincides

with the neutral surface (N); (IV) areal bending energy density vs bending curvature curve

to estimate the bending stiffness. Ebent, Eflat, and A are the total energy of bent

nanoribbon, total energy of flat nanoribbon, and cross-sectional area of flat nanoribbon

(length * width) respectively.

find a distorted phase (1T′) for these TMD monolayers. In addition to the 1H and 1T

phase, group (VI) TMDs MoTe2 and WTe2 also crystallize in the distorted (1T′) form. Our

relative stability analysis shows that TX2 with X=S or Se prefers the 1H phase, while it

depends on the transition metal for X=Te, consistent with the experimental predictions [1].

WTe2 prefers the 1T′ phase while the cohesive energies of 1H and 1T′ phases of MoTe2

are almost identical (favoring the 1H phase by 5 meV), leading to an easy modulation

6



between 2 phases [42]. Satisfying 17 exact known constraints, SCAN accurately captures

the necessary interactions present in these TMD monolayers and predicts the correct ground

state structure.
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FIG. 3: Stability (relative to the 1T phase) from SCAN calculations for TMDs between the 3 experimentally observed phases

1H, 1T, and 1T′-WTe2. The x -axis represents the TMD with a phase corresponding to the minimum ground state (GS)

energy, and the relative GS energies per atom of the TMDs of any phase with respect to corresponding GS of 1T phase are

presented on the y-axis. The straight line parallel to the x -axis passing through the origin represents the GS energies of 1T

phases. SCAN correctly predicts the ground state for these compounds. Also, MoTe2 seems to be iso-energetic between 1H

and 1T′-WTe2 phases.

B. Structural properties

Comparison has been made for the estimated in-plane lattice constant of monolayers

with the experimental bulk results in Figure 4. The lattice constants are in good agreement

with the experimental results with a mean absolute error (MAE) and a mean absolute

percentage error (MAPE) of 0.03 Å and 0.7% respectively. The results for the structural

parameters related to the monolayer bulk are in good agreement with reference values [8].

The structural parameters related to the lattice constant such as dT−X , dX−X , and θX−T−X

increase from S to Se to Te. The decreasing cohesive energies from S to Se to Te make them

more loosely bound, thereby increasing the lattice parameters.
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FIG. 4: Comparision of the SCAN-calculated in-plane lattice constants of various TMD mono-layers in the ground state with

respect to the bulk lattice constants available in the literature [1, 43, 44].

C. In-plane stiffness and Poisson’s ratio

The strength of a material is crucial for a device’s performance and its durability. As a

measure of the strength, we computed an in-plane stiffness or 2D Young’s modulus (Eq. 1)

of the most stable ground state and tabulated it in Table I. Similar to the cohesive energy,

the in-plane stiffness decreases from S to Se to Te, indicating a softening of TMD monolayers

from S to Te under an application of linear strain. The estimated 2D in-plane stiffness of

MoS2 is 141.59 N/m, which is in close agreement with the experimental value of 180 ± 60

N/m [45].

Under Poisson’s effect, materials tend to expand (or contract) in a direction perpendicular

to the axis of compression (or expansion). It can be measured using Poisson’s ratio νij =

−dεj
dεi

, where dεj and dεi are transverse and axial strains respectively. The in-plane (-dεy
dεx

or −dεx
dεy

) and an out of plane Poisson’s ratio (- dεz
dεx

) are also calculated and tabulated. The

in-plane Poisson’s ratio is different than that of the out of plane Poisson’s ratio for 1T

compounds. For example, PtS2 has νxy = 0.29 and νxz = 0.58. However, the Poisson’s ratio

of 1H monolayers is almost isotropic (νxy ≈ νxz ).
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D. Mechanical bending

The primary focus of this study is to understand the response of the TMD monolayers

to mechanical bending. We have calculated the bending stiffness and studied the change in

various physical and electronic properties due to bending. Since previous studies [27, 28]

showed that the bending stiffness is independent of the type of the armchair or zigzag edges

(chiral), we only utilized armchair-edge nanoribbons for the 1H structures. The bending

stiffness of 20 TMDs are compared and tabulated in Table I. Unlike the in-plane stiffness,

the overall bending stiffness increases from S to Se to Te (Table I), indicating a hardening of

the nanoribbons from S to Se to Te. The d0 compounds, especially S and Se, along with the

PdTe2 have lower (< 3 eV) bending stiffness. The lower flexural rigidity of these compounds

can result in enormous changes in their local strain as well as the charge density profile

under mechanical bending. The 1H compounds have higher bending stiffness, possessing

higher flexural rigidity against mechanical bending. The estimated bending stiffness of 12.29

eV for MoS2 agrees with the experimental values of 6.62-13.24 eV [12] as well as 10-16 eV

[27]. To explore the trend of mechanical strengths with respect to transition metal, one can

look into the d-band filling of valence electrons. The filling of the d band increases from

transition metal group IV (∼ sparsely-filled) to VI (∼ half-filled) to X (∼ completely filled)

within the same row in periodic table. Both quantities Y2D and Sb increase as the number

of valence d electrons increases until the shell becomes nearly half-filled. To facilitate the

claim further, we have estimated the in-plane stiffness and bending stiffness of 1H-NbS2

and 1H-TaS2 corresponding to group V (d1) transition metals. The in-plane stiffness of

NbS2 and TaS2 were found to be 95.74 N/m and 115.04 N/m respectively. In addition,

the bending stiffness was obtained as 4.87 eV and 6.43 eV respectively for NbS2 and TaS2.

Comparing TMDs (TX2) having the same chalcogen atom, we can see the trend d0 < d1 <

d2 for both stiffness. However, there is a decrement in both Y2D and Sb while going from

half-filled (d2) to nearly completely filled (d6) d-band transition metal. Moreover, the large

bending stiffness of group VI compounds decreases on changing phase from 1H to distorted

1T phase, for instance, 1H to 1T′ transformation in MoTe2.
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We utilized

teff =
√

12Sb/Y2D (3)

and

Y3D = Y2D/teff (4)

to estimate the effective thickness as well as the 3D Young’s modulus. An effective thickness

is the combination of dX−X distance and the total effective decay length of electron density

into the vacuum. Experimentally, it is difficult to define the total effective decay length of

the electronic charge distribution. Therefore, it is a common practice to take a range from

the dX−X distance to the inter layer metal-metal distance within the bulk structure as the

effective thickness, which gives the range for both in-plane stiffness and bending stiffness

[12, 27]. Using equation 3, one can estimate a reasonable value for the effective thickness

for a wide range of TMDs. However, the computed effective thicknesses teff of certain TX2

(T=Ti, Zr, Hf; X=S, Se) are less than their dX−X distance (Figure 1), which means that

bending is much easier than stretching. Similar underestimation was found for the effective

thickness of a carbon monolayer estimated by various methods [46–49]. Utilizing eq. (3),

Yakobson et al. [46], Wang [47], and Yu et al.[28] estimated the effective thickness of the

carbon monolayer to be around 0.7-0.9 Å, which is much less than 3.4 Å, the normal spacing

between sheets in graphite. Such huge underestimation indicates the possible breakdown of

the expression (3) to estimate the effective thickness in the case of atomically thin carbon

layer [47]. The 3D Young’s modulus (eq.4) allows us to compare the strength between vari-

ous 2D and 3D materials, for instance, MoS2 against steel. Similar to 2D in-plane stiffness,

the 3D Young’s modulus of TMD monolayers decreases from S to Se to Te. Due to the larger

underestimation of the effective thickness, there is a huge overestimation in the 3D Young’s

modulus of group IV compounds with sulfur as the chalcogen atom. With that in mind, one

can conclude that MoS2 as well as WS2 have large 3D Young’s moduli of 347.03 GPa and

351.02 GPa respectively, agreeing with the experimental value of 270±100 GPa [45] for MoS2.
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E. Effect of bending on physical properties

I. Local Strain

Local strain (ε =
δ−δflat
δflat

) projected on the y-z plane (see b-c plane in Figure 2 (II)) of

different TMD nano-ribbons corresponding to the bending curvature around 0.09 Å−1 are

presented in Supplementary Figure S1. The inner layer gets contracted while the outer

layer gets expanded, and this is consistent with the elastic theory of bending of a thin plate

[50]. The expansion of the outer layer is close to the contraction of the inner layer for 1T

compounds, while the expansion dominates the contraction in the case of 1H compounds

(Supplementary Figure S1). The middle metal layer is expanded up to 2% in the case of

1T while it is 5-10% for 1H, indicating that the middle layer is closer to the neutral axis

for 1T than that of the 1H compounds. For 1T′ compounds (MoTe2 and WTe2), the outer

layer is expanded more as compared to the contraction of the inner layer with a distortion

represented by the zigzag structure in the strain profile (Supplementary Figure S1).

To study the effect of bending on the local strain profiles, we compare the local strain

profiles of the PtS2 nano-ribbon projected on y-z plane, as shown in Figure 5. The inner

layer is contracted while the outer layer gets expanded. This effect increases upon increas-

ing the bending curvature. For PtS2, the middle layer is expanded within 2-3%, while the

expansion is 16-20% for the inner and the outer layer. Such large local strain can induce

a highly non-uniform local potential and hence affect the charge distribution. Both lattice

expansion in the outer layer and the lattice contraction in the inner layer could be applica-

ble in tuning adsorption (binding distance and energy) of the 2D materials, similar to the

linear strain modulated adsorption properties of various semiconducting or metallic surfaces

[51–53]. The tensile strain strengthens the hydrogen adsorption in TMD surfaces, while a

compressive strain weakens it [52]. By utilizing both the concave (compressive strain) and

convex (tensile strain) surfaces of a bent monolayers, one can tune the Gibb’s free energy

of hydrogen adsorption to zero when it is respectively more negative and more positive.
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FIG. 5: Local strain (ε =
δ−δflat
δflat

) with respect to the inner chalcogen-chalcogen (εinnerX−X),

metal-metal (εT−T ), and outer chalcogen-chalcogen distance (εouterX−X) projected in the y-z

plane for PtS2. Strain at metal indices “i” (see 2nd subfigure) is calculated with respect to

the distance between two metals at indices i-1 and i where i = 1, 2, ...10 (or 11)

II. Physical thickness

The behavior of different layers within the TMD nano-ribbon under mechanical bending

can be understood by looking at the variation of the physical thickness (ttot, defined later in

this section and shown in Figure 6) with respect to bending curvature. Moreover, tuning of

the physical thickness can be particularly useful in nano-electronic applications due to an

enhancement of the electron confinement in 2D materials with an out-of-plane compression

[54, 55]. A percentage change in the thickness (ttot, tup, or tdn) at the middle of various bent

nano-ribbons with respect to the unbent ones is presented in Supplementary Figure S2. ttot

represents an outer-inner chalcogen atom layer thickness at the vertex of a bent ribbon,

while tup and tdn correspond to outer-middle and middle-inner layers respectively. We fitted

a 6th order polynomial to each layer of the bent nanoribbon to estimate the thickness (Sup-

plementary Figure S3). The thickness measured between outer and inner chalcogen layers is

described by ttot (tup + tdn, blue) while tup (red) and tdn (green) are measured between the

outer-to-middle and middle-to-inner layers respectively (see Figure 6). When a thin plate is
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respectively (see Figure 2 (III)).

bent, it undergoes both compression (z’ to N, tdn) and expansion (N to z’+h, tup) with “N”

being the neutral surface [50] (see figure 2 (III)). As the middle layer does not mimic the

neutral surface (N), tup and tdn do not respectively increase and decrease with the bending

curvature. For most of the compounds, tup decreases on increasing the bending curvature.

On the other hand, tdn slightly increases for d0-1T compounds, but depends on the bending

curvature for d2-1H and d6-1T compounds (Supplementary Figure S2). For a quantitative

comparison among different materials, we plot the thicknesses for various TMDs around the

bending curvature of 0.09 Å−1 as shown in Figure 6. Group IV compounds have a lower

flexural rigidity, therefore have more of a decrement in the physical thickness (ttot) than

group VI and X compounds.
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F. Effect of the bending on electronic properties

I. Local electronic charge density

Along with the change in physical properties, mechanical bending also affects the electronic

properties. The local charge density (average over ab-plane, [Figure 2 (I)]) is computed and

plotted against distance along an out-of-plane direction (c- axis) [Figure 2 (II)]. The differ-

ent nature of the local charge distribution of flat WX2 (X=S, Se, Te) ribbon with two equal

local maxima may be related to the different pseudopotential used in the calculation. We

choose a narrow window (within 2 black vertical lines) at the middle of a nano-ribbon (for

both flat and bent) to study the local charge distribution near the surface-vacuum interface

as shown in Supplementary Figure S4. We define 3 different quantities Width, Max, and an

Area of the local charge density (left) and compared among the flat nano-ribbons of various

TMDs (right), as shown in Figure 7. The “Width” represents the distance over which the

charge density decays to a smaller non-zero value (ε < 10−4) in vacuum (Supplementary

Figure S4) which also gives a tentative idea about the total effective decay length of electron

density. In addition, the areal density (
∫Width

0
ρ(z)dz, an area under the curve) represents

the average number of electrons per unit area, as shown in Figure 7.

For the flat nano-ribbons, the width increases whereas Max and the Area decrease as we

go from S to Se to Te for a given transition metal. Increasing the width from S to Se to Te

indicates an increase in the total effective decay length of electron density, hence the effec-

tive thickness. Also, the width corresponding to flat 1H nano-ribbons is shifted upward by

atleast 0.5 Å compared to that of 1T flat nano-ribbons which then contributes to an effective

thickness giving larger bending stiffness. Our results suggest that the overall bending stiff-

ness follows the trend of the width of an electron density and hence the effective thickness.

The variation of the local charge density along an out of plane direction for different TMD

nano-ribbons with the bending curvature is presented in Supplementary Figure S5. When a

nanoribbon is bent, the local charge density shrinks with the bending curvature within an

outer layer-vacuum interface while expanding near the inner layer-vacuum interface leaving

the total width unaffected. However, both the Max and the Area decrease with increasing

bending curvature for most of the TMD compounds except for TiTe2 and WX2. For WX2,

the max. value of local maximum closer to the surface-vacuum interface decreases on in-
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creasing the bending curvature (Circular region in the Supplementary Figure S5) whereas

the other local maxima have an opposite trend. To study the effect of bending on the afore-

mentioned local maximum (Max) and areal density (Area) among different materials, we

estimate their percentage change with respect to the flat ribbon, as in Figure 7. The bending

produces noticeable changes in the charge distribution within the surface-vacuum interfaces.
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FIG. 7: (a) The local charge density along the out of plane (z) direction of the

nano-ribbon. (b) Width (Å), max (e/Å3, e: an electronic charge), and areal density (e/Å2)

of flat nanoribbon. (c) % change in an area and the max of the bent nanoribbons having a

bending curvature around 0.09 Å−1 with respect to the flat nano-ribbon; result of max.

value is not shown for WX2 as it possesses multiple local maxima.

II. Band structure

The band structure plots of group IV, VI, and X TMDs with respect to vacuum with

various bending curvatures are shown in Supplementary Figures S6, S7, and S8 respectively.

The dashed lines in the band structure plots indicate the SCAN estimated Fermi energy with

respect to vacuum (“-ve” of the work function) while the red bands correspond to in-gap
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TABLE I: The ground state properties of TMD mono-layers having 1H or 1T phase: Relaxed in-plane lattice constant, a;

Metal-chalcogen and chalcogen-chalcogen distance, dT−X and dX−X respectively (See Fig 1); X-T-X angle, θX−T−X ;

Cohesive energy per atom, Ec; in-plane (νin) and out-of-plane (νout) Poisson’s ratios; 2D Young’s modulus, Y2D; Bending

stiffness, Sb; and Effective thickness, teff . Results for structural parameters of TiX2 (X = S, Se, Te), MoX2, and WX2 are in

good agreement with the LDA+U results from reference 8. The structure parameters of distorted T compounds,WTe2 and

MoTe2 can be estimated from Supplementary Table S2. The representations of T4+ such as d0, d2, and d6 are taken from

Ref. 1.

T4+ TMDs a dT−X dX−X θX−T−X Ec νin νout Y2D Sb teff Y3D(Y2Dteff
)

(Å) (Å) (Å) degree (eV/atom) (N/m) (eV) (Å) (GPa)

d0 TiS2 3.42 2.42 2.80 90.16 6.80 0.17 0.42 85.20 2.25 2.25 378.67

TiSe2 3.55 2.55 3.04 91.76 6.17 0.23 0.43 59.74 2.86 3.03 197.72

TiTe2 3.76 2.77 3.44 94.55 5.41 0.24 0.38 44.46 3.29 3.77 117.93

ZrS2 3.67 2.57 2.87 88.14 7.35 0.19 0.52 83.76 2.13 2.21 379.00

ZrSe2 3.81 2.70 3.12 90.14 6.71 0.22 0.47 71.30 2.57 2.63 271.10

ZrTe2 4.01 2.91 3.53 92.94 5.89 0.18 0.44 43.16 3.01 3.66 117.92

HfS2 3.62 2.53 2.85 88.65 7.35 0.19 0.52 85.78 2.82 2.51 341.75

HfSe2 3.75 2.66 3.09 90.37 6.67 0.21 0.47 77.75 3.64 3.00 259.17

HfTe2 3.98 2.88 3.47 92.58 5.80 0.15 0.41 46.77 3.92 4.01 116.63

d2 MoS2 3.17 2.40 3.10 80.56 7.86 0.26 0.30 141.59 12.29 4.08 347.03

MoSe2 3.30 2.53 3.31 81.86 7.22 0.26 0.32 114.97 14.60 4.94 232.73

MoTe2-1H 3.51 2.71 3.59 83.04 6.54 0.28 0.34 87.88 14.63 5.65 155.54

MoTe2-1T′ 3.65 – – – 6.54 0.28 0.46 61.85 7.28 4.75 130.21

WS2 3.16 2.40 3.10 80.25 7.91 0.26 0.33 143.92 12.61 4.10 351.02

WSe2 3.29 2.53 3.32 82.16 7.20 0.33 0.35 130.03 14.48 4.62 281.45

WTe2-1T′ 3.61 – – – 6.49 0.35 0.60 86.79 8.96 4.45 195.03

d6 PdTe2 3.96 2.67 2.73 83.91 4.07 0.32 0.64 61.82 2.78 2.94 210.27

PtS2 3.52 2.37 2.45 84.25 5.73 0.29 0.58 105.81 5.66 3.20 330.65

PtSe2 3.68 2.49 2.60 84.83 5.32 0.26 0.59 87.01 6.33 3.74 232.65

PtTe2 3.95 2.66 2.74 84.15 5.07 0.26 0.57 81.41 4.58 3.29 247.45

edge states. The edge states are identified by comparing the band structures of the ribbon

with that of the monolayer bulk, and are highlighted by red color. The bulk band-gap (Eg

(eV)) (excluding edge states) and the work function (φ (eV)) of our flat nano-ribbons are

extracted and tabulated in Supplementary Table S1. Out of TMD nano-ribbons considered,

ZrX2, HfX2, MoY2, and WX2 (X = S, Se; Y = S, Se, Te) are semiconductors. To study the
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changes in the band structure of these semiconductors with respect to bending, we utilized

the hydrogen passivated edges. A few of the low band-gap semiconductors such as TiY2,

TTe2 (T=Zr, Hf) and group (X) indirect band-gap semiconductors (PtX2) become metallic

due to the edge states. We did not observe any substantial effect of bending on metallic

compounds. An effect of the mechanical bending on the band-gap is of particular interest

for semiconductors, due to a wide range of applications in nano-electronics. One each from

the 1T and the 1H group, respectively ZrS2 and MoS2, are chosen to study the effect of

bending on the band structure as shown in Figure 8.
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FIG. 8: Variation of band edges with respect to the bending curvature for ZrS2 (left) and

MoS2 (right); CBM and VB1 are the conduction band minimum and edge state VB

(valence band) respectively; CB1 (CBM), CB2, VB1 (VBM), and VB2 respectively are

edge state CB (conduction band), bulk CB, edge state VB (valence band), and bulk VB.

For flat MoS2 ribbon, VB1 represents the VBM while for higher bending curvature (κ =

0.09Å−1) VB2 switches to VBM.

The nature of edge states is different for 1T and 1H semiconductors. The 1T nanoribbon

has edge states only below the Fermi level while both the edge states above and below the

Fermi level are present in the 1H nanoribbon. The horizontal black dashed lines represent

water redox potentials with respect to the vacuum level, -4.44 eV for the reduction (H+/H2),

and -5.67 eV for the oxidation (O2/H2O) at pH 0 [56]. When the band edges straddle these

potentials, materials possess good water splitting properties. The band edges CB2, VB1

(VBM), and VB2 of MoS2 straddle the water redox potentials while only the edge state

CB1 stays within the gap. As semilocal DFT functionals underestimate the band gap [57],
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a correction is always expected at the G0W0 level (Supplementary Table S1), which shifts

the bands above and below the Fermi level even further up and below respectively [28].

However, it is known that such correction for localized states (in the case of point defects)

is less considerable than that for the delocalized bulk states [58].

(a) Tuning of band edges

The band edges (conduction band minimum (CBM) and valence band maximum (VBM))

of ZrS2 and other 1T semiconductors increase on increasing the bending curvature, while

this varies from one band edge to another for MoS2 and other 1H semiconductors. For

example, shifting of the band energies with respect to vacuum is negligible for edge states

as compared to the bulk ones for MoS2. The shifting of band edges also leads to changing

of the Fermi level as well as the band gap (Supplementary Figure S10). For MoS2, VB2

increases while VB1 decreases on increasing the bending curvature and eventually results in

the removal of some of the edge states, though, complete elimination might not be possible.

Since the mechanical bending shifts the band edges only by a little, the photocatalytic

properties of MoS2 and WS2 is preserved even for a larger bending curvature. On the other

hand, bending can shift the band edges of 1T semiconductors by a considerable amount

for bending curvature up to 0.06 Å−1, but shift downward for higher bending curvature.

For example, one can shift the band edges of ZrS2 upward by 0.25 eV when applying the

bending curvature of 0.06 Å−1. Moreover, the G0W0 calculated band structure shows that

the CBM (-4.58 eV and -4.53 eV respectively) of ZrS2 and HfS2 is slightly lower than the

reduction potential (-4.44 eV) while the VBM (-7.15 eV and -6.98 eV) is significantly lower

than the water oxidation potential (-5.67 eV) [59]. Mechanical bending can shift the band

edges in the upward direction to straddle the water redox potentials, enhancing the pho-

tocatalytic activity. The effect of bending on the band edges of 1H-TSe2 semiconductors

is different than that of 1H-TS2 (Supplementary Figure S9), especially in the bulk valence

band maximum (VB2). The VB2 is almost constant for lower bending curvature for TSe2,

while there is an appreciable increase in the case of TS2.
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(b) Charge localization and Conductivity

In this section, we describe the effect of bending on band edges in terms of localization

or delocalization of the charge carriers at those band edges. The variation of an isosur-

face of the partial charge (electrons or holes) density with respect to bending curvature

are presented in Figures 9 and 10. Using the mechanical bending, one can tune the con-

ductivity of TMD monolayers [28]. Before bending, the charge carriers (holes) of ZrS2 at

VB2 are delocalized over the whole ribbon width, decreasing in magnitude from S-edge to

Zr-edge. The mechanical bending localizes the charges towards the S-edge while depleting

along the Zr-edge, reducing the conductivity from one edge to the other. On the other

hand, the charge density on top of VB1 does not change much with the bending for lower

bending curvatures. However, at κ = 0.09 Å−1 some charges accumulate at the Zr-edge,

thereby changing the trend of band energy with respect to vacuum (see Figure 8). Unlike

ZrS2, the charge carriers (holes) of MoS2 at VB2 are delocalized over the whole width,

decrease in magnitude from the center of the ribbon to either side of edges symmetrically.

With bending, the charge carriers localize at the middle of the ribbon and deplete at the

edges, reducing the conductivity due to holes from one edge to the other [28]. At a higher

bending curvature beyond κ > 0.065Å−1, edge state VB1 crosses the bulk-VB and be-

comes VB2 and vice versa. Similar to VB1, CB1 also has the same behavior before and

after bending, except it does not cross the CB2. Instead, it is also shifted down as VB1 does.

Conversely, the charge carriers (electrons) of ZrS2 at the CBM (CB2) decrease in magni-

tude from Zr-edge to the S-edge. Again, mechanical bending localizes the electrons towards

the Zr-edge. On the other hand, the electronic conductivity does not change even for larger

bending curvature for MoS2. The electrons are delocalized uniformly over the whole ribbon

width which remains unaffected for a wide range of bending curvature. The conductivity

of a semiconductor is the sum of conductivity of both electrons and holes. The mechanical

bending reduces both types of conductivity in 1T semiconductors, while it only reduces

hole-type conductivity in 1H semiconductors.
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FIG. 9: Variation in the isosurface of partial charge densities at VB1 and VB2 (holes) with

respect to the bending curvature; (a) ZrS2; (b) MoS2; (c) Variation in the isosurface of the

partial charge densities (donor-like) of MoS2 at CB1 with bending curvatures.

G. Stability of nano-ribbons and finite width effect

Based on our calculation, we have found that the stability of the flat nano-ribbons also

depends on the type of edge. We have taken stoichiometric (n(X):n(T)= 2:1) nano-ribbons

(Supplementary Figure S4) for most of the calculations. However, we could not relax TiSe2,

HfS2, PdTe2, and PtSe2 nano-ribbons in this configuration. We confirm that the instability

of these flat ribbons cannot be removed simply by increasing the width of the ribbon. We

chose a symmetric edge nano-ribbon by removing 2 dangling X (S, Se or Te) atoms from

one of the edges for these compounds (Figure 2 II). Our calculation shows that the TMD

nano-ribbons are stable against mechanical bending for a wide range of bending curvature,

except for WTe2. The bond breaking at the curvature region is observed for κ > 0.086 Å−1,

as shown in Figure 11. Upon bending, one of the chalcogen atoms in the curvature region

moves towards the middle layer, causing a further separation of the 2 metal atoms, as shown
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FIG. 10: Variation in the isosurface of partial charge density (electrons) with respect to

the bending curvature at bulk conduction band minimum; (a) CBM for ZrS2; (b) CB2 for

MoS2.

inside the circle, creating a sudden jump, as shown in an areal bending energy density vs

curvature plot (See Figure 11 (III)).

We utilized the thin plate bending model in our assessment in which we fix the width

between flat and bent nanoribbons. It eliminates the quantum confinement effect present in

the nanotube method due to dissimilarity of the width between flat and bent nanoribbons

of the different radii of curvatures. However, the edge effects due to the finite width may

remain uneliminated. Rafael I. González et al. [60], using classical molecular dynamics

simulation, reported that the bending stiffness of MoS2 estimated with a 0.95 nm width

nanoribbon is only 46% of those estimated using a 8 nm width nanoribbon. But, it recovers

88-93% of bending stiffness when the width increases up to 3-4 nm, leaving the overall

trend unaffected. We believe that such an accuracy would be a reasonable tradeoff to the

computational complexity that arises while using a larger width. Moreover, we expect that

the finite size effect would be less present in our results than in those calculated from MD

simulation, as the quantum effects are more properly treated.

21



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
κ (Α0)−1

0

0.005

0.01

0.015

0.02

0.025

0.03

u 
(e

V/
Ao2

)

WTe2

(I) (II)

(III)

FIG. 11: (I)-(II): Structures for 2 different bending curvatures, showing the breaking of the
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on the right is for κ = 0.093 Å−1. (III) An areal bending energy density with respect to

bending curvature for WTe2, showing the breaking of structure.

IV. CONCLUSION AND DISCUSSION

The 2D materials offer a wide range of electronic properties efficiently applicable in sen-

sors, energy storage, photonics, and optoelectronic devices. The higher flexural rigidity and

strain-tunable properties of these compounds make them potential functional materials for

future flexible electronics. In this work, we have employed the SCAN functional to explore

the physical and mechanical properties of the 2D transition metal dichalcogenide (TMD)

monolayers under mechanical bending. SCAN performs reasonably well in predicting the

correct ground state phase as well as the geometrical properties. Also, a wide variety of

flexural rigidities can be observed while scanning the periodic table for TMDs. The in-plane

stiffness decreases from S to Se to Te, while the bending stiffness has the opposite trend.

Overall, the bending stiffness also depends on the d band filling in the transition metal. The

bending stiffness increases on increasing the filling of the d band from sparsely-filled (d0) to

nearly half-filled (d2). However, decrease in bending stiffness is observed on moving from

nearly half-filled (d2) to completely-filled (d6) d band. The out-of-plane Poisson’s ratios are
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found to be different from the in-plane Poisson’s ratio for 1T and 1T′ monolayers, while the

difference is negligible in the case of 1H compounds, showing an anisotropic behavior of 1T

and 1T′ monolayers.

Despite the extraordinary physical and electronic properties of TMDs, there are still

challenges to make use of TMD semiconductors in nanoelectronics. The strong Fermi level

pinning and high contact resistance are key bottlenecks in contact-engineering which are

mainly due to in-plane, in-gap edge states and do not depend too much on the work function

of a contact metal [61]. Thanks to mechanical bending, tuning of various properties of

monolayer TMDs is possible, including band edges, thickness, and local strain. Bending

deformation produces highly non-uniform local strain up to 40% (Supplementary Figure

S1), which is almost impossible with a linear strain (ε). The high out-of-plane compressive

strain developed within the layers due to bending reduces the mechanical thickness and

makes the materials thinner in the curvature region. Moreover, one can remove strong

Fermi-level pinning while using it in contact-engineering. Besides that, the optimal band

alignment with the HER redox potential can be achieved for 1T semiconductors ZrS2 and

HfS2 under mechanical bending, which are not present in an unbent monolayer. Furthermore,

both electron and hole conductivities are affected in 1T semiconductors, while only the hole

conductivity is affected in 1H semiconductors [28]. Similar to graphene [46–49], the estimated

effective thickness of group IV TMDs, especially sulfide and selenide, is underestimated as

compared to chalcogen-chalcogen distance (dX−X), which is quite puzzling and needs further

investigation.
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