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In this work we explore the potential of a new data-driven approach to the design of exchange-
correlation (XC) functionals. The approach, inspired by convolutional filters in computer vision
and surrogate functions from optimization, utilizes convolutions of the electron density to form a
feature space to represent local electronic environments and neural networks to map the features
to the exchange-correlation energy density. These features are orbital free, and provide a system-
atic route to including information at various length scales. This work shows that convolutional
descriptors are theoretically capable of an exact representation of the electron density, and proposes
Maxwell-Cartesian spherical harmonic kernels as a class of rotationally invariant descriptors for the
construction of machine-learned functionals. The approach is demonstrated using data from the
B3LYP functional on a number of small-molecules containing C, H, O, and N along with a neural
network regression model. The machine-learned functionals are compared to standard physical ap-
proximations and the accuracy is assessed for the absolute energy of each molecular system as well
as formation energies. The results indicate that it is possible to reproduce the exchange-correlation
portion of B3LYP formation energies to within chemical accuracy using orbital-free descriptors with
a spatial extent of 0.2 Å. The findings provide empirical insight into the spatial range of electron
exchange, and suggest that the combination of convolutional descriptors and machine-learning re-
gression models is a promising new framework for XC functional design, although challenges remain
in obtaining training data and generating models consistent with pseudopotentials.

I. INTRODUCTION

Since its introduction in the mid-1960s1,2, density func-
tional theory (DFT) has become a much-used tool in
the fields of chemistry, material science, biology and oth-
ers. The popularity of DFT arises mainly from its sim-
ple formalism and low computational cost compared to
wavefunction theories (WFTs). The basic formalism of
DFT establishes that the exact ground-state energy can
be written as functional of the electron density:

EGS [ρ(~x)] = T [ρ(~x)] + J [ρ(~x)] + Eext[ρ(~x)] + Exc[ρ(~x)]
(1)

where ρ(~x) is the ground-state electron density, EGS is
the ground-state energy, T is the kinetic energy func-
tional for the non-interacting system, J is the classi-
cal Coulomb self-energy (or Hartree energy) functional,
Eext is the energy due to external potential (e.g. atomic
nuclei), and Exc is the exchange-correlation functional
that accounts for the difference between classical and
quantum-mechanical electronic repulsion as well as the
difference in kinetic energy between the non-interacting
and interacting systems2. Of these, T , J , and Exc are
independent of the external potential and are hence con-
sidered “universal” functionals, while Eext depends on
the atomic coordinates of a chemical system. Further-
more, T , J and Eext are known exactly, so the challenge
is to determine Exc. Although a universal and exact
ground-state Exc functional does exist as proved by Ho-
henberg and Kohn1, the form of this functional remains
unknown. Numerous strategies have been employed to
construct density functional approximations (DFAs) for

Exc; however, despite over five decades of research and
hundreds of trials, no existing functionals are universally
comparable to the accuracy of wavefunction theories.

Construction of DFA’s relies on two main components:
a model space that describes the electronic environment
and a functional that connects the model space to the
energy density. The concept of improving approxima-
tions by increasing the complexity of the model space
is captured by Perdew’s popular analogy to “Jacob’s
ladder”3, which reveals an important trend: the more
non-local information that is used to describe the elec-
tronic environment, the better the quality of the approx-
imation. In the early days, Kohn and Sham approxi-
mated Exc by assuming a uniform electron gas with an
electronic density equal to the (spin) density at a lo-
cal point, referred to as the local density approximation
(LDA)2. This approximation is surprisingly accurate for
delocalized systems such as metals, but its accuracy is
considerably lower for molecules. The next major im-
provement came decades later when several authors pro-
posed using the gradient of electron density as an ad-
ditional input to the exchange-correlation functional4–7.
This led to the development of a family of DFA’s known
as generalized gradient approximation (GGA) function-
als that provided an order of magnitude improvement
in accuracy and started a rapid increase in the appli-
cation of DFT. The next logical step would be inclu-
sion of the second derivative in the spirit of a Taylor
expansion; however, the kinetic energy density is more
commonly used3. This “meta-GGA” (mGGA) functional
family includes a diverse range of physical and empirical
approximations that have generally improved accuracy,
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although the improvements are not always systematic8.
The next class of functionals deviates from the strat-
egy of adding more semi-local information by including
a component of fully non-local exact exchange. These
“hybrid functionals”, introduced by Becke and coworkers
in the B3PW91 functional9,10, exhibit another general
(though not necessarily systematic) improvement in ac-
curacy. Hybrid functionals such as the ubiquitous B3LYP
functional9,11 are very popular, particularly in the chem-
istry community, due to their high accuracy and rela-
tively low cost for molecular systems. However, hybrid
functionals have considerably higher computational cost
and are difficult to implement for extended systems (e.g.
solids and surfaces), leading to screened hybrid function-
als such as HSE0612,13. Numerous other strategies have
also been employed to capture long-range interactions,
including fully non-local approaches such as 100% ex-
change functionals14,15, approaches that combine mul-
tiple approximations16–20, double-hybrid functionals in-
cluding wavefunction based correlation21–23, and func-
tionals including dispersion24–30. These diverse options
for model spaces indicate that inclusion of additional and
increasingly non-local information increase the accuracy
of DFA’s; however, the improvement of model spaces has
been based primarily on chemical intuition. This is ad-
vantageous in the derivation of functionals from chemical
and physical principles, but also leads to difficulties in
systematically improving models or deconvoluting multi-
ple physical effects to avoid double counting.

An alternative approach to model space development
is to construct model spaces that can be systematically
expanded into a theoretically complete description of the
system. This is similar to a common approach in the
fields of image processing and computer vision where
convolutions are used to extract features/information of
varying length scales31,32. A noteworthy recent triumph
in the application of convolutions in image processing
are convolutional neural networks (convNets)33,34 where
convolutional kernels are determined through deep learn-
ing. ConvNets have achieved unprecedented accuracy
in handwriting, object, and facial recognition, and have
revolutionized the field of image analysis34–39. This ap-
proach can be translated to the field of functional devel-
opment since electron density data can be projected onto
a finite-difference grid and treated as a 3D image. With
3D convolutions, any local and semi-local feature of the
electronic environment can be extracted, analogous to 2D
images. In this work we explore this approach to model
space construction, and show that the convolutional de-
scriptor model space is theoretically complete in the limit
that the kernel has the same size as the system.

In addition to the model space, a functional requires a
mathematical connection between the model space and
the exchange-correlation energy. This challenge is at the
core of most functional development, and there are two
distinct philosophies. The reductionist approach applies
physical principles and theoretical constraints to derive
“parameter-free” functionals. The PBE functional is a

well-known example of this philosophy40,41. These de-
rived functionals tend to have less systematic bias to-
ward specific molecular systems and have a predictable
accuracy across all systems, although this might not al-
ways be true for all kinds of systems42,43. The alterna-
tive approach is empiricism, with a more practical focus
on maximizing the accuracy of DFT in specific applica-
tions. Most empirical functionals are based on derived
functional forms where some parameters are optimized
based on molecular data of the systems of interest. The
data is usually obtained from experiments or higher-level
calculations. These functionals are usually accurate for
systems similar to those used in training, but the accu-
racy is typically lower for other systems or properties44.
The B3LYP functional and the Minnesota functionals are
well-known examples of empirical functionals9,11,45–48.
Recently, approaches from machine learning (ML) have
taken the empirical approach to functional development
to its logical extreme. In a seminal paper by Snyder et al.
the idea of using ML to connect density and kinetic en-
ergy density of a 1D model system is introduced49. The
success of this approach inspired substantial interest and
subsequent development of employing ML in many differ-
ent ways related to DFT. An extensive review is beyond
the scope of this work, but examples include the use of
ML to develop molecular dynamics force-fields50–52, ap-
plication of ML models to reproduce DFT results without
the use of expensive QM calculations53–60, application of
ML to improve the accuracy or speed of DFT61–64 and
direct inclusion of ML models in the construction of den-
sity functionals44,65–68. These numerous strategies have
illustrated the substantial promise of ML techniques in
the field of functional development.

The key concept of ML-based density functionals is
that highly-flexible “universal” regression models with
thousands or millions of parameters are applied to con-
nect a model space to the exchange-correlation energy.
The parameters are optimized using a large amount of
known data from experiment or calculations. This strat-
egy does not require any knowledge of the complex un-
derlying physics, but instead the challenge arises from
obtaining a sufficient amount of high-quality data and
utilizing verification and validation approaches to avoid
over-parameterization. Machine learning models also
have the advantage of being systematically improvable
by addition of training data and/or increase of the re-
gression model complexity (i.e. increase of the number
of fitting parameters). Some common choices of regres-
sion models are support vector regressors (SVR)69, ker-
nel ridge regression (KRR)70, Gaussian process regres-
sors (GPR)71, and artificial neural networks (NN)72,73.
Neural networks are a particularly interesting and popu-
lar class of non-linear regression models due to their prop-
erty of being theoretically capable of approximating any
function to arbitrary accuracy, as proved by the univer-
sal approximation theorem74,75. The complexity of a NN
can be easily tuned by adding/removing neurons and lay-
ers, and prediction is very fast once training is complete.
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The quality of the approximation will ultimately depend
on the amount of training data available and the heuris-
tics applied during the training process, but in principle
NN’s provide a route to a systematically-improvable re-
gression model to connect a given model space to the
exchange-correlation energy.

In this work, we combine the ideas of convolutional
fingerprinting of electronic environments and neural net-
works to propose a functional design framework with
systematically improvable model spaces and regression-
based functionals. We show that 3D convolutions can
be used to re-formulate finite-difference DFT and are
theoretically complete in the trivial limit that the con-
volutions are equivalent to the input density. We also
developed a specific class of convolutional kernels to ex-
tract features (or “descriptors”) and form model spaces
that are complete and rotationally invariant, inspired
by the work of Worral et al.76 and Applequist77. This
is combined with NN regression models and exchange-
correlation (XC) data from the B3LYP hybrid functional
for a range of small molecule systems to construct “sur-
rogate” functionals. These surrogate functionals are in-
spected based on their accuracy as compared to the grid-
projected B3LYP XC functional, which is chosen to be
the ground truth in this study since it is widely used and
there is no semi-local closed form for the exact exchange
energy. The resulting convolutional surrogate functionals
are orbital-free and have systematically increasing non-
locality, providing a route to test the systematic improve-
ment of the resulting functionals and gain insight into
the locality of electron exchange. The results indicate
that accuracy increases significantly with the size of the
model space, and that it is possible to reproduce B3LYP
energies to within chemical accuracy using a semi-local
orbital-free functional with a range of > 0.1 Å. However,
practical challenges remain in the finite-difference repre-
sentation of all-electron systems, and access to spatially-
resolved exchange-correlation data is currently limited.
These obstacles are non-trivial, but addressing them rep-
resents an alternative strategy for XC functional devel-
opment.

II. METHODS

The DFT data are generated with the Psi4 package78.
Single-point spin-paired calculations are performed at the
B3LYP/aug-cc-pvtz level with both density and energy
convergence set to 10−12 Ha. The geometries of molecules
are taken from computational chemistry comparison and
benchmark database (CCCBDB) maintained by NIST79

and are static for all calculations. The training set con-
sists of 15 small-molecule systems: C2H2, C2H4, C2H6,
CH3OH, CH4, CO, CO2, H2, H2O, HCN, HNC, N2,
N2O, NH3, O3. These molecules contain 4 common atom
types (C, H, O, N) and a diverse range of single, dou-
ble, and triple bonds between them. An additional 7
molecular systems that have similar chemistry are used

(a) Before sub-sampling (b) After near-uniform
sub-sampling

Figure 1: Example of the near-uniform sub-sampling
algorithm applied to a 2D random Gaussian

distribution data set with hyper-parameters of
cutoff = 0.2, rate = 0.1.

as an independent test set: CH3CN, CH3CHO, H2CCO,
H2CO, H2O2, HCOOH, N2H4. In addition, 3 extra
molecular systems with different chemistry, CH3NO2,
NH2CH2COOH (glycine), NCCN, are used to test the
models’ ability to extrapolate. This “extrapolation set” is
not included in the accuracy analysis, but is used to probe
the generality of the model in Sec. III C 3. The converged
electronic density (ρ) and exchange-correlation energy
density (εxc) of the systems are projected onto a uniform
3D finite-difference grid and stored as 3D arrays. The
overall size of each grid is 10 Å × 10 Å × 10 Å with the
molecule centered in the cell, and the grid-point spacing
is 0.02 Å. This results in a total of 5003 = 125, 000, 000
data points per system. Due to memory limitations, do-
main decomposition with sub-grids of 2Å × 2Å × 2Å
are used for data manipulations including descriptor ex-
traction, sub-sampling, and prediction. The scipy80 im-
plementation of fast Fourier transform convolution (FFT
convolution) is used to extract electronic environment de-
scriptors. To ensure correct padding of the convolutions,
each sub-grid is combined with the 26 neighboring sub-
grids prior to FFT convolutions.

The resulting data for each system is sub-sampled to
reduce the computational burden of training. A “near-
uniform” sub-sampling algorithm is developed to pro-
duce roughly uniform sampling density across the high-
dimensional space. This improves sampling efficiency by
ensuring that rare data points from the tails of the distri-
bution are included in the training sample. An illustra-
tion of the procedure is shown in Figure 1 and detailed
explanations of the procedure can be found in the Sup-
plementary Information.

The near-uniform sub-sample is supplemented with a
random sub-sample to provide information about the rel-
ative frequency of points in the original distribution. A
fixed random sub-sample size of 10,000,000 in total for all
training systems is selected, resulting in total sub-sample
size of roughly 680,000 training points per molecule.
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The remaining 124,320,000 points in each molecular sys-
tem are used to test the resulting models, correspond-
ing to roughly 0.55% training data and 99.45% testing
data, where <0.05% of the training data is selected non-
randomly to ensure that the tails of the distribution are
represented. This is supplemented with fully indepen-
dent validation sets from 7 additional molecular systems
that are not used in model training; these systems are
considered “test” systems in the remainder of the paper,
while molecular systems used in model development are
referred to as “training” systems although only 0.55% of
their data is actually used to train the NN models. The
3 additional molecular systems in the “extrapolation set”
are also used to test the model and no points from these
systems are used in training.

The machine-learning models are constructed using
a framework similar to ∆ machine learning81 based on
residuals from a re-fitted Vosko-Wilk-Nusair (VWN)82
LDA model. The model is formulated as:

ε̃xc(~x) = Er−VWN (ρ(~x), C1, γ, α1, β1, β2, β3, β4)

+ENN (λi[ρ(~x)],Wjk)
(2)

where ε̃xc(~x) is the predicted XC energy density,
Er−VWN is the energy of a VWN LDA model with
the numerical values of its parameters (C1, γ, α1,
β1, β2, β3, β4) re-fitted to 1,000,000 randomly-selected
data points from the B3LYP training systems. This
re-parameterization is achieved with the Nelder-Mead
algorithm83 as implemented in scipy80 and the same r-
VWN model is used for all surrogate functionals. The
ENN term corresponds to a NN with a set of input de-
scriptors, λi and weights Wjk. The weights are opti-
mized using the Adam algorithm for stochastic gradi-
ent descent84 as implemented in the Keras package85.
A standard NN architecture of 2 hidden layers with 100
neurons and the ReLU activation function86 is used for
consistency. The training data is divided into separate
steps with different learning rates and loss functions; de-
tails are available in the Supplementary Information.

All energies are evaluated non-self-consistently by di-
rectly evaluating the integral of the predicted XC energy
density with the self-consistent B3LYP electron density
is used as an input. The accuracy of the resulting models
is assessed with three different error metrics at the chem-
ical system level: sum of local absolute error (εabsolute),
energy prediction error (εpredict) and formation energy
prediction error (εformation), each probing different as-
pects of the models. The sum of local absolute error cor-
responds to the integral of absolute difference between
the predicted and actual XC energy density:

εabsolute =
∑
i

|εxc(~xi)− ε̃xc(~xi)| × h3 (3)

This is a straightforward definition of the error from the
perspective of model training, and is proportional to the
mean absolute error. It directly probes the absolute accu-
racy of the model for a system and gives an upper bound

for energy prediction error. The energy prediction error
corresponds to the error of the integral of the XC energy
density over the system, as approximated by the sum of
the predicted energy at all grid points:

εpredict = Exc −
∑
i

ε̃xc(~xi)× h3

=
∑
i

(εxc(~xi)− ε̃xc(~xi))× h3
(4)

This is proportional to the mean signed error, and can-
cellation of error will result in errors lower than the sum
of local absolute error. The final metric of formation
energy prediction error is the most practical since these
relative quantities are most relevant in chemistry, and
cancellation of systematic errors is a common feature of
DFT functionals. The predicted formation energy error
is obtained by computing the formation energy of each
species relative to the following atomic reference states
that are commonly employed in DFT studies:

εform = Exc −
∑
i

niµi (5)

where ni is the number of atoms i in the molecule, and
µi is the reference energy of each atomic species. In this
case, the following molecular references are used for each
atomic species: C = CH4, N = NH3, O = H2O, and H
= H2. Formation energy errors enable the most cancella-
tion of error, but anti-cancellation is also possible in the
case of over-fitted models. Hence, formation energy er-
rors compared to local and system level errors provide a
convenient and practical measure of model accuracy and
over-fitting.

The code for constructing descriptors, training, and
evaluating models is available via the supporting infor-
mation.

III. RESULTS AND DISCUSSION

The results are presented in three parts. In Sec. IIIA
the theoretical motivation for using convolutions to con-
struct model spaces is presented by re-formulating the
XC energy in terms of convolution kernels, and some ad-
vantages and limitations are discussed. In Sec. III B
a specific class of “convolutional descriptors” based on
spherical harmonics are applied to the dataset of small
molecules. In Sec. III C the machine learning framework
for XC energy is introduced through discussion of both
the re-parameterized VWN model and the NN models
that are used to fit the residuals. The accuracy of mod-
els based on various model spaces are presented and dis-
cussed.
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A. Convolutional reformulation of
exchange-correlation functional

The theoretical motivation for using convolutions to
form a basis set for XC model spaces is based on two
properties: systematic increase of spatial range, and the-
oretical completeness in the limit that the range is equal
to the system size. The spatial range can be increased by
increasing the maximum size of the convolution kernels.
To show completeness we re-formulate the XC functional,
Exc[ρ(~x)], as a function of convolutions between a set of
kernels and the electron density. We show that the func-
tional is equivalent to the function with the proper choice
of kernels in the case where (i) the density is discretized
onto a finite-difference (FD) grid, (ii) the maximum ker-
nel size is equal to the system size, and (iii) the number
of convolutions is equal to the number of points in the
finite difference grid. This equivalence between function-
als and functions for numerical representations in DFT
has been noted before87; here we briefly examine the spe-
cific case of finite difference representations and convolu-
tions. We restrict the discussion to the spin-paired case
for simplicity, but the same arguments hold in the case of
spin-polarized systems. Similar arguments are expected
to hold for any energy functional including the kinetic
energy or full system energy, though we focus only on
XC energy here. First, we consider spatially-resolved XC
energy densities:

Exc[ρ(~x)] =

∫
R3

εxc[ρ(~x)](~x)d3~x (6)

where εxc[ρ(~x)](~x) is the exchange-correlation energy
density defined at each point ~x in space. The existence
of a locally-resolved XC energy density and methods to
extract it have been examined previously88, although ex-
tracting this quantity presents a practical challenge for
wave-function theories. Next, consider a finite-difference
representation of the electron density:

ρ(~x) = ρxyz (7)

where the density is represented on a 3D grid and x, y,
z are indices of each voxel along the (x, y, z) Cartesian
axes. We note that these indices can be “unraveled” such
that ρxyz can be considered as a 1-dimensional vector of
N3 points with a single index, although it is conceptu-
ally simpler to consider ρxyz as a 3-dimensional array of
voxels. Each voxel has dimensions of hx, hy, hz Å and
a corresponding volume of v = hxhyhz Å3; for simplicity
we consider the isotropic case where hx = hy = hz = h.
The finite difference representation is chosen because it
is intuitive, convenient for convolutions, commonly used
in solid-state codes89–91, and systematically converges to
the exact density in the limit of hi → 0. The XC energy
can also be written in terms of a finite difference basis:

εxc[ρ(~x)](~x) = εlmn(ρxyz) (8)

where l, m, n are also indices of each voxel. Here we have
exploited the fact that a functional becomes a function
when its argument is represented in a numerical basis (i.e.
the XC energy density at each grid point is a function
of the value of the electron density at every grid point).
Finally, we introduce the concept of density convolutions:

λxyzq = (Cq ~ ρ)xyz (9)

where λxyzq represents a vector of “convolutional descrip-
tors” (indexed by q) spatially-resolved at each grid point
(indexed by xyz), and Cq is an arbitrary convolution ker-
nel of size nx × ny × nz. For convenience we restrict dis-
cussion to the case where nx = ny = nz = n, and n is
odd, such that we can define the range rq of a convolution
kernel Cq as rq = h(n− 1)/2. Furthermore, we consider
only the case of periodic boundary conditions to avoid
issues of padding. In this case λxyzq is always the same
dimension as ρxyz, corresponding to a feature vector in-
dexed by q at each grid point xyz. The restriction to
periodic boundary conditions is a minor limitation, con-
sidering that any finite system can be represented as a
periodic system with sufficient vacuum padding; this is
commonly exploited in plane-wave codes. Considering a
set of convolution kernels produces a set of Nd (q ≤ Nd)
local descriptors for a point xyz in space. These de-
scriptors capture information out to a distance of a total
range R = max(rq). If the largest dimension of the unit
cell of the system is given by Lmax then in the limit of
R→ Lmax/2 and Nd → n3 the full non-local density can
be recovered by using n3 delta-function kernels:

λ̃lmn
xyz = (δxyz ~ ρ)lmn = ρxyz (10)

where δxyz = 1 if xyz = lmn, 0 otherwise and λ̃lmn
xyz is

the fully non-local descriptor set, equivalent to “unravel-
ing” the entire density grid as a vector (indexed by xyz)
at each spatially-resolved grid point (indexed by lmn).
Substitution into Eq. 8 yields:

εlmn(ρxyz) = εlmn(λ̃lmn
xyz ) (11)

This expression is a trivial re-statement of Eq. 8, but it
has the advantage of being a system-independent map-
ping between a locally-centered electronic environment
(as characterized by its convolutional descriptors) and
a corresponding local XC energy density. However, in
practice Eq. 11 is no more efficient or practical than
Equation 8 since both ultimately require a fully non-local
6-dimensional evaluation of the energy functional. How-
ever, Eq. 11 provides a natural starting point for estab-
lishing controlled orbital-free approximations to the XC
energy density based on sets of descriptors λlmn

q where
R << Lmax/2 and Nd << n3.

εlmn(ρxyz) = εlmn(λ̃lmn
xyz ) ≈ εlmn(λlmn

q ) (12)



6

The two most common classes of orbital-free XC func-
tionals, LDA and GGA, are easily reformulated in terms
of convolutional descriptors. For example, the LDA func-
tional approximates the exchange-correlation energy at a
point ~x with the XC energy of the homogeneous electron
gas with density equivalent to that point:

εLDA[ρ(~x)](~x) = εHEG(ρ(~x)) (13)

or, in convolutional notation:

εlmn
LDA(ρxyz) = εlmn

HEG(ρlmn) = εlmn
HEG(λlmn

0 ) (14)

where λlmn
0 = (δlmn~ρ)lmn = ρlmn. In the case of GGA

functionals the XC energy density depends on the density
and its gradient:

εGGA[ρ(~x)](~x) = εGGA(ρ(~x),∇ρ(~x)) (15)

or, in convolutional notation:

εlmn
GGA(ρxyz) = εlmn

GGA(ρlmn,∇ρlmn) = εlmn
GGA(λlmn

0 , λlmn
1 )
(16)

where λlmn
0 = ρlmn as before, and λlmn

1 = (∇1 ~ ρ)lmn

where ∇1 is a finite difference stencil corresponding to
the gradient. This pattern can be generalized to higher-
order derivatives to produce a class of convolutional XC
functionals based on differential stencils:

εlmn
∇N (ρxyz) ≈ εlmn(∇lmn

0 ,∇lmn
1 ,∇lmn

2 , ...∇lmn
N )

= εlmn(∇lmn
q )

(17)

where ∇xyz
q = (∇q ~ ρ)xyz and ∇q is the qth unmixed

partial derivative stencil, with ∇0 ≡ δxyz. Thus, εlmn
∇0

corresponds to any fully local functional (e.g. LDA) and
εlmn
∇1 corresponds to GGA functionals, while εlmn

∇2 corre-
sponds to functionals that include the Laplacian92, etc.
The idea is analogous to that of Taylor series expan-
sion in that it uses linear combinations of different or-
ders of derivatives to approximate a function. Hence the
functional should become more accurate as higher order
derivatives are included and longer-range information is
taken into account. However, this approach suffers from
a few issues, in theory and in practice: it’s hard, if not
impossible, to construct isotropic or rotation-invariant
stencils for higher order derivatives, gradient expansions
only improve accuracy when the density varies slowly,
and higher order derivatives tend to become numerically
unstable with practical grid spacing, or even not inte-
grable at all93,94. It is clear that the descriptors must
stay constant as the system rotates and translates. In
other words, the stencils need to be rotation- and trans-
lation invariant. The magnitude of gradient operator and
the Laplacian operator (trace of the Hessian) that are ef-
fectively adapted in GGA and mGGA, respectively, are
known to be isotropic. However, the invariant norms of
higher-order derivative tensors are not well known. Fur-
thermore, issues with numerical stability are encountered

when computing the Laplacian and higher order deriva-
tives, even with analytical basis sets. For these reasons
most functionals based on ∇xyz

2 have been abandoned for
the “meta-GGA” approach, which substitutes the kinetic
energy density, τxyz, for ∇xyz

2
95,96. The kinetic energy

density is not orbital-free, and this transition deviates
from the formalism of the Taylor expansion, making it
unclear how to systematically improve model spaces be-
yond mGGA.

B. Maxwell-Cartesian spherical harmonic
descriptors

Prior to selecting a convolutional descriptor set to fin-
gerprint electronic environments, it is important to first
define the necessary properties of the descriptor set. First
the descriptor set needs to be complete. This means, at
the limit of taking all the descriptors from the set, they
should form a complete basis that can describe all pos-
sible variations in the electronic environment, or that of
any 3D function in general. This complete set would be
infinite, therefore the set should have a clear entry point
and a systematic route toward convergence. Further-
more, the descriptors need to be invariant under transla-
tion and rotation, consistent with the symmetries of the
Hamiltonian.

To find such descriptor set, the variation of 3D func-
tions is decomposed into two parts: variations in an-
gular coordinate (rotational variation) and variations in
the radial coordinate (radial variation). The Maxwell-
Cartesian spherical harmonics (MCSH) capture the ro-
tational variations, and the radial variation is captured
by varying a cutoff distance. The MCSH descriptors
are selected over standard spherical harmonics because
they posess straightforward rotationally-invariant norms.
This is inspired by the circular-harmonic-based 2D rota-
tionally equivariant features developed by Worral et al.76
that has been generalized to 3D by the work of Thomas et
al.97, as well as Applequist’s work77 on MCSHs. Specifi-
cally, the descriptor set is defined as follows:

{
M

(n)
r,ijk =

√∑
P (i,j,k)

µ2
r,ijk | i, j, k ∈ N, r ∈ R+

}
(18)

where M denotes the descriptors, P (i, j, k) denotes the
permutation group of i, j, k, n = i + j + k is the order
of the descriptor, and µr,ijk is the convolution result us-
ing spherical harmonic Sijk with cutoff distance r as the
stencil:

µr,ijk = input~

stencil︷ ︸︸ ︷[
fr(x, y, z)× S(n)

ijk (x, y, z)
]

(19)

fr is a step function that controls the cutoff distance, and
S
(n)
ijk is the Maxwell-Cartesian spherical harmonic:
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(a) S(0)

P (000)
(b) S(1)

P (100) (c) S(2)

P (200) (d) S(2)

P (110)

(e) S(3)

P (300) (f) S(3)

P (210)
(g) S(3)

P (111)

(h) S(4)

P (400)
(i) S(4)

P (310)

(j) S(4)

P (211) (k) S(4)

P (220)

Figure 2: Graphical illustrations of the first 4 orders of Maxwell-Cartesian spherical harmonics (MCSH) descriptor
kernels denoted by S(n)

P (ijk). n is the order and P (ijk) denotes the permutation group of the index ijk. The
Euclidean norm of MCSH stencils in each group provides the 3D rotation-invariant descriptors that are used as

inputs to the neural networks.

fr(x, y, z) =

{
1 if

√
x2 + y2 + z2 ≤ r

0 if x < 0
(20)

S
(n)
ijk (x, y, z) =

i/2∑
m1=0

j/2∑
m2=0

k/2∑
m3=0

(−1)m(2n− 2m− 1)!!

×
[
i
m1

] [
j
m2

] [
k
m3

]
r2mxi−2m1yj−2m2zk−2m3

(21)

where m = m1 +m2 +m3, and

[
a
b

]
=

a!

2bb!(a− 2b)!
(22)

Thus, each descriptor is the Euclidean norm of µr,ijk

with all possible combination of i, j, k, and the whole set
can be written as:


√
µ2
r1,000

,
√
µ2
r1,100

+ µ2
r1,010

+ µ2
r1,001

,
√
µ2
r1,200

+ µ2
r1,020

+ µ2
r1,002

,
√
µ2
r1,110

+ µ2
r1,101

+ µ2
r1,011

, . . .√
µ2
r2,000

,
√
µ2
r2,100

+ µ2
r2,010

+ µ2
r2,001

,
√
µ2
r2,200

+ µ2
r2,020

+ µ2
r2,002

,
√
µ2
r2,110

+ µ2
r2,101

+ µ2
r2,011

, . . .

. . .

 (23)

The first four orders of the MCSHs are listed in Table I and illustrated in Figure 2. The detailed properties of
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n {ijk} S
(n)
ijk

n {ijk} S
(n)
ijk

0 000 1 4 400 105x̂4 − 90x̂2 + 9
1 100 x̂ 040 105ŷ4 − 90ŷ2 + 9

010 ŷ 004 105ẑ4 − 90ẑ2 + 9
001 ẑ 310 105x̂3ŷ − 45x̂ŷ

2 200 3x̂2 − 1 301 105x̂3ẑ − 45x̂ẑ
020 3ŷ2 − 1 031 105ŷ3ẑ − 45ŷẑ
002 3ẑ2 − 1 130 105x̂ŷ3 − 45x̂ŷ
110 3x̂ŷ 103 105x̂ẑ3 − 45x̂ẑ
101 3x̂ẑ 013 105ŷẑ3 − 45ŷẑ
011 3ŷẑ 220 105x̂2ŷ2−15x̂2−15ŷ2+3

3 300 15x̂3 − 9x̂ 202 105x̂2ẑ2−15x̂2−15ẑ2+3
030 15ŷ3 − 9ŷ 022 105ŷ2ẑ2−15ŷ2−15ẑ2+3
003 15ẑ3 − 9ẑ 211 105x̂2ŷẑ − 3ŷẑ
210 15x̂2ŷ − 3ŷ 121 105x̂ŷ2ẑ − 3x̂ẑ
201 15x̂2ẑ − 3ẑ 112 105x̂ŷẑ2 − 3x̂ŷ
021 15ŷ2ẑ − 3ẑ
120 15x̂ŷ2 − 3x̂
102 15x̂ẑ2 − 3x̂
012 15ŷẑ2 − 3ŷ
111 15x̂ŷẑ

Table I: The analytical expressions of first 4 orders of
MCSH denoted by S(n)

ijk , where x̂ = x/r, ŷ = y/r and
ẑ = z/r

MCSH are introduced in the work of Applequist77. The
MCSHs are used to construct the descriptors because it
is known that spherical harmonics form a complete basis
for functions defined on the 3D unit sphere. This idea
is analogous to that of multi-pole expansion, where the
original 3D function is expressed as a linear combination
of terms with progressively finer angular features98. Ex-
amining the MCSHs in Figure 2 reveals that the order 0
MCSH corresponds to the monopole, and captures fea-
tures that are constant and independent of angle (order
0 angular feature); the order 1 MCSH corresponds to the
dipole, and captures features that vary once, from posi-
tive to negative, with angle (order 1 angular features); or-
der 2 MCSH corresponds to the quadrupole, and captures
features that varies more quickly with angle (order 2 an-
gular features), and so on. Any rotational variations can
be approximated by this linear combinations of angular
features of different order, and will be exact in the limit
of the entire series. The descriptors are empirically ver-
ified as rotation-invariant (see Supporting Information)
and the mathematical proof is in progress but is beyond
the scope of this work. In addition to the rotational vari-
ations it is necessary to capture radial variations. This is
achieved by taking the rotation-invariant descriptors with
different cutoff distances through the cutoff function fr
in Eq. 20, where cutoff radii are discretized based on the
underlying finite-difference grid. We conjecture that this
descriptor set provides a complete basis on the rotation-
invariant subspace of the 3D finite difference grid. More-
over, µ2

0,000, which is equivalent to fully local information
(i.e. ρ), is the clear entry point of this descriptor set.

Descriptor
Set

Number of
Descriptors

Descriptor
Set

Number of
Descriptors

λ̄
(0)

(0.00)
1 λ̄

(1)

(0.08)
9

λ̄
(0)

(0.02)
2 λ̄

(1)

(0.2)
21

λ̄
(0)

(0.04)
3 λ̄

(2)

(0.02)
5

λ̄
(0)

(0.08)
5 λ̄

(2)

(0.04)
9

λ̄
(0)

(0.2)
11 λ̄

(2)

(0.08)
17

λ̄
(1)

(0.02)
3 λ̄

(2)

(0.2)
41

λ̄
(1)

(0.04)
5

Table II: List of number of features for each of the
descriptor sets

There are 3 directions for systematic expansion: higher
orders of MCSH, longer cutoff distances, and a finer grid
for discretization. In this work we fix the grid spacing
and explore the impact of higher orders of MCSH and
longer cutoff distances.

The MCSH descriptors provide a route to include semi-
local and non-local information about a local electronic
environment. MCSH descriptor sets are defined by their
maximum range (R) and the maximum order of spherical
harmonics (n) that is the same as the maximum order of
angular features captured, and are denoted as λ̄(n)R . Here,
we consider 13 MCSH descriptor sets with ranges of 0 Å
, 0.02 Å, 0.04 Å , 0.08 Å and 0.2 Å, and orders of 0, 1 and
2. The descriptor sets are designed such that information
of longer range and higher order of angular feature are
gradually added:

λ̄
(0)
(0.0) = {M (0)

(0.0,000)} = {ρ}

λ̄
(0)
(0.02) = {ρ,M (0)

(0.02,000)}

λ̄
(1)
(0.02) = {ρ,M (0)

(0.02,000),M
(1)
(0.02,100)}

λ̄
(2)
(0.02) = {ρ,M (0)

(0.02,000),M
(1)
(0.02,100),M

(2)
(0.02,200),M

(2)
(0.02,110)}

λ̄
(0)
(0.04) = {ρ,M (0)

(0.02,000),M
(0)
(0.04,000)}

λ̄
(1)
(0.04) = {ρ,M (0)

(0.02,000),M
(1)
(0.02,100),M

(0)
(0.04,000),M

(1)
(0.04,100)}

(24)

The total number of descriptors for each of the descrip-
tor sets are listed in Table II.

C. Regression models for exchange-correlation
energy

The functional form linking the MCSH descriptors
and the exchange correlation (XC) energy density is not
known. While reductionist approaches may be feasible,
the empirical approach is more pragmatic since the phys-
ical meaning of the descriptors is not obvious. In this
work we employ a machine-learning strategy based on a
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function with two terms: a local-density term based on a
re-parameterization of the VWN functional form of LDA
(r-VWN), and a descriptor-based term using a NN with
ReLU activation functions. The r-VWN term is static
for all regression models, and the NN is trained using the
residuals of the r-VWN model (Eq. 2); this is similar to
the ∆ machine learning strategy proposed previously81.
This section first discusses the results of the r-VWN
model and a NN based solely on the local density, and
subsequently addresses the performance of NNs based on
the convolutional descriptors. It is worth to note that the
models built in this study are not self-consistent. Instead,
they are trying to directly predict B3LYP SCF converged
XC energy density from converged electron density.

1. r-VWN and NN LDA model

The domain and range of the electron density and cor-
responding XC energy density span over 12 orders of
magnitude, as seen in Fig. 3. This creates a substantial
numerical challenge for machine-learning models since
most implementations rely on double precision floats with
a machine epsilon of ∼ 10−16. Practically, the situation
is somewhat better, since the vast majority of the dis-
tribution (99.3%) falls between 10−6.5 − 100 (Fig. 3).
However, even relatively small errors in the high-density
region can have a substantial impact on the system-level
energy, and training a machine-learning model that is
accurate across this span is challenging. Nonetheless,
physical models are known to approximate the energy
density across this large domain/range. The VWN pa-
rameterization of the LDA model achieves this by using
an analytical function that reproduces the behavior of
the homogeneous electron gas (HEG)82:

eXC,VWN = eX,VWN + eC,VWN

= ρ
C1

rs
+ ρG(rs, γ, α1, β1, β2, β3, β4)

(25)

where C1, γ, α1, β1, β2, β3, β4 are the parameters, rs is the
Wigner–Seitz radius defined as:

rs = (3/4πρ)1/3 (26)

G is defined as:

G(rs, γ, α1, β1, β2, β3, β4) = −2γ(1 + α1rs)

× ln

{
1 +

1

2γr
1/2
s (β1 + r

1/2
s (β2 + r

1/2
s (β3 + r

1/2
s β4)))

}
(27)

The behavior of the HEG is qualitatively similar to
the B3LYP training data, but there are quantitative dis-
crepancies. These residuals were minimized using non-
linear optimization with the VWN parameters as initial
guesses (see Sec. II) providing an improved LDA ap-
proximation (r-VWN) to B3LYP for molecular systems

of interest. The refitted model is illustrated in Fig. 3b,
and the magnitude of the residuals is reduced by an order
of magnitude as compared to the original energy density
(Fig. 3a,c).

The r-VWN model is applied to the test and training
sets, and the results are compared to the VWN and com-
mon PBE GGA functionals in Fig. 4. The results show
that the energy prediction error stays approximately con-
stant (MAEVWN = 67.44 eV,MAEr−VWN = 69.18 eV).
Interestingly, both VWN and r-VWN have lower energy
errors than PBE, and the “test” set has higher errors on
average for both VWN and PBE despite the fact that
they are not trained on the training set (i.e. the test set
has inherently larger system-level errors). The trend be-
tween VWN and r-VWN is similar for the formation en-
ergy errors, where both systematically underestimate the
B3LYP formation energy, and the r-VWN model has less
systematic error (MAEVWN = 1.69 eV, MAEr−VWN =
1.23 eV). The magnitude of formation energy errors are
also ∼2 orders of magnitude smaller than the system-
level errors, due to cancellation of error. The formation
energy errors for PBE are somewhat lower than even the
r-VWN model, opposite of the trend for system-level en-
ergies, indicating that PBE relies more on cancellation of
error between systems than the LDA models. The find-
ings regarding the relative accuracy of VWN and PBE
are counter to prior results99, likely owing to the fact that
the calculations in this work are not self-consistent and
rely on B3LYP energies as the ground truth.

The residual learning framework is also applied to the
LDA model space (NN [λ̄

(0)
(0.00)]) to provide a control

for the convolutional descriptor models. Although the
r − VWN model doesn’t show significant improvement
in accuracy, it provides a good approximation to B3LYP
XC energy density, and learning the residual is easier
than learning the energy density directly due to a reduc-
tion in the range of the dependent variable. The results,
also shown in Fig. 4, show a significant improvement
in the system-level energy and a less dramatic but still
significant improvement in the formation energy. Inter-
estingly the formation energies from the NN model are
more accurate than the GGA results, despite the fact
that the GGA model space contains more information.
The cancellation of error indicates that the NN model is
not over-fit, and the improved performance indicates that
there is room for improvement of LDA models by increas-
ing flexibility, consistent with prior studies65. However,
as shown in Figure 3c, the local energy residuals for the
r − VWN model shows three tails, which are attributed
to the core regions of C, O, and N. In both cases the
main error arises from the fact that the local energy is
not a single-valued function of the local density, espe-
cially in the core regions. This suggests that the limiting
factor to further improve accuracy is not the flexibility
of the XC model, but the information contained in the
model space. This motivates the inclusion of additional
descriptors (Sec. III C 2).

To get more insight into the origins of the errors for
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(a) εxc vs. ρ (b) εxc vs. ρ log scale (c) r-VWN residual vs. ρ

Figure 3: Plots of 3 million randomly sampled data points from training set to show the distribution, plus 10000
uniformly subsampled data points to highlight the high-density (core) regions. (a) Plot of εxc vs. ρ in linear scale.
The yellow bar plot shows the distribution of points. (b) Plot of εxc vs. ρ in log scale. The yellow bar plot shows the
distribution of points. (c) Plot of r-VWN model residual vs. ρ in linear scale. It is clear that the domain and range
of both the electron and energy density span many orders of magnitude, and that the energy density is multi-valued

with respect to electron density.

the r − VWN and NN [λ̄
(0)
(0.00)] functionals we examine

the contribution to the system-level error as a function
of density. From Figure 3 it is clear that the domain and
range of both the electron and energy density span many
orders of magnitude, and that there is a wide range in the
number of points that occur at different electron densi-
ties, with the vast majority falling between 10−6.5− 100.
The system-level energy is ultimately computed by inte-
grating (approximated by summation) the local energy
density, hence the system-level error will depend on a
trade-off between the size of the error at a given density
and the number of points with that density. This is illus-
trated in Fig. 5, where the contribution to the system-
level error is plotted as a function of the electron density.
The results indicate that for the r-VWN model nearly all
of the system-level error occurs in the density region of
10−3−101 eV/Å3, corresponding to the valence/bonding
regions of the molecular system. This is intuitive, since
this is where chemical bonding occurs, and where there
are an appreciable number of data points (29.5%), the en-
ergy density is relatively large (10−4−101eV/Å3), and is
multi-valued (see Fig. 3c). In comparison, the error from
the NN[LDA] model is much smaller, and concentrated
in the region of 10−1 − 101eV/Å3. This is attributed to
the near-core regions where the energy density is rela-
tively large and multi-valued, making it impossible for
the neural network to capture the behavior.

This trade-off between the error and the number of
sample points highlights the importance of the inclusion
of randomly sampled data in the sub-sampling routine,
and the selection of a proper choice of objective func-
tion during training. The randomly sampled data effec-
tively weights the error at each density by the number of
points similar to the weight that will be used to compute
the system-level energy. Enough randomly sampled data
must be included to ensure that regions with low elec-
tron/energy density contribute to the objective function,
but if too much randomly-sampled data is included it will
overwhelm the contribution from the tails of the distri-
bution. The ratio of random to uniform sub-samples is
chosen heuristically to minimize the system level error in
this work. A multi-step training process is also employed,

with multiple types of objective function. The details of
the training procedure can be found in the Supplemen-
tary Information. Ultimately, the results of the r−VWN

andNN [λ̄
(0)
(0.00)] models indicate that information beyond

the local electron density must be included in the model
space to significantly improve accuracy.

2. NN models with MCSH descriptors

To capture more non-local information about the elec-
tronic environments MCSH descriptors are used, and NN
models are applied to connect the descriptors to the en-
ergy density. For each set a NN model with 2 hidden
layers of 100 nodes each and ReLU activation functions
is used as the non-linear model for the XC energy density,
denoted as NN[λ̄(n)R ] where R denotes the cutoff radius
and n denotes the order of the MCSHs used (see Eq.
18). Each NN model is trained using a consistent train-
ing procedure, as described in the Supplementary Infor-
mation. The hypothesis that including more semi-local
information in the model space will systematically im-
prove the model accuracy is tested by comparing system-
level sum of local absolute error (εabsolute), energy predic-
tion error (εpredict) and formation energy prediction error
(εformation) as defined in Section II with a consistent NN
architecture. Systematic improvement is defined as im-
provement for each individual system without exception,
while general improvement is defined as a decrease in the
mean absolute error.

The results for general improvement are shown in Fig-
ure 6, indicating that the general accuracy always im-
proves as more descriptors are added. The detailed result
for each model and system are given in the Supporting
Information. In this section we focus on the models’ per-
formances for the 15 training and 7 test systems; the
3 extrapolation systems are described in Sec. III C 3.
Based on Figure 6d, general improvement in the model
accuracy is observed as angular features from zero-th or-
der to first order are included and the range is increased
from 0 to 0.2 Å. The inclusion of the first-order angular
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(a) Energy prediction error distribution (b) Formation energy prediction error distribution

Figure 4: Results for local density based models. Error distributions for system-level energy prediction error (a) and
formation energy prediction error (b). Blue points/curves correspond to the training molecules, orange

points/yellow curves correspond to the test and extrapolation molecules. MAE denotes the mean absolute error of
all systems, and MaxAE denotes the maximum of absolute error. Results show that the flexiblity of the neural
network for an LDA-like model reduces the error, but that formation energy errors still exceed chemical accuracy.

Figure 5: Plot of the sum of error for the models across
different density scales for the same randomly sampled
data points. The plot indicates that for the r-VWN

model nearly all of the system-level error occurs in the
density region of 10−3 − 101 eV/Å3, corresponding to
the valence/bonding regions of the molecular system.

features has a drastic impact, where the accuracy of the
first-order model with a range of 0.02 Å is comparable to
the zeroth-order model with a range of 0.08 Å. The first-
order angular feature is needed to express the reduced
gradient, and the grid spacing is 0.02 Å, so the NN[λ̄(1)0.02]
model is analogous to the GGA model space. A further
and substantial improvement is observed as the range is
increased, with a minimum MAE of 0.061 eV achieved at
a range of 0.2 Å. The inclusion of descriptors of second-
order angular features further improves the model, par-
ticularly at short ranges, but the improvement is less
drastic. The high accuracy of these models with explicit
ranges of ≤ 0.2 Å is interesting, since prior studies of
the XC-hole of similar systems have suggested that the
scale of the X-hole is much wider than 0.2 Å100,101. The
fact that the XC energy can be reproduced with the rela-
tively short range of 0.2 Å suggests that the longer range
behavior of XC-hole is predictable from the short-range
information that was used to train the models. This is
similar to the finding that semi-local mGGA functionals
are able to describe intermediate-range van der Waals
forces102,103.

The results for the systematic improvability test for
the sum of absolute error are shown in Figure 7, where
the number represents the maximum increase in error
for any given system when the order of the angular fea-
ture or spatial range is increased; a value of 0 repre-
sents a systematic improvement since the error of ev-
ery system is decreased without exception. The results
show that systematic improvement is often, but not al-
ways, observed when additional descriptors are added.
In particular, systematic improvability is not observed
for zeroth-order angular features as range is increased
from 0 to 0.08 Å. This is hypothesized to occur because
the added descriptors contain relatively little additional
information, causing statistical noise to play a larger role
in training. The randomly-selected training data repre-
sents only 0.55% of the total data, and neural networks
are initialized with random weights, causing the resulting
models to favor some electronic environments over others
due to randomness. This could possibly be overcome by
using a static training set and a systematic strategy for
initializing the neural networks, or by adding descriptors
with more information. The latter strategy is shown to
work here, as systematic improvability is achieved when
higher-order angular descriptors and/or longer-range in-
formation are included. One exception to this trend is
observed when moving from descriptors of first-order an-
gular features to that of second-order angular features at
a range of 0.2 Å. This is attributed to the fact that the
dimensionality of the descriptor space increases substan-
tially from 21-41, but the flexibility of the NN model is
not increased. The points will be more separated in a
higher-dimensional space, as supported by the fact that
the number of uniformly-sampled data from the λ̄(n)(0.2)

sets are an order of magnitude higher than for the λ̄(n)(≤0.08)
descriptors (see Supplementary Information). This forces
the model to interpolate over larger distances, and will
generally require a more complex NN model. These re-
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sults provide evidence supporting the hypothesis that
systematic XC model improvement can be achieved by
systematically increasing the range and rotational order
of convolutional descriptors, though optimization of the
regression model architecture and training procedure is
an important consideration.

Systematic and general improvement of the absolute
error is promising, but the physical quantities of energy
prediction error and formation energy prediction error
are of practical interest. The absolute error provides an
upper bound for these quantities, which can take advan-
tage of cancellation of error within a single system (en-
ergy prediction error) and across systems (formation en-
ergy prediction error). Indeed, the general accuracy of
these quantities is greatly improved as compared to the
absolute error as shown in Figure 6. The MAE of the
prediction error reaches “chemical accuracy” (0.043 eV)
at a spatial range of 0.08 Å for the first-order rotational
descriptors, and 0.04 Å with second-order rotational de-
scriptors. A longer range is needed to reduce the maxi-
mum error to below chemical accuracy, but this can be
achieved with both first- and second-order rotational de-
scriptors at a range of 0.2 Å. While this general decrease
in error is promising, it should be noted that the sys-
tematic improvement is not observed at the prediction
energy level. This arises due to the fact that cancella-
tion of error plays a varying role in different chemical
systems depending on the frequency with which different
electronic environments occur. This variation in cancel-
lation of error will also occur with other types of XC func-
tionals, and explains the tremendous difficulty of achiev-
ing systematic improvement in the field of XC functional
design. The counter-intuitive nature of cancellation of
error is even more apparent when comparing prediction
energy errors and formation energy errors. Formation en-
ergies generally benefit from cancellation of error across
different systems, particularly in the core regions since
the atomic composition of a molecule is utilized to com-
pute the formation energy. This is apparent in the gen-
eral improvement of between the prediction energy and
the formation energy. However, when examining system-
atic improvement it is clear that some systems exhibit
drastically larger formation-energy errors than predic-
tion errors. This arises due to the anti-cancellation of
error between a reference system and the system of in-
terest, and highlights an additional consideration for the
design of functionals with systematic improvements in
formation energies. Nonetheless, several models (λ̄(1)(0.2),

λ̄
(2)
(0.08), λ̄

(2)
(0.2)) are capable of reducing even the maxi-

mum formation-energy error of the convolutional descrip-
tor models to within chemical accuracy.

3. Outliers and Extrapolation

The results discussed in Sec. III C 2 are generally posi-
tive, although there is a noticeable outlier in the training

set for some models, and the “universality” of the model
is not clear since the test set contains similar chemistry
to the training set. In this section we examine the out-
lier (C2H6) to gain insight into where the approach fails,
and attempt to extrapolate the model to three systems
with different chemistry: CH3NO2, glycine andNCCN .
These compounds contain nitro groups, amine groups,
and multiple cyano groups that are not present in the
train or test data and hence probe the machine-learning
model’s ability to generalize to new chemistries.

First, we address the C2H6 system that appears as an
outlier in the training set. This is generally surprising,
since machine-learning models tend to perform well on
data they are trained to. Notably, the C2H6 system is not
a clear outlier for εabsolute (Figure 6a), which is directly
related to the objective functions used in training (see
SI), confirming that this is not a failure of the NN training
procedure. However, C2H6 becomes an outlier in εpredict
(Figure 6b), and even more substantially in εformation

(Figure 6c). This indicates that the issue arises due to
a lack of cancellation of error in the prediction energy,
and/or anti-cancellation of error in the formation en-
ergy. This is attributed to a combination of two factors:
electronic environments that are not sufficiently distin-
guished by descriptors and under-representation of these
electronic environments. These factors are illustrated us-
ing the NN [λ̄

(1)
(0.04)] model. Since domain decomposition

method is used in model training (see Sec. II), it is pos-
sible to determine that most of the prediction error (1.51
eV out of 1.67 eV for εabsolute and -1.32 eV out of -1.34
eV for εpredict) can be attributed to the C − C bonding
region of the system. The electronic environments in this
region were projected onto a low-dimensional space us-
ing principal component analysis (PCA) and compared
to the environments in the entire training set. Figure
8 shows the model error as a function of two principal
components, and illustrates that several points have sub-
stantially smaller errors for the training set as compared
to C-C bonding region of C2H6. This indicates that the
objective function is multi-valued at these locations in
descriptor space, forcing the model to make a tradeoff
in accuracy between the two possible outcomes. This
tradeoff will depend on the relative frequency of the two
types of environments that are present in the training set.
In this study C2H6 is the only molecule in the training
set with a C-C single bond, causing these environments
to be under-represented and not favored by the model.
This could be remedied to some extent by including more
examples of C-C bonds in the training set, though this
would simply balance the error between systems rather
than reducing it. Alternatively, the inclusion of more de-
scriptors enables the model to distinguish between these
environments and reduce the error for both; this is evi-
dent from the fact that both the prediction and formation
energy errors for the C2H6 molecule reduce substantially
as higher-order and longer-range descriptors are included
(Fig. 6).

The results for the extrapolation set (CH3NO2,
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(a) Sum of absolute energy prediction error distribution

(b) Energy prediction error distribution

(c) Formation energy prediction error distribution

(d) Mean absolute error (MAE) of the error metrics with all models

Figure 6: Results for MCSH descriptor based models. Error distributions for sum of absolute error (a), system-level
energy prediction error (b) and formation energy prediction error (c). Blue points/curves correspond to the 15

training molecular systems, orange points/yellow curves correspond to the 7 test molecular systems. d) Statistical
analysis of the errors of the 15 training and 7 test molecular systems. The 3 extrapolation systems are not

considered here. The plots show that the general accuracy always improves as more descriptors are added, and that
the MAE of the prediction error reaches “chemical accuracy” (0.043 eV) at a spatial range of 0.08 Å for the first and

second order rotational descriptors.

glycine and NCCN) are shown in Table III, and it is
clear that the errors are generally larger by as much as
an order of magnitude. This situation is common in
machine learning, and generally arises when the train-
ing data is not representative of the test data. This oc-
curs because the NN model can only interpolate between
training examples, and will become unreliable if used for
extrapolation104. In this case the extrapolation system

contains several chemical environments that are not ob-
served in the test systems, so it is not surprising that
unique electronic environments arise. This is quantita-
tively illustrated in Fig. 9 in the case of the NN [λ̄

(1)
(0.04)]

model for CH3NO2, where it is clear that there are a
large number of electronic environments that fall out-
side the domain of the training data. This is found to



14

(a) Range (b) Angular feature

Figure 7: Systematic improvability test. The numbers denote the maximum deviation from systematic improvement
for sum of absolute error as compared to previous models. A value of 0 indicates that the model improves

systematically since no system gets worse. a) each model is compared to all other models with same order of angular
features and shorter range as indicated by the arrows (e.g. NN [λ̄

(0)
(0.04)] model is compared with NN [λ̄

(0)
(0.02)] and

NN [λ̄
(0)
(0.00)]) b) each model is compared to all other models with lower order of angular features and same range as

indicated by the arrows (e.g. NN [λ̄
(2)
(0.04)] model is compared with NN [λ̄

(1)
(0.04)] and NN [λ̄

(0)
(0.04)]). The results show

that systematic improvement is often, but not always, observed when additional descriptors are added.

be consistent across the other extrapolation systems and
in higher dimensions, as provided in the Supplementary
Information. One straightforward solution to this issue
is to add additional training systems that capture the
chemistries of interest. This highlights the general limi-
tation of machine-learning models that they are only as
good as the data they are trained on. However, the prob-
lem can also be mitigated by increasing the dimension-
ality of the descriptor space. This is evident from the
model performance, where the prediction error for these
outlier systems is reduced to 0.08 eV, 0.19 eV and 0.12 eV,
respectively, for the NN [λ̄

(2)
(0.2)] model. This occurs be-

cause as more information about the rotational and radial
variations of the electron density is added these outlier
systems become more similar to environments that exist
in the training data. In these higher-dimensional spaces
the new systems appear more like interpolations between
existing environments as opposed to extrapolations be-
yond the domain of all training data. This phenomenon
suggests that sufficiently large convolutional descriptor
spaces, combined with diverse training data sets and
comprehensive testing, may enable the construction of
universal machine-learning XC functionals.

IV. CONCLUSIONS

This work introduces convolutional descriptors as a
promising new paradigm for the construction of model
spaces for XC functionals. Convolutional descriptors
provide a systematically expandable and theoretically
complete feature space for constructing XC functionals
in a finite difference representation. They are orbital-

free and can be computed with N log(N) computational
complexity. Furthermore, convolutional descriptors can
be combined with non-linear regression models to con-
struct machine-learning functionals. Using neural net-
works is particularly promising, since the universal ap-
proximation theorem ensures that NNs can represent an
arbitrarily complex function. The resulting models are
conceptually similar to convNets, suggesting that deep
learning approaches are a promising route for functional
development. A sub-class of convolutional descriptors,
Maxwell-Cartesian spherical harmonics (MCSH) descrip-
tors, were employed to construct and test a range of
machine-learned orbital-free approximations to the hy-
brid B3LYP functional based on data from a total of
25 small-molecule systems containing C, H, O, and N.
These descriptors provide a numerically stable and rota-
tionally invariant route to capturing rotational and radial
variations in the electron density. The machine-learning
models are constructed from model spaces based on the
descriptors with increasing range from 0.02 Å - 0.2 Å
and progressively finer angular features from zero-order
to second-order. The results show that the average accu-
racy of the models improves as either the range or rota-
tion symmetry is increased. A systematic improvement
in the absolute error is typically observed for both train-
ing and test sets, but the improvement in system-level
energy and formation energy are not systematic due to
cancellation of error.

In addition to these promising initial results, this work
also identifies several challenges that must be addressed
in the construction of XC functionals based on convo-
lutional descriptors and/or machine learning. One chal-
lenge that is general to any approach that utilizes local-
ized XC energy density is the ability to generate train-
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Figure 8: Comparison between the electronic
environment of C − C bonding region and that of the

whole training set as characterized by the λ̄(1)(0.04)

descriptor set. The training set is represented by
uniformly sampled points plus 3,000,000 randomly

sampled points. Principle component analysis (PCA)
model is trained with C − C bonding region data points
and applied to both datasets. The plot of 2nd and 3rd

principle components are shown here, where the red
circles correspond to C − C bonding environments and
blue circles correspond to training data, the sizes of the
circles correspond to the absolute prediction error of the
NN [λ̄

(1)
(0.04)] model. The results show that the function

is multi-valued in the C − C bonding region, and the
model is forced to make a tradeoff between general

accuracy and accuracy in the C − C region.

ing data. Machine-learning approaches are most power-
ful when they are based on data from high-level meth-
ods for which no analytical form exists; however, these
approaches are typically based on non-local integrals,
so projecting the XC energy density to a finite differ-
ence grid is challenging. Approaches for this have been
reported88,105,106, but implementations are not openly
available. Another related challenge is the fact that
these high-level methods are typically all-electron, re-
sulting in rapidly varying electron/energy density near
the core regions. Accurately representing this with a fi-
nite difference grid requires very fine grid spacings (0.02
Å in this work). In this case although the theoreti-
cal scaling of convolutions is N log(N), the size of N
is so large that the approach is much slower than the
underlying B3LYP calculation. Similar concerns will be
faced for other models seeking to reproduce the results
of wavefunction-based theories, and routes to extract the
XC contribution of valence electrons will be critical to

Model Error CH3NO2 glycine NCCN MAE

NN [λ̄
(1)
0.04] εabs. 2.01 0.95 0.94 0.4

εpred. 1.38 0.28 -0.21 0.12
εform. 1.27 0.19 -0.22 0.09

NN [λ̄
(1)
0.08] εabs. 1.24 0.76 0.49 0.15

εpred. 0.18 0.11 0.24 0.04
εform. 0.24 0.16 0.22 0.02

NN [λ̄
(1)
0.2] εabs. 0.24 0.55 0.13 0.06

εpred. 0.08 0.37 0.03 0.01
εform. 0.08 0.38 0.02 0.01

NN [λ̄
(2)
0.04] εabs. 3.66 0.56 0.49 0.18

εpred. -3.14 0.12 0.12 0.03
εform. -3.19 0.06 0.12 0.02

NN [λ̄
(2)
0.08] εabs. 1.42 0.61 0.14 0.09

εpred. 1.08 0.3 0.02 0.01
εform. 1.05 0.26 -0.02 0.01

NN [λ̄
(2)
0.2] εabs. 0.35 0.7 0.12 0.06

εpred. 0.08 0.19 -0.01 0.01
εform. 0.09 0.19 -0.01 0.01

Table III: Errors of the outlier systems in the test set.
The unit is eV. MAE is the mean absolute error of the
corresponding error metric for the 15 training molecular

systems plus 7 test systems

training models that are consistent with pseudopotentials
commonly used in practical DFT calculations. Moreover,
integrating the approach with a full SCF cycle will re-
quire either direct learning of the XC potential, or an
accurate approach to obtaining derivatives of the en-
ergy density. The latter has proven challenging for other
machine-learning XC models107, but recent advances sug-
gest that directly learning forces108 or applying auto-
matic differentiation109 are promising strategies. Finally,
the optimization and numerical performance of machine-
learning models must be considered. In this work NN
models were used, leading to challenges in deconvoluting
the error due to an insufficient model space and error due
to sub-optimal hyperparameters or training procedures.
The machine-learning models must also achieve a high
accuracy over a large numerical range due to the large
number of points with relatively low energy/electron den-
sity, and the quantities of interest (e.g. formation energy)
rely on cancellation of error and may require specialized
objective functions. This may present challenges in the
application of out-of-the-box machine-learning models to
the problem of XC functionals.

This work indicates that the combination of convolu-
tional descriptors and machine learning models is a the-
oretically appealing framework for XC functional design.
Despite practical challenges, the framework provides a
route to empirically investigate fundamental questions
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Figure 9: Comparison between the electronic environment of CH3NO2 system (blue) and that of the whole training
set as characterized by the λ̄(1)(0.04) descriptor set (red). The CH3NO2 system is represented by the uniformly
sampled points of the system, and the training set is represented by uniformly sampled points plus 3,000,000

randomly sampled points. Principle component analysis (PCA) model is trained with the training data points and
applied to both datasets. The plot of 2nd and 3rd principle components are shown here. Green circles highlight

regions where the CH3NO2 system is outside the domain of the training data. The plot shows that the electronic
environments of the “extrapolation” systems are outside the domain of the training data.

about the nature of the XC energy. For example, this
work provides empirical evidence that the exact exchange
contribution of the B3LYP functional can be represented
to within chemical accuracy (of system-level energies) for
an orbital-free functional with a spatial range of <0.2 Å
for small C, H, O, N molecules. Further examination of
these numerical approximations may provide inspiration
for new physical or empirical XC models with improved
accuracy and practicality. In addition, there are many
possible routes to improvement of the accuracy of these
machine learning models. The choice of convolutional de-
scriptors could be improved by inclusion of higher-order
spherical harmonics, longer radial distances, decreasing
grid-point space, integration with pseudopotentials, or
the use of deep-learning convNets to automatically ex-
tract the optimal convolutional descriptors from the data.
Training data can be extracted from high-level wavefunc-
tion theories, and convolutional models can be easily im-
plemented in solid-state codes, providing a data-driven
alternative to wavefunction embedding110–113. Moreover,
the MCSH descriptor sets introduced in this study are
not specific to electron density, but could be applied gen-
erally to any 3D functions that are inherently rotation-

ally invariant. This includes many problems in physics
since rotational and translational invariance are common.
These exciting possibilities suggest that further research
into convolutional-based machine-learning functionals is
a worthwhile addition to the already numerous strategies
for density functional design.
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