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Grain coarsening behavior in an alpha phase iron sample is studied in three dimensions using high
energy x-ray diffraction microscopy. 4,971 grains that are entirely inside the sample are segmented
in the initial state and 3,905 remain after annealing. A matching procedure was used to track
3,299 grains between the two states while the remainder were either consumed by neighbors or the
tracking algorithm failed to correlate them. During the single annealing treatment, the average grain
volume increased by 13%. Statistical analysis in each state yields subtle changes in the grain size
and nearest neighbor number distributions. Correlating topological features with volume changes
between states, the average behavior is seen to be consistent with an isotropic model of curvature
driven coarsening, but the dispersion of volume changes in each topological class is comparable to
the overall trend in the average behaviors. Thus, the topological characterizations used here are
not predictive of the behavior of individual grains under the isotropic assumption. Examination
of anecdotal cases allows understanding of some outliers but others appear counter to an isotropic
theory.

I. INTRODUCTION

Many condensed matter systems undergo coarsening
processes in which the average cell size in a large ensemble
increases over time as large cells intrude on and consume
smaller cells. This process is typically driven by reduc-
tion in the total interfacial energy, and, thus the total
interfacial area. Examples are as diverse as foams, [1–3]
phase separating liquids and solids, and polycrystalline
aggregates. [4–6] For fluid systems, all interfaces have
the same structure and properties, so the driving forces
for motion can be modeled with a single homogeneous
interfacial tension and mobility. Curved boundaries are
expected to move toward their centers of curvature since
this results in reduced local boundary areas. This flat-
tening of boundaries tends to lead to polyhedral domain
shapes.
For the case of coarsening in polycrystalline mi-

crostructures, the homogeneity condition is broken due
to anisotropic crystal properties which result in the ener-
gies and mobilities of crystal-crystal interfaces being de-
pendent on both the relative crystal orientations and the
local orientation of the interface normal. Thus, bound-
aries between crystals or grain boundaries are character-
ized on the mesoscale by five parameters: for example,
three disorientation parameters defining the symmetry
reduced relative orientations of crystal unit cells and two
parameters that define the local interface normal relative
to unit cells of the two crystals. These (or alternative)
sets of five degrees of freedom define the “grain boundary
character” (GBC) [7] and coarsening is expected to de-
pend on the distribution (GBCD) and connectivity of the
boundary types. Finally, it should be noted that the in-
terface motions described here are expected to dominate
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microstructure and boundary evolution only after bulk
(grain interior) defect densities and their associated bulk
excess energies have been reduced to negligible values.
However, local irreducible strain fields associated with
grain boundaries may well influence boundary energies
and mobilities.
Because microstructure plays a key role in determining

the properties [8–10] of polycrystalline materials that are
used throughout modern societies, coarsening or “grain
growth,” has been studied experimentally and theoret-
ically for many decades. [11–14] For two dimensional
systems, the basis for most theoretical and experimental
investigations[15, 16] is the von Neumann-Mullins “n− 6
rule”[5, 6],

dA

dt
=

π

3
Mγ(n− 6), (1)

where dA
dt is the rate of area change of the “two dimen-

sional grain”, n is the number of grain sides, M is the
mobility and γ is the excess energy per unit length of
boundary. This predicts that cells with more than six
sides (or neighbors) will grow while those with fewer than
six sides will shrink and eventually disappear. The simple
form of (1) results from the assumption of homogeneity of
boundary properties (hence the single values ofM and γ)
and it assumes mechanical equilibrium at vertices which
implies triple point vertex angles of 120◦.
Palmer et al. [17] compared (1) with experimental ob-

servations of thin organic polycrystalline films and found
significant deviations from the expected vertex angles but
nevertheless found that the trend in average growth rates
in each topological class agreed well; however, large de-
viations, of the same order as the overall trend, were
observed within each class. One suggested cause of de-
viations from n − 6 was the heterogeneity in boundary
properties. Since the optical measurement did not deter-
mine crystal orientations, it was not possible to classify
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the boundaries.
More than 50 years after von Neuman’s and Mullins’

work, a rigorous three dimensional (3D) generalization of
(1) has been obtained by McPherson and Srolovitz, [4]
the “M-S relation,”

dV

dt
=

π

3
Mγ (M− 6Lgrain) , (2)

where dV
dt is the rate of grain volume change, M is the

mobility, γ is the excess energy per unit area of boundary,
M is the total triple line length around the grain and
Lgrain is the mean width of the grain. [4] Again, this
result is based on homogeneous, isotropic grain boundary
properties and therefore on the expectation of uniform
120◦ dihedral angles at triple lines where three grains
meet.
It is only within the past decade that experiments have

begun to be able to watch internal three dimensional mi-
crostructures evolve over time. The key development
has been the application of diffraction methods using
high flux, tunable synchrotron x-rays. Spatially resolved
diffraction techniques have been developed that are able
to image microstructures in three dimensions including
crystalline grain unit cell orientations, grain shapes and
positions; the non-destructive measurements allow collec-
tion of images of volumes of interest in successive states
of evolution. [18–22] These measurements yield novel
data sets spanning large ensembles of grains and grain
boundaries. Extraction of either statistical characteris-
tics of grains or local characteristics such as individual
boundary motions requires development of trusted com-
putational tools and careful consideration of measure-
ment resolution in both position and orientation degrees
of freedom.
Two distinct data collection methods have been used

in the above studies. Zhang et al. [23], and McKenna
et al. [24] apply diffraction contrast tomography (DCT)
[21] using data collected at the European Synchrotron
Radiation Facility. Sun et al. [25] use a commercial,
laboratory based DCT system. [26] Work at the Ad-
vanced Photon Source has applied near-field high energy
diffraction microscopy (nf-HEDM) [19, 27, 28] which is
an implementation of 3DXRD. [20] While nf-HEDM uses
a line focused beam to illuminate a series of quasi-two di-
mensional cross-sections which are then stacked to yield
three dimensional grain geometries, DCT uses a “box”
beam to illuminate a volume of microstructure. Recon-
struction approaches are quite different [21, 29] but, for
the well ordered grain structures of interest to coarsening,
results have comparable resolutions of grain orientations
and grain boundary positions.
Recent observations of coarsening using the above

diffraction based methods include studies of iron, [23,
25, 30] nickel, [31, 32] and strontium titanate. [33] Sim-
ilar work was carried out using absorption tomography
combined with grain boundary segregation in a titanium
alloy. [24] Real time growth of individual selected grains
based on evolution of a single spatially resolved Bragg

peak have also been recorded. [34] Direct comparisons to
computational phase field or finite element models have
been carried out in a small number of cases. [24, 33]
Here, we present statistical analysis of data, also study-

ing alpha iron, first presented in the thesis of S. Maddali.
[30] This data set comprises a larger statistical sampling
of grains in than previous work, by roughly a factor of 10,
and therefore yields improved statistical distributions,
but only two time steps are measured compared to 15
in Zhang et al. [23]. Further work addressing boundary
motions and making comparisons to computational mod-
els of evolution can be expected to follow in all of these
cases.

II. METHODOLOGY

A. Sample preparation and data collection

The sample material was electrolytically grown high-
purity iron (obtained from the Center for Iron and Steel-
making Research at Carnegie Mellon University) and
with an elongated grain structure. At temperatures be-
low 912 C, iron exists in its [-allotropic] alpha phase form,
which has a body-centered cubic (BCC) crystal structure.
The requirement of (statistically) isotropic grain bound-
ary inclinations required the destruction of the elongated
grain structure followed by regrowth through annealing
and quenching. Accordingly, the sample was rolled in a
mill from an original thickness of about 5 mm to about
1 mm and annealed in a tube furnace for two hours at
600 C in a forming gas atmosphere (N2 + 3%H2 ) and
then quenched. A sample of approximate dimensions
1× 1× 30 mm3 was cut from this material.
Measurements were performed using the nf-HEDM ap-

paratus in the E-hutch of beamline 1-ID at the Advanced
Photon Source at Argonne National Laboratory. [19, 28]
A 65.351 keV x-ray beam was focused vertically to a
≈ 1.5 µm full width at half maximum line beam. The
beam size was limited in the horizontal direction to 1.5
mm using slits. As the sample was continuously rotated
about a vertical axis perpendicular to the beam plane,
images of diffraction spots were collected over succes-
sive angular intervals of width δω = 0.25◦. The to-
tal rotation range was 180◦ over which typical orien-
tations generate roughly ≈ 180 observed Bragg peaks.
The high resolution imaging detector used a scintillator
(LuAG) whose scintillation light was optically coupled
to a 2k × 2k CCD camera; using a 5X objective lens,
the effective pixel size was 1.54 µm. This rotation pro-
cedure was repeated at two different sample-to-detector
distances and the data collection was repeated for multi-
ple equally-spaced sample layers by translating the sam-
ple perpendicular to the beam; in this manner diffraction
data from an entire volume was collected. Here, 65 layers
with 3µm spacing were measured, so a total volume of
about 1 mm × 1mm × 0.195 mm3 was measured. After
the first volume measurement, the sample was removed
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from its mount and annealed in a tube furnace at 600 C
for half an hour again using a forming gas atmosphere.
The sample was replaced in the HEDM apparatus and
the same volume of the sample was measured again. For
further details of the sample and procedure, the reader
is referred to the Ph.D. thesis of Maddali [30].

B. nf-HEDM reconstruction, volume registration

and grain segmentation

The reconstruction of sample microstructure is per-
formed with the forward modeling software IceNine
[19, 29] after image analysis that separates diffraction
signals from background. [35] A critical feature of the
image analysis is the use of a Lapacian-of-Gaussian edge
detection algorithm that has been shown to yield diffrac-
tion spot shapes reflective of projected images of each
diffracting grain cross-section. [36] For each measured
layer, the reconstruction was performed on a simulation
space which is larger than the illuminated sample cross-
section. A mesh of s = 1.56 µm side-length equilateral
triangles spanned the simulation space; each triangle en-
closes an area corresponding to a square with side length
0.581 µm. In each layer, there are about 106 triangular
voxels. For each triangular element, the assigned orien-
tation is that which generates the maximum overlap be-
tween simulated and experimental diffraction spots. For
mesh elements near grain boundaries, even at the optimal
orientation, the simulation will miss some diffraction spot
edges due to detector discretization and image analysis
noise; this leads to a decreased confidence or overlap met-
ric. [19] Similarly, diffraction signals from two (or more)
neighboring grains’ orientations can each generate finite
overlap of simulated diffraction. The optimization algo-
rithm simply picks the orientation with maximal overlap
for each mesh element. The large number of Bragg peak
observations has the effect of signal averaging over the
various noise sources and leads to ∼ 1 µm accuracy in
relative grain boundary positions within the reconstruc-
tion planes. [36]
The open source software package, DREAM.3D, [37]

was used to segment the reconstructed data into indi-
vidual grains. Before using DREAM.3D, the data were
down-sampled from the set of reconstructed layer-by-
layer .mic files to a single .h5ebsd file, with 3×3×3 µm3

cubic voxels; orientations were assigned as that of the
nearest voxel in the .mic files. The orientation of each
voxel is compared to its neighbors (in 3D) and contigu-
ous sets of voxels with orientations that differ by ≤ 2◦

were grouped together as grains; the minimum size of ac-
cepted grains was set to eight voxels. Those groups with
fewer than eight voxels (i.e., < 216 µm3 or < 7.4 µm
spherical equivalent diameter) were treated as gaps in
the microstructure. Less than 0.1% of voxels were in such
gaps; gaps were then eliminated by dilating neighboring
grains uniformly using a procedure in DREAM.3D. The
aggressive down sampling described here yields a hard

TABLE I: Numbers and dimensions of grains in two
sample states.

State Total Internal Internal Grains

VT (10
7µm3) 〈V 〉(104µm3) Deff (µm)

0 10,927 4,971 5.96 1.20 28.4

1 9,224 3,905 5.28 1.35 29.6

lower cutoff in the grain size distribution at a level above
the expected minimum size to which the measurement is
sensitive.
The analysis below is restricted to grains that are en-

tirely inside the measured volume in both states. First,
any grain whose centroid lies outside the black boundary
in Fig. 1 is removed to avoid surface effects. Further,
any grain that intersects the top or bottom edge of the
reconstructed volume is also excluded from analysis. This
method is similar to that used in Rowenhorst et al. [38] to
avoid statistical bias from cut-off grains; however, as dis-
cussed below, the procedure also preferentially eliminates
large grains. Global statistics are shown in Table I. VT is
the total volume occupied by internal grains, 〈V 〉 is the

average grain volume, and Deff = 2
(

3
4π 〈V 〉

)1/3
, is the

average spherical equivalent diameter (SED). Note that
Deff is the SED of a grain with the average volume, not
the average of SED values. The nominal trimmed mea-
sured sample volume is ≈ 1.3× 108µm3 in both states.
Because it is not possible to re-mount the sample in ex-

actly the same position and orientation after annealing,
volume registration was required in order to correlate lo-
cal properties before and after annealing. Registration
was done in two steps [30]:

1. Determine the single rigid-body translation and ro-
tation that aligns a single layer in the post-anneal
volume with its corresponding layer in the pre-
anneal volume, and apply this transformation to
all layers in the post-anneal volume. This transfor-
mation was determined “by eye.”

2. Pick one grain that is present in both volumes
and rotationally align the entire post-anneal vol-
ume such that the two orientations of this grain
coincide.

After this process, the angular alignment of the two vol-
umes is within ≈ 0.1◦ which is the expected experimental
resolution. Fig. 1 shows the final 3-D registered recon-
structions of the α-iron sample before and after anneal-
ing.

C. Grain matching

To study coarsening dynamics, it is necessary to iden-
tify the same grain in different time step snapshots. For
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(a) (b)

FIG. 1. The measured sample volume, (a) before and (b)
after annealing. Black lines indicate schematically a
trimming of the sample edges used to avoid the damaged
surface region that has anomalously small grains. Colors are
according to the inverse pole figure key shown and is
referenced to the normal direction to the square
cross-section.

each grain in one state, we search every grain within a
surrounding volume of the other state and, if both the
misorientation angle and volume ratio are within spec-
ified thresholds we call the pair a match. A detailed
description is provided in Algorithm 1.

Algorithm 1 Grain matching

Parameters: MisorLim, VolRatLim, DistDiaLim

1: procedure Grain matching

2: for grain Ai in State 0 do

3: DA ← Diameter of Ai

4: SA ← Centroid of Ai

5: VA ← Volume of Ai

6: for grain Bj in State 1 do

7: SB ← Centroid of Bj

8: if |SA − SB | ≤ DistDiaLim×DA then

9: VB ← Volume of Bj

10: if 1

VolRatLim
≤ VA/VB

≤ VolRatLim then

11: if Misorientation of Ai and Bj ≤
MisorLim then

12: Match Bj to Ai

To ensure robustness, grain matching is performed
in both directions; that is, for each grain in the ini-
tial state, we search for the same grain in the final
state and for each grain in the final state we search for
the same grain in the the initial state. Only matched
pairs that are the same in both directions are kept for
further analysis. The values 0.5◦, 10, 2 were chosen as
MisorienLim,VolRatioLim,DistToDiaLim, respectively.
These relatively strict limits result in 3299 pairs of
matched grains. 30.2% of grains in the initial state are
not matched in the annealed state whereas only 12.4%
of final state grains are not located in the initial state.
This disparity is largely attributed to small grains be-
ing consumed by larger ones and thus not existing in the
annealed state. Assuming that new grains are not nucle-
ated, the 12.4% missing in the reverse matching must be
characteristic of the difficulty in matching small grains
(many of which exist in both states since some grains

are always shrinking and disappearing). Further charac-
terization of matched and unmatched grains is given in
Appendix B.
Fig. 2 shows some examples of matched grain pairs. It

is seen qualitatively that, in most cases, grain boundaries
move toward their centers of curvature as expected for
capillarity driven growth.

101

111

001

FIG. 2. Examples of matched grains, top row before
annealing and bottom row after annealing. The roughness of
the surfaces is due to the discrete voxel size; no smoothing
has been performed. The side length of each cubic voxel is
3 µm. Colors correspond to the crystal unit cell orientations
according to the inverse pole figure scheme illustrated at
bottom right.

III. RESULTS

A variety of data sets characterizing three dimensional
statistics of grains in specific states or “snapshots” are in
the literature, for example, see [23, 38]. Non-destructive
measurements allow comparisons of such statistics in
multiple snapshots of the same material volume. The
next section presents analyses that do not require track-
ing of individual grains but which do require the restric-
tion to grains that are entirely enclosed within the sam-
ple and the measured volumes. The following section
presents statistical analyses of the evolution of individ-
ual grains.

A. Statistical distributions of grain characteristics

a. Grain size distributions. The number of internal
grains decreased from 4971 to 3905 with annealing; as
listed in Table I this corresponds to an average grain
volume increase from ≈ 11, 993 µm3 to ≈ 13, 533 µm3

or a ≈ 13% volume increase or a 4% increase in linear
dimension.
Individual grain volumes are extracted from the data

sets as Vg = VvoxNg = (27 µm3)Ng, the volume per voxel
(see Sec. II B) times the number of voxels assigned to the
grain. As shown in Fig. 3a, the measured grain volumes
in each state span more than three decades even with the
lower end cutoff at Ng = 23 = 8 contiguous voxels. Sim-
ilarly, the large number of grains in the data set allows
the probability density to be resolved over at least four
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decades. The observed distribution of volumes is mono-
tonically decreasing. A more conventional “size distribu-
tion” in terms of spherical equivalent radii is shown in
Fig. 3b; not surprisingly, this distribution extends over
about one order of magnitude as seen in numerous other
data sets. [23, 24, 38] The conservative small size cut-
off used in this analysis results in the plot terminating
just below the peak value. Error bars in both plots are
derived from Poisson counting statistics related to the
number of entries in each displayed bin. We next discuss
the interpretation of the distributions and the relation
between them.

Since the grain volume is a continuous variable, an ap-
propriate way to characterize the distribution is with a
probability density function, P (V ), where P (V )dV is the
probability of a grain having size V within the interval
dV . In a large ensemble of N grains, the number within
dV is dN = NP (V )dV . The goal is to approximate the
distribution, P∞(V ), that would be observed in a very
large (or infinite) ensemble. Fig. 3a plots empirical ap-
proximations to this distribution function for each of the
measured states: PN (V ) ≈ ∆N

N
1

∆V with ∆N being the
number of grains within ∆V of the nominal volume and
N the total number of grains in each state. In Fig. 3a,
bin widths are chosen such that ∆V

V ≈ 0.26 (more pre-

cisely, V +∆V
V = 100.1) which assures that the apparent

PN (V ) is roughly linear over each bin interval and the
differential approximation is reasonable. PN (V ) is seen
to be monotonically decreasing and changes only slightly
during the observed coarsening. From this logarithmic
plot, it is clear that the measured PN (V ) does not fol-
low a simple power law form. The observation that there
are many grains with small volumes is reasonable since,
during coarsening, there are always grains that are tend-
ing to zero volume as they are being consumed by larger
grains.

Fig. 3b is a simple histogram of reduced spherical
equivalent radii. Note, however, that volume is the mea-
sured physical quantity and the grains are far from being
spherical; the radius, while being easily computed from
the volume measurement and convenient for some pur-
poses (see below), is not a physical characteristic of the
grains. Nevertheless, Fig. 3b shows an apparent peak
around R/〈R〉 ∼ 0.4 which is qualitatively consistent
with other data sets, see, for example, [23, 25, 38, 39]
Figs. 3a and b are consistent with each other since the
probability density functions for radius, Pr , and volume,
PV , are related by Pr(r) = 4πr2 PV (V (r)). The factor of
4πr2 is present due to the fact that the volume interval
covered by dr scales with the surface area of the sphere.

At least two biases could be present in the size distribu-
tions shown in Fig. 3. The maximum grain size included
is ≈ 5× 105 µm3 which corresponds to a spherical equiv-
alent diameter (SED) of 100 µm which is comparable to
the vertical size of the measured volume (He = 195 µm).
The center of such a spherical grain would have to be
well centered in the measured volume in order to not be
eliminated from the statistics used here. A rough correc-

(a)

(b)

FIG. 3. Estimated grain volume probability densities, P (V ),
with units of µm−3, in each of the two measured states.
Closed symbols are directly computed from the data while
open symbols are corrected by (3). b) The reduced radius
distributions corresponding to (a) without the finite volume
correction. See the text for discussion.

tion that accounts for the reduction in volume available
for the center of mass of a spherical grain of diameter D
is

P∞(V )dV ≈
dN

N

1

(1− D
Le

)2 (1− D
He

)
, (3)

where D = 2
(

3
4πV

)1/3
and Le is the measured square

cross section side length and He is the height of the mea-
sured volume. Open symbols in Fig. 3 show these cor-
rected values for the post-annealing state. As seen in Fig.
2, typical measured grains are not particularly spherical
and this may increase or decrease the appropriate correc-
tion factor depending on anisotropy relative to the shape
of the anisotropic measured volume.
The second possible bias in Fig. 3 occurs at small grain

sizes where diffraction signals may become weak and lead
to reduced sensitivity. The cutoff in grain size described
in Sec. II B helps to assure that this effect is not present
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or not large in the distributions shown. In fact, using a
less aggressive cutoff shows a continued increase in the
number of observed grains below the volume limit in Fig.
3a.
Over most of the volume range, the shape of Fig. 3a

is essentially unchanged while in the large grain limit a
subtle (on the logarithmic scale) increase is seen which
corresponds to the increased average grain volume. The
finite volume correction tends to make the logarithmic
plots more power-law like, but there remains significant
curvature over the entire three and a half decades of vol-
ume variation. Without additional anneal states, it is
not possible to speculate on a trend toward a power law
behavior.

FIG. 4. The distribution of the number of faces or
nearest-neighbors per grain in each measured state. The
frequency is the number of occurrences of F , NF , divided by
the total number in each state. Error bars are

√
NF /Ntot.

There exist (but are not shown) grains that have values as
high as F = 80. The inset shows the corresponding
distribution for the 3299 matched grains whose evolution is
discussed in Sec. III B.

b. Number of faces distribution The number of faces
or nearest neighbors, F , of a grain is a fundamental topo-
logical quantity. [5, 6, 40] The distribution of F over the
measured grains is shown in Fig. 4. Note that the in-
clusion of the large number of small, unresolved grains
would increase the frequency of small neighbor numbers
if they could be reliably included and a similar effect may
reduce the large F limit of the distribution due to the fi-
nite measurement volume. For the included grains, the
average number of faces is 〈F0〉 ≈ 12.0 in the initial state,
and 〈F1〉 ≈ 11.8 in final state; the peak is at F ≈ 7.5 in
both states. This distribution, like the volume distribu-
tion, is essentially unchanged under the annealing. There
is a long tail containing a small number of grains having
as many as 80 neighbors (not shown). Not surprisingly,
the grains in the tail of this distribution are also in the
large grain tail of the volume distribution. The shape
of the distribution shown here is similar to those seen in

Fig. 4b of Zhang et al. [23]; counting statistics do not al-
low detailed comparisons to their evolving distributions.
Additional statistics are presented in the appendices.

B. Statistical characterization of grain evolution

Changes in grain size are expected to correlate with
topological characteristics of grains and their neighbor-
hoods. While the average behaviors shown below appear
consistent with the isotropic theory, the variations within
each topological class are found to be at least comparable
to the overall variation in the average behavior.
a. Dependence on number of grain faces As a first

statistic, consider changes in the spherical equivalent di-
ameters of grains as a function of the grains’ number of
nearest neighbors. The spherical equivalent diameter is

D = 2
(

3
4πVg

)1/3
and we use subscripts, 0 and 1 for the

initial and annealed states. Note that most grains are far
from spherical but D can be used as a linear characteri-
zation of size, growth, or shrinkage.
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FIG. 5. Statistics of diameter changes for grains with
different numbers of nearest neighbors (or faces) in the
initial state. Pairs of face numbers have been binned for
clarity. The mean (blue points) and standard deviations of
the distributions in each bin (red vertical bars) are shown
for each grain class. The smaller green error bars are the
standard deviations of the estimated mean values, which are
1√
n
times the distribution standard deviations (red error

bars), where n is the number of grains in each bin. (a)
includes only matched grains whereas (b) also includes a
statistically estimated correction for grains that disappear
and therefore have ∆D = −D0 (see text for discussion).

Fig. 5(a) shows diameter differences, ∆D = D1 −D0,
for each of the 3299 matched grains as a function of F0,
the number of faces in the initial state. Since F0 cor-
relates with grain size and large grains are expected to
grow, a positive correlation of ∆D with F0 is expected.
The appropriate trx end in the mean is apparent in the
figure, apart from the upturn at small face numbers (see
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below). However, for grains in each class, the standard
deviation of diameter changes is comparable to the over-
all variation in the mean. The large standard deviations
at F0 = 46 and 48 and the lack of standard deviations at
larger numbers are due to the fact that only one or a few
grains exist at these face numbers. It is apparent that at
each value of F0, some grains grow while others shrink.
In spite of the fact that large F0 correlates with large
grains, this metric alone is not predictive of even the bi-
nary question of growth versus shrinkage of a particular
grain.

The upturn in ∆D at small F0 may be counter in-
tuitive, but can be attributed to the fact that only
grains that survive the annealing are included. Many
small grains (typically with small F0) should contribute
∆D = −D0. This bias can be removed in a statistical
way. As stated above, there are 30.2% of initial state
grains that are not paired in the forward matching and
12.4% in backward matching. Again assuming no nu-
cleation, 12.4% is the estimated error rate in matching
and the remaining 17.8% (885 grains) should be roughly
the number of grains that disappeared. We randomly
choose 885 of the forward matching unpaired grains and
assume that they had ∆D = −D0. Including these yields
Fig. 5(b) with intuitively reasonable average behavior
of shrinking grains with small F0 and growing grains at
large F0.

The mean growth curves in Fig. 5 cross zero at
F stagnent
0 ≈ 19, larger than 〈F 〉 ≈ 12. Fig. 4 shows

that about 80% of grains have F < F stagnent
0 ; neverthe-

less, only roughly 50 % of grains shrank and 50% grew.
A recent isotropic phase-field simulation [39] yields both
a zero average growth rate and an average face number
of ≈ 15 for a variety of initial grain sizes and face number
distributions and at different time points. These distinc-
tions are discussed in Sec. IV.

b. Dependence on grain neighborhoods Under the
assumption that grain boundary interface energies and
mobilities are independent of the five crystallographic
parameters specifying grain boundary character, grain
growth process should be described by the MacPherson-
Srolovitz model. [4] Mullins and von Neumann [5, 6]
showed that the evolution of grain boundary interfaces
is driven by the local mean curvature of that boundary,
and as a result, the total volume growth rate is given by

dV

dt
= V 1/3Mγg (4)

g = −
1

V 1/3

∫

Faces

(

1

R1
+

1

R2

)

dS (5)

where M is a mobility constant for the grain boundary,
γ is the excess interfacial energy per unit area and g
represents the normalized integral mean curvature of the
grain faces. R1 and R2 are local radii of curvature of the
boundary and dS is an element of interfacial area. It is
based on (4) and (5) that MacPherson and Srolovitz were
able to obtain (2).

FIG. 6. Changes of the excess grain face number. Each point
represents an individual grain. See discussion in the text.
The outlier in the red box is discussed below in Sec. IIIC

To compare with our experimental data, Eq. (4) is
converted to integral form, ∆V 2/3 = 2

3

∫

Mγg dt. Ear-
lier work by Rowenhorst et al. [38, 41] showed empirically
that g is, at least in an averaged sense, proportional to
F −m(F ), where F is the number of faces of a grain and
m(F ) is the average number of faces of that grain’s near-
est neighbors; we refer to F −m(F ) as the “excess face
number.” As shown in Fig. 6, for most of the grains, the
value of F −m(F ) does not change dramatically during
the annealing. For grains with a given value in one state,
the mean value in the other state is the same within a
standard deviation of ≈ 4 . We infer that there should
be a roughly linear relation between g and F −m(F ) and
therefore that

∆V 2/3 = V
2/3
1 −V

2/3
0 ∝

∫

[F −m(F )] dt ≈ (F1−m(F1)) ∆t.

(6)

FIG. 7. Histograms of ∆V 2/3 in (6) for three excess face
numbers, F −m(F ). Here, F = F1 is taken from the
annealed state.
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Fig. 7 demonstrates that the isotropic prediction Eq.
(6) is not obeyed since for given values of F − m(F ),
a wide distribution of values of ∆V 2/3 is observed. On
the other hand, there is a subtle shift of the histograms
toward positive ∆V 2/3 as the excess face number in-
creases. It is also clear from these histograms that the
total number of grains (integral under the curves) de-
creases strongly with increasing excess face number.

Fig. 8 shows the means and standard deviations of dis-
tributions like those shown in Fig. 7 over a broad range
of excess face number. The range−20 ≤ F1−m(F1) ≤ 20
corresponds a range over which the number of entries is
large enough that the statistical result is robust. Re-
markably, the mean values of the broad distributions do
appear to roughly correlate with Eq. (6). The mean
values roughly follow a straight line which crosses zero
volume change near F1 − m(F1) = 0. However, the re-
gion F1 − m(F1) < 0, where neighbors have more faces
than the grain in question, appears to deviate from the
linear trend. As discussed with respect to Fig. 5, this is
likely due to neglect of disappearing grains. Performing
the same correction as in that case yields Fig. 8(b) with
an improved linear region around zero volume change.
The large standard deviations are consistent with Fig. 7
and are seen to be comparable to the overall trend in the
mean.

Again in this case, the variation in response within
each category, indicated by the standard deviation bars,
is large and crosses zero volume change in almost every
class. The average behavior is again not a good predictor
of a particular grain’s response. We discuss this failure,
which is consistent with prior work [17, 23] in Sec. IV;
the next section gives anecdotal examples of unexpected
behaviors.

20 10 0 10 20

F1 m(F1)

200

100

0

100

200

300

V
2
/3
1

V
2
/3
0

(
m
2
)

(a)

20 10 0 10 20

F1 m(F1)

200

100

0

100

200

300

V
2
/3
1

V
2
/3
0

(
m
2
)

(b)

FIG. 8. Test of the linear relation of Eq. (6). (a) shows
matched grains only while (b) includes a statistically
estimated correction, based on the size distribution of
unmatched grains, for grains that were consumed during
annealing; these grains were assigned V1 = 0. As in Fig. 5,
blue points and red vertical bars are the means and
standard deviations of the distributions in each bin (with
examples shown in Fig. 7). The smaller green error bars are
the standard deviations of the estimated mean values.

C. Examples of anomalous behavior

The large standard deviations discussed above imply
that local fluctuations in behavior are important and that
outlier behavior can be expected. While a comprehensive
analysis of grain boundary movements correlated with
grain boundary character is beyond the scope of this pa-
per, we show here examples of counter intuitive behavior.
These examples illustrate both intrinsic effects and am-
biguities that arise from the parameters associated with
defining and matching grains.

∆
D

(µ
m
)

D0 (µm)

FIG. 9. Changes in diameter for all 3299 matched grains as
a function of initial size. Each point represents a single
grain. A large grain, discussed in Sec. IIIC that shrank
during annealing is identified by red box.

Big vs. bigger In a large ensemble, it is not surpris-
ing to find two or more large grains that are nearest
neighbors. Since “large” grains are expected to consume
“small” ones, this is one mechanism to explain the ob-
servation that some large grains shrink. Such behavior is
entirely consistent with curvature driven growth laws, ei-
ther with or without the isotropy assumption. With the
statistical correlation between face number and grain size
shown in Fig. 14, this effect can explain at least some of
the dispersion seen in Figs. 5 and 8.

Fig. 9 shows the change in spherical equivalent di-
ameter for grains with a wide range of initial diameters.
There is only a weak average trend for larger grains to
grow, as is implicit in Fig. 5. Again, dispersion is the
dominant feature. The red box indicates an initially large
grain (initial SED of 62 µm or volume ∼ 105 µm3) that
shrinks substantially during annealing. Fig. 10 shows
this grain in yellow and two of its neighbors (green and
purple) that are even larger in the two states. The yel-
low grain appears to be convex over much of the visi-
ble boundary and it is consumed by the large and oddly
shaped green grain beneath it as well as by the unseen
grain in front.
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111

001

30 ( m)

FIG. 10. The yellow grain is large but is seen to shrink
during annealing. The bottom of the green grain is cut off
by the end of the measurement volume.

a. Anomalous grain division and matching Another
interesting case is the grain boxed in red in Fig. 6:
in the initial state, it has a substantial excess number
of faces, F0 − m(F0) ≈ 35. But the grain boundary
topology changed dramatically during annealing so that
F1 −m(F1) ≈ 0 afterwards. After some investigation, it
turns out that the relevant grain (light blue) was split in
two by a growing small grain, as shown in Fig. 11. The
grain matching algorithm, when run in the forward di-
rection, matched the initial grain to one of the two split
grains, resulting in the dramatic reduction in excess face
number. In the reverse direction, both split grains are
matched to the same initial whole grain. This anoma-
lous behavior also caused the unexpected drop in Fig. 5
between 40 < F0 < 50. The mystery, of course, is why
did the small yellow grain succeed in growing through
its larger neighbor? An alternate explanation would be
some sort of unexpected reconstruction artifact in one or
the other state.

FIG. 11. The light blue grain in the initial state (left) is
split in two (right) by a growing small yellow grain. The flat
bottom of the large dark blue grain in the annealed state
indicates that it reached the edge of the measurement
volume.

b. Apparent grain rotation For grains with diame-
ters of several microns and larger, grain rotation is not
expected during the coarsening process because the con-
stituent crystallites are highly constrained by their neigh-
bors. The distribution of disorientation angles between
matched grain pairs are shown in Fig. 16c. Most have
≤ 0.1◦ disorientations which is the resolution of the mea-
surement and is therefore consistent with zero. However,
there are several cases (out of 3299 matched pairs) where

the disorientations are > 0.2◦. Fig. 12 explains one ex-
treme case and shows that this case is an artifact of the
arbitrary threshold used in segmenting grains. The two
grains shown are separated by a low angle boundary, indi-
cated by the black lines, of ≈ 1.8◦ disorientation. With
the disorientation tolerance of 2◦ used in DREAM.3D

for segmenting voxels into grains, these two grains were
grouped together as one. The change of relative volumes
caused by motion of the low angle boundary during an-
nealing caused the grain average orientation to change
while the orientations of each sub-grain did not change
beyond the experimental resolution. Again, the grain
matching algorithm in this paper uses the disorientation
angle as one of its criteria, so it may miss grain pairs
whose average orientation rotated too much (> 0.5◦) due
to such low angle boundary motions.

30  ( m)

101

111

001

FIG. 12. Two grains that have a low angle boundary of
≈ 1.8◦ disorientation, indicated by the black lines. With the
disorientation tolerance (= 2◦) used in DREAM.3D, they
were considered together as one grain, so the change of
relative volume ratio caused the change of the average grain
orientation.

IV. DISCUSSION

Near-field high energy x-ray diffraction microscopy
makes possible this statistical study of α phase iron grain
coarsening. Over 10,000 grains are reconstructed with
the forward modeling method [19, 29] in each of two sam-
ple states. The grain statistics and changes thereof pre-
sented here are not dependent on resolution of individual
grain boundaries and therefore do not involve boundary
smoothing and tracking. On the other hand, the esti-
mation of the probability density for finding grains of
volume V (Fig. 3) is affected by the finite measured
volume and finite experimental resolution. We give an
estimated correction for the finite volume effect and we
use a conservative small size cut-off to avoid distortions
due to reduced sensitivity in this limit. The most signif-
icant contribution to uncertainty in the grain evolution
analysis is the lack of perfect matching of grains between
the two states; this problem is most apparent for small
grains as shown in Appendix B but also has a contribu-
tion due to initial grains that grow past the boundaries
of the measured volume in the final state.
We assume that new grains do not nucleate in the
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fully recrystallized material with tens of micron grain di-
mensions. While rare exceptions have been observed in
nickel [42] associated with very low energy annealing twin
formation, corresponding low energy boundaries are not
available in the α phase, bcc structure measured here.
The lack of large twin populations simplifies analysis rel-
ative to current studies of nickel. [43]

In an averaged sense, the isotropic model for coarsen-
ing that assumes that all boundaries have the same en-
ergy and mobility compares very well with the observed
grain evolution. This implies that the normalized mean
curvature alone can be used to describe average grain
growth behavior. However, as shown in Figs. 5 and 8,
individual grains within a topological class vary in their
growth by as much as ∼ ±100% of the observed range
of average behaviors. This range of variation is consis-
tent with prior observations of coarsening in two dimen-
sional succinonitrile (C2H4(CN)2) polycrystals [17], with
recent observations of iron by Zhang et al., [23] and with
our observations of nickel. [43] In the succinonitrile case,
the authors observed that the growth rate of the aver-
age grain area, 〈A〉, within topological classes specified
by the number of grain sides or neighbors, n, was consis-
tent with the classic, isotropic n − 6 dependence. [5, 6]
But, similar to the recent observations, large variations
from grain to grain were observed with variations in each
class of order 100% of the observed range of averaged
behaviors.

There are a number of possible origins of the observed
large dispersion in growth characteristics within topolog-
ical classes. i) The empirical relation between F −m(F )
and mean curvature, g, itself has substantial dispersion
but less than the range of variation in g. [38] It is based
on experimentally measured curvatures so a portion of
observed dispersion may be due to measurement uncer-
tainties. It appears that this contribution does not ac-
count for observed variations in Figs. 7 and 8. ii) Dur-
ing the annealing used here, the values of F −m(F ) are
not constant as shown in Fig. 6. However, given the
slope of the mean in Fig. 8, changes of ±4 as consistent
with Fig. 6 are not sufficient to generate the observed
large distribution widths. iii) More interestingly, grain
boundary energies and mobilities are, in fact, not uni-
form and the inclusion of many boundary types within
topological classes can be expected to generate disper-
sion in the statistics presented here. Further, Zhang et
al. [23] speculate that their observed reduction in growth
rate may be associated with large variations in mobility.
These observations strongly motivate on-going work that
will analyze motions of individual boundaries and that
can extract, for example, boundary energy distributions.
[44] Further experimental work is certainly warranted.
Extending measured volumes while maintaining compa-
rable grain sizes can increase the dynamic range of the
measurements. Expanding the range of growth may elu-
cidate how distributions evolve toward the steady state.

On a measurement technique note, the apparent near-
field HEDM measurement sensitivity to almost four

decades in grain volume while the detector sensitivity
spans only about three decades can be understood from
the fact that observed intensities on the near-field detec-
tor do not scale with grain volume as they do in a more
traditional (or in a far-field HEDM [28]) measurement.
In a sub-grain resolved diffraction measurement, detec-
tor pixel intensities are proportional to the sub-volume
of the grain, V grain

(j,k) , that projects intensity to the pixel

rather than the entire grain volume. Here, (j, k) specifies

a pixel coordinate. For a large grain, V grain
(j,k) is propor-

tional to the pixel area (and the beam height and geomet-
ric factors specifying the scattering geometry for a given
Bragg peak). Until the volume “seen” by the pixel starts
to extend beyond the grain’s boundaries (due to either
small grain size or when scattering originates from near
a boundary of a large grain) the intensity is independent
of grain size.

V. CONCLUSIONS AND PROSPECTS

New x-ray probes of three dimensional grain geome-
tries and evolution which study significant volumes of
microstructure are leading to improvements in under-
standing of grain coarsening phenomena. The summary
statement at this point is that averages over topologi-
cal classes follow expected behavior based on isotropic
models of curvature driven evolution, but that individ-
ual grains deviate by large amounts from this simplified
model.

Further understanding can be expected based on the
combination of improved experimental methods and fa-
cilities and on the use of modern numerical methods. For
example, it appears to now be practical to extract grain
boundary energies from geometries of very large numbers
of triple junctions [44] such as measured here. This ap-
proach may then provide a means for separating the roles
of energy and mobility. It has also been suggested that
this separation may be possible through purely experi-
mental observations of boundary motions. [30]
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Appendix A: Statistical distributions

Fig. 13 shows the distributions of disorientations at
grain boundaries, weighted by boundary area (the bound-
ary area is calculated without any smoothing, so this is
larger than the real boundary area). Note that the distri-
butions are similar to the Mackenzie distribution, but are
slightly larger than random for low angle boundaries and
there is a deficit near the peak at 45◦. These features,
as well as the peak at 60◦, reflect the anisotropic grain
boundary energies presented in Ref. [45]. As expected,
the peak due to the low energy twin boundaries at 60◦ is
weaker than that found in fcc nickel. [27]

���

���

������	

������	

FIG. 13. Disorientation distribution with bin size equal to
0.5◦. The solid red line is the Mackenzie distribution [46] for
randomly oriented cubes. The distribution is essentially
unchanged during annealing.

Other important statistics are about grain faces. Fig.
14 confirms that on average larger grains have more faces
than small grains. The dispersion in the SED values here
is smaller than the overall trend, in contrast to the growth
characteristics discussed in the text.
Fig. 15, similar to Fig. 7 of [38], shows that grains

(a)

(b)

D
0
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m
)

F0

D
1
(µ
m
)

F1

FIG. 14. Relation between grain spherical equivalent
diameter and the number of nearest neighbors, F . The
grains with the same numbers of neighbors are grouped
together and the mean (blue line) and standard deviation
(red bar) are calculated for each group. (a) initial state, (b)
final state.

with small face numbers, F , are likely to be surrounded
by grains having more faces; grains with F ≈ 18 have
zero excess face number, which is consistent with Figs. 5
and 8. Fig. 8 shows that this value separates, on aver-
age, grains that grow from grains that shrink. However,
this criterion is not predictive for individual grains.These
plots are similar to, but with slightly different parameters
from plots seen in, for example, Refs. [38, 39].

Appendix B: Matched grain pair characteristics

The following figures show statistical analysis of the
grain pairs found through the analysis described in Sec.
II C. These figures validate the parameters used in the
grain matching algorithm. Fig. 16a shows the size ratios
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(a)

(b)

FIG. 15. Aboav-Weaire plots [47, 48] giving the relation
between the number of neighbors a grain has, F , and the
average number of neighbors its neighbors have, m(F ).
Subscripts on F indicate (a) initial and (b) final anneal
states. Grains with each neighbor number F are grouped
together and the mean (blue) and standard deviation (red)
of m(F ) for those grains are plotted. The dashed line
separates regions in which m(F ) > F (upper left) from the
region with m(F ) < F (lower right).

of paired grains. Of the tracked grains, roughly as many
decreased in size as increased. Of course, many grains
disappeared or were consumed by others (and therefore
were not matched); such events break the near-symmetry
and result in increased average grain size.

Fig. 16b shows the ratio of center-of-mass displace-
ments to the spherical equivalent diameter in the final
state. Most displacements are less than one diameter
but a few are substantially larger indicating asymmetric
growth, which results primarily from some small grains.

The misorientation angles between tracked grains in
the initial state and after annealing are shown in Fig.
16c to be generally less than 0.1◦ which is the nominal
resolution of the measurement. A small number of pairs
extend up to the maximum rotation allowed by the pa-

rameters used in the matching algorithm. The cut-off at
≈ 0.04◦ probably indicates residual misalignment of the
two sample states.
Figs. 16d - 16f show individual center-of-mass displace-

ment components in the sample coordinate system. The
mean values correspond to ≈ (−7, 10, 4) µm with x and y
being in the plane of each layer measurement and z being
perpendicular thereto. With average grain diameters of
≈ 30 µm, these displacements are consistent with data
of Fig. 16b. The fact that these component displace-
ments are not centered on zero may indicate a residual
lack of alignment or simply the statistics of grains that
were tracked. Note that the average z-displacement cor-
responds to roughly one layer spacing in the measure-
ment; the in-plane voxel side lengths are 3 µm.
Next, we turn to the statistics associated with un-

matched grains. Fig. 17a shows the size distribution
of unmatched grains in each state. Most contain fewer
than 100 voxels in the initial state and an even tighter
distribution in the final state. Many of these grains may
have been consumed during annealing and therefore are
not present after annealing. However, those grains hav-
ing spherical equivalent diameters < 5 µm, which is less
than the offsets shown in Figs. 16d - 16f, also may have
been rejected by the matching algorithm. In addition,
smaller grains may tend to have larger volume change ra-
tios, which is another reason that they could be wrongly
rejected by the matching algorithm. Fig. 17b shows the
vertical position distribution of unmatched grains, which
is roughly uniform as expected. There are slightly more
unmatched grains at the bottom edge of the initial state
and the top edge of final state; this is consistent with Fig.
16f which shows a ∼ 4 µm offset between the two volume
measurements.
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FIG. 16. Distributions of matched grain properties. (a) shows the ratio of spherical equivalent diameters, D1/D0; (b) shows
the distance between centers-of-mass in the two states divided by D0; (c) demonstrates that the rotation angle required to
bring matched grain orientations in the two states into coincidence is typically less than 0.1 degree; (d) through (f) show the
center-of-mass displacements between states in Cartesian component form; the z direction is perpendicular to the line focused
x-ray beam plane.
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(a)

(b)

FIG. 17. Statistics of unmatched grains. (a) Shows the size
distributions in each state in terms of the number of
3× 3× 3 µm3 cells, each of which corresponds to about eight
reconstructed voxels. A small number of larger unmatched
grains are not shown. (b) Shows the locations in z
coordinate in microns of unmatched grains.
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