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 10 
Abstract 11 

 Herein, we report for the first time on the response of the MAX phase, Ti3SiC2, to shock wave 12 

compression at strain rates above 104 s-1. The shock response was determined by measuring the rear, 13 

free surface, velocity of samples - subjected to impact by high-velocity projectiles launched by a gas-14 

gun - using interferometry. The effects of temperature and sample thickness on the dynamic yield and 15 

dynamic tensile (spall) strengths were explored. The most important result of this work is the unique 16 

dual-nature, at high strain rates, of the response of Ti3SiC2, in that it is reminiscent of both metals and 17 

ceramics. For low energy impacts, the elastic response is reminiscent of ductile metals. However, for 18 

high energy impacts, it performed like a hard-ceramic with quite high work hardening rates. In other 19 

words, Ti3SiC2 behaves like nothing before it and thus must reflect its nanolayered structure. This work 20 

not only provides results on the dynamic mechanical properties of Ti3SiC2 but is a critical first step 21 

towards understanding the response of ripplocations in layered solids to high strain rates. 22 

  23 
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1. Introduction 24 

 The Mn+1AXn (MAX) phases are ternary, thermodynamically stable nanolayered hexagonal 25 

carbides and nitrides, where M is an early transition metal, A is a group A element (mostly from groups 26 

13 and 14), and X is C and/or N.[1] To date, there are over 155 known MAX phases, which can be 27 

further categorized by their n value as “211s” for M2AX (n = 1), “312s” for M3AX2 (n = 2) and “413s” 28 

for M4AX3 (n = 3) etc.[2] The MAX phases combine some of the more attractive properties of ceramics 29 

and metals. They are all metallic-like conductors - in some cases, their conductivities are higher than 30 

those of their pure M element.[3,4] They are relatively soft (Vickers hardness range from 1.4 to 8 GPa), 31 

plastic at high temperatures and damage tolerant.[5,6]  32 

In layered crystalline solids, such as graphite, mica, MAX phases and many others, basal 33 

dislocations have long been considered to be the operational micro-mechanism for their 34 

deformation.[7–10] However, in many other fields, where the layers can be either crystalline and/or 35 

amorphous (i.e., geology,[11,12] wood,[13] playing cards,[14] laminated composites, etc.), basal 36 

dislocations (BDs) have never been invoked. Instead, it has been assumed that a buckling mechanism, 37 

that typically results in kink band formation is operative. Moreover, the fact that many crystalline 38 

layered solids fail in compression – but not tension-  by forming kink bands, like those seen in other 39 

fields, have all been clues that maybe BDs were not the main operational micro-mechanism in the 40 

deformation of layered solids.  41 

Kushima et al. [15] coined the word ripplocation (Fig. 1a), for a near surface defect in Van der 42 

Waals solids. Using density functional theory, DFT, they demonstrated that ripplocation were 43 

fundamentally different than dislocations by showing that two ripplocations of the same polarity 44 

attracted, in contradistinction to two dislocations of the same sign that repel (Fig. 1a). Shortly 45 

thereafter, we used molecular dynamics (MDs) on graphite and transmission electron microscopy 46 

(TEM) observations on Ti3SiC2 after spherical nanoindentation,[16] to extend the idea to most layered 47 



 3

solids and introduced the idea of a bulk ripplocation (Fig. 1b).[14,16–21] Our MD calculations showed 48 

that ripplocations, unlike dislocations, have no polarities and that they were surprisingly mobile in 49 

graphite even at 10 K. In the nanoindentation experiments, we also showed extremely high hardening 50 

rates. Along the same lines, a hallmark of deformation by ripplocations is the strong effect of 51 

confinement on yield points,[8,22–25] a feature that was not easily reconciled with the basal 52 

dislocations.[18] 53 

 Single ripplocations are probably as rare as isolated dislocations. Instead we showed that 54 

layered solids require an inhomogeneous state of stress (e.g. Fig. 1c) and that the response depends on 55 

the relative size of the perturbation or applied strain field, Λ, relative to the thicknesses of the 56 

individual sheets, τ. If Λ ≈ τ, the layers respond by nucleating evenly spaced ripplocation boundaries, 57 

RBs, that propagate, wave-like, from the source of the stress as shown in Fig. 1c, for plastic cards, thin 58 

steel sheets and graphite. The movies/simulations shown in Ref.[14], are quite instructive in that they 59 

show that the process is one of confined buckling. RBs are defined as the locus of points joining the 60 

highest curvature in each layer.[19] In this case, the wavelengths of the RBs, λRB, is of the order of Λ 61 

and the RBs.[26] However, if Λ >> τ, the response is quite complex wherein a large number of RBs 62 

interact together in quite complex ways as shown in MD simulations that can be found in Refs.[16,17]. 63 

In all cases, however, upon removal of the stress, the system reverts back to its pristine state, i.e. the 64 

process is fully reversible. This reversibility, however, has a limit; once the amplitudes of the RBs are 65 

high enough, they will cause quasi-brittle failure of polycrystalline solids or kink bands in single 66 

crystals.[27–29] 67 
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 68 

Figure 1. (a) Comparison between edge dislocations and ripplocations in a generic lattice. Both 69 
deformation micromechanisms allow the relative movement of one plane of atoms over another. 70 
However, in the case of dislocation, there is only in-plane strain, and climb is required to deform out of 71 
plane. Additionally, two dislocations of the same sign repel, but two ripplocations of the same sign 72 
attract.[15] (b) For ripplocations, c-axis strain is embedded, and can be observed in MD simulated 73 
ripplocation (c) Snapshots of ripplocation boundaries formed when a cylindrical indenter is loaded 74 
edge-on into, from left-to-right, plastic cards, thin steel sheets, and graphite (MD simulation). Images 75 
adapted with permission from Refs. [14,15,17] 76 

Somewhat surprisingly, and even though the MAX phases have attracted much attention for 77 

over two decades, little of that attention was dedicated to understanding their response to dynamic 78 

loading environments. As far as we are aware, apart from the work of Bhattacharya et al., Naik et al. 79 

and Shannahan et al. – who tested some MAX phases at maximum strain rates of ≈ 103 s-1, and by 80 

Jordan et al. on the Hugoniot measurements of Ti3SiC2 - there is little else on the subject in the 81 

literature. [30–34] The purpose of this work was to study the response of one of the most studied of the 82 

MAX phases, viz. Ti3SiC2, to shock experiments at strain rates as high as 104 s-1. To that effect, its 83 
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dynamic compressive and tensile (spall) strengths were tested using a Velocity Interferometer System 84 

for Any Reflector (VISAR) [35] planar impact (shock) experiments as a function of sample thickness 85 

and temperature, that varied between 300 to 1200 K.[35]  86 

2. Materials and Methods 87 

 Polycrystalline Ti3SiC2 samples were prepared by ball milling a 1.95:1:1 stoichiometric mixture 88 

of TiC (325 mesh, 99%, Alfa Aesar), Si (325 mesh, 99.5%, Alfa Aesar), and Ti (325 mesh, 99%, Alfa 89 

Aesar) powders for 24 h in a polyethylene jar using zirconia milling balls. The mixed powders were 90 

poured into a boron nitride-coated graphite die. The die was placed in a graphite element heated hot 91 

press, HP, and pre-compacted at 5 MPa. The die was then heated at a rate of 400 °C/h, to a maximum 92 

temperature of 1550 °C under a uniaxial load corresponding to a stress of 25 MPa. This temperature 93 

and pressure were maintained for 4 h before cooling down at a rate of 400 °C/h. The HPed samples’ 94 

surfaces were ground to remove any boron nitride, graphite and/or carbide residue on the surface before 95 

further preparation for dynamic testing. 96 

 The bulk polycrystalline Ti3SiC2 sample was cut with a diamond saw to ~3 mm thick, 11×11 97 

mm2 squares. The squares were polished down to the required nominal thicknesses (0.5, 1, 2 and 3 98 

mm) and 1 arc min parallelism. In order to enhance the reflection of the laser light, on one surface of 99 

the square samples a micron layer of gold was vacuum deposited.  100 

 For microstructure analysis the sample was mounted, ground, polished and etched for 2-3 s by a 101 

1:1:1 part solution of hydrofluoric acid (48%, Sigma Aldrich, St. Louis, MO), nitric acid (68%, Alfa 102 

Aesar, Ward Hill, MA) and water. The microstructures were imaged in a scanning electron microscope, 103 

SEM, (XL30, FEI, Hillsboro, OR). The SEM images were processed using ImageJ software to obtain 104 

the average grain size.[36] Up to 10 images were analyzed and several hundreds of individual grains 105 

were examined. The average and standard deviations of the grain size, determined from the SEM 106 

images, was found to be ≈ 50±13 μm (Fig. 2a). Phase composition was measured by X-ray diffraction, 107 
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XRD, using a Rigaku SmartLab diffractometer (Tokyo, Japan) over the range of 5 to 90 2θ degree, 108 

with a step size of 0.02 degree and a dwell time of 0.5 s per step. The only impurity was found to be 109 

TiC (3.6%). 110 

 111 

Figure 2. (a) Typical SEM microstructure of a polished and etched Ti3SiC2 sample studied herein. (b) 112 

XRD pattern of the Ti3SiC2 sample. 113 

 114 

Prior to the impact tests, the longitudinal, 9.22 0.01 km/slc = ± , shear 5.69 0.02 km/ssc = ±  and 115 

bulk ( ( )2 24 3 6.47 0.02 km/sb l sc c c= − = ± ) speeds of sound were determined using an ultrasonic 116 

pulse-echo technique. The initial sample density, ρo, measured by the Archimedes method was 117 

4.54±0.01 Mg/m3. All these values are on par with previously reported ones by Radovic et al.[37] 118 

 Since no information on the behavior of Ti3SiC2 under planar impact loading was available, the 119 

first set of experiments were carried out with polymethylmethacrylate (PMMA) window. Here 3 mm 120 

thick samples were backed with a 6 mm thick PMMA windows preventing premature damage of the 121 

rear (un-impacted) sample surface upon the shock wave’s arrival. In this first series of experiments, the 122 

samples - initially at ambient temperatures, ~ 300 K - were loaded by 0.5 mm copper, Cu, or 1 mm 123 

tungsten, W, impactors accelerated using a 25 mm smooth bore gun to velocities that ranged from 200 124 

to 1040 m/s. The velocity of the sample/window interface was continuously monitored by VISAR 125 
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having interferometric constants of 96.4 and 439.2 m/s per fringe. One of the outcomes of this first 126 

series of experiments was understanding that until the impact velocity exceeded the 1 km/s level, they 127 

could be performed with samples whose rear surfaces were free (windowless). This essentially 128 

simplified the next series of tests. The velocity monitored by VISAR in series II to IV (see below) is 129 

thus the velocity of the free sample surface. In these tests, the VISAR interferometric constant was 96.4 130 

m/s/fringe. In all experiments, the impact velocity (with an uncertainty of about 0.5%) was controlled 131 

by two pairs of electrical charged pins and by two in-barrel fiber optic stations.  132 

 The second series of tests was also performed with 3 mm thick samples whose temperature was 133 

varied between 300 and 1200 K. These samples underwent relatively modest loading by the 1 mm Cu 134 

impactors with a velocity of 210±10 m/s. In the third and fourth series of experiments, 0.5, 1, and 2 mm 135 

thick samples were exposed to the same loading conditions in the 300 to 900 K temperature range. The 136 

details of how the samples were pre-heated with a resistive heater up to temperatures of about 1400 K 137 

with ~ 10 K uncertainty can be found elsewhere.[38] For the ambient temperature tests, the same 138 

assembly, this time without heater, thermal screen, or thermocouple was used. 139 

  140 
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3. Results and Analysis 141 

3a. Principal Hugoniot of Ti3SiC2 142 

 Because materials have different compressibility in the elastic and inelastic (plastic) states, the 143 

front of the rectangular stress pulse generated at the sample surface by the planar impact is unstable and 144 

splits into, (i) an elastic precursor wave with an amplitude corresponding to the material’s Hugoniot 145 

elastic limit, HEL, propagating through the sample with a velocity close to the longitudinal speed of 146 

sound, lc , and, (ii) a plastic wave whose propagation velocity is close to the bulk speed of sound, bc  (147 

b lc c< ). This two-wave structure is apparent in the velocity histories u(t), recorded at the interfaces 148 

between differently loaded samples and the PMMA windows shown in Fig. 3a. Using PMMA shock 149 

Hugoniot data,[39] and a shock correction for the index of refraction of the PMMA window,[39,40] the 150 

stress at HEL, σHEL, can be estimated from Eq. 1:[41] 151 

σ HEL = 1
2

ρ0
Ti3SiC2 cl

Ti3SiC2 + ρ0
PMMAcl

PMMA( )uHEL = 0.183 GPa     (1) 152 

This value corresponds to a shear stress at HEL, ( )2 2 70 MPaHEL s l HELc cτ = σ =  and to a yield strength 153 

2 140 MPaHELY = τ = ,[42] which is 4-6 times lower than values measured in quasi-static compression  154 

tests.[43–46] 155 
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   156 

Figure 3. (a) Velocity histories of Ti3SiC2/PMMA interfaces recorded after impacts of different 157 

strengths. Sample and impactor thicknesses and impactor velocities are listed next to the waveforms. 158 

Inset shows determination of HELu  used for estimating HELσ . (b) Shock velocities sU  (open squares, 159 

right hand y-axis) and stress Hσ  (open circles, left-hand y-axis) at Hugoniot determined from the 160 

velocity histories shown in (a) as a function of particle velocity pu . Filled squares correspond to the 161 

ultrasonic speed of sound in Ti3SiC2. Dashed line is a linear approximation. The dotted line is the 162 

Hugoniot hydrostat 0H s pp U u= ρ . Inset shows departure of Hσ values from hydrostat. Error bars 163 

correspond to the uncertainty in determinations of sU and pu . 164 

Taking into account the physical properties of PMMA [39,40] and applying, in sequence, the mass and 165 

momentum conservation laws to the elastic and plastic waves,[47] one obtains the shock wave 166 

propagation velocity ( sU ), compressive stress ( Hσ ), specific volume ( HV ), and compressive strain 167 

(positive) 01H HV Vη = −  at the final, Hugoniot state. Figure 3b plots the dependence of sU  and Hσ168 

on particle velocity, 0p H Hu = σ η ρ . As apparent from Fig. 3b, the sU  values obtained after the two 169 

high energy impact tests, together with bc , may be approximated - with reasonable accuracy with a 170 

Pearson correlation coefficient > 0.999 - by the linear expression: 0 6.47 1.61s p pU C su u= + = + , where 171 
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s is the slope and 0C  is the intercept. This means that 0C  of the linear Hugoniot virtually coincides 172 

with bc  and that for up > 650-700 m/s, the sample behind the shock front is close to being in a state of 173 

pure hydrostatic compression. Accordingly, the expression for the Hugoniot hydrostat, is:174 

( ) 2
0 0 29.37 7.32H p p p pp C su u u u= ρ + = + . 175 

3b. Temperature dependence of dynamic yield and tensile (spall) strengths of Ti3SiC2 176 

 As noted above, only the first series of samples were backed with a PMMA window. The 177 

velocities measured in all other series were those of free sample surfaces. Figure 4a displays the free 178 

surface velocity histories for 3 mm thick samples preheated to temperatures ( 0T ), of 300, 600, 900 and 179 

1200 K and shock-loaded with a 1 mm Cu impactor having velocities of ≈ 210 m/s. As apparent from 180 

Fig. 4a, varying 0T  does not change the waveforms substantially. The main changes take place during 181 

the initial stages of shock compression. Inset in Fig. 4a, shows that the part of the waveforms 182 

associated with the elastic-plastic transition varied systematically with 0T . As in the case of the 183 

waveforms (Fig. 4a) in the previous subsection, the elastic deformation is associated with a velocity 184 

ramp is possibly caused by either some dispersion of the wave due to the presence of multiple grain 185 

boundaries and/or ripplocations, or by a relatively low stresses needed to split low energy core 186 

dislocations.[48] Note that the distinct signature of an elastic-to-plastic transition is absent in the 187 

waveforms of Fig. 4a. This results in substantial uncertainty in the determination of HELu  by the method 188 

shown in the inset of Fig. 4a. This uncertainly is propagated to estimates of σHEL and yield strength, Y, 189 

given by:[42] 190 

0
1
2HEL l HELc uσ = ρ         (2a) 191 

2

22 s
HEL

l

cY
c

= σ          (2b) 192 
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 193 

To make use of Eqs. 2a and 2b, lc  and sc  (or of moduli ' 2
0 lE c= ρ  ) and of the densities 0ρ  at 0T  need 194 

to be known.[37,49] It will be shown later that the two-wave, i.e. an elastic precursor wave, followed 195 

by a plastic wave, configuration obtained with the 3 mm thick samples may be considered as steady. In 196 

such a case, the simple wave approximation [50,51] may be applied to the waveforms of Fig. 4a for 197 

obtaining, based on the experimentally measured velocity histories, the compressive stress-strain 198 

function σ(ε) of Ti3SiC2 and is described in parametric form in Appendix A. 199 

At the impactor/sample interface, the planar impact generates a compressive stress pulse 200 

travelling towards the free surfaces of both impactor and sample free surfaces. After reflection from the 201 

surfaces, both compressive waves start to travel back towards the impactor/sample interface, now as 202 

release (or rarefaction) waves. Arrival of the rarefaction wave from the impactor rear surface to the rear 203 

surface of the sample starts to decrease its velocity from the maximum Hu  value. The deceleration is, 204 

however, limited by the material strength which is virtually proportional to the velocity pull-back pbuΔ205 

(Fig. 4a). The in-sample collision of two rarefaction waves results in the generation of a tensile stress 206 

pulse at the site of collision. If the so-generated tensile stress exceeds the tensile strength of the sample, 207 

dynamic tensile (spall) fracture takes place. The fracture is accompanied by the creation of two new 208 

surfaces at the collision site and by the generation of a compressive signal that changes deceleration of 209 

the sample’s rear surface into acceleration followed by velocity minima shown in Fig. 4a.  210 

The dynamic tensile or spall strength spσ  can thus be estimated assuming:[52] 211 

( )0
1
2sp b pbc u uσ = ρ Δ + δ ,     (3) 212 

where ( ) ( )1 2 1 21 1sp b lu d c c u u u uδ = − +& & & &  is a correction for the distortion of the waveform as a result 213 

of the different propagation velocities of the spall signal front and of the rarefaction wave ahead of it in 214 
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the elastic-plastic medium,[52] and spd  is the thickness of the spall plate. that is virtually equal to the 215 

impactor thickness. The mechanical properties of Ti3SiC2, namely HELσ , Y , 0.1Y , and spσ , determined 216 

based on the Eqs. (2)-(4) are plotted in Fig. 4b, together with the quasi-static (strain rate 10-4 s-1) 217 

compressive strength results taken from Ref. [53] as a function of 0T . What is quite intriguing and 218 

worth mentioning is the maximum in spσ observed at 600 K, that will be later discussed at Section 4b. 219 

    220 

 221 

Figure 4. (a) Free sample surface velocity histories of 3 mm thick Ti3SiC2 samples, preheated to 222 

different temperatures, To (labelled by the waveforms in inset). Inset zooms on short times. Arrows and 223 

dotted lines show the waveforms’ parameters used for determining the yield and spall strengths. (b) 224 

Stress at HELσ (open circles), yield Y  (filled circles), offset yield 0.1Y  (filled squares), and spall strength 225 

spσ  (filled red triangles) as a function of To. Dashed and dotted lines are the linear fits of Y , 0.1Y  and226 

HELσ , respectively. Solid line reproduces results of Ref. [53] obtained under compression using a strain 227 

rate of ≈ 10-4 s-1. Slim error bars correspond to the typical uncertainty of the property determination.  228 

 Figure 5 displays the work hardening moduli (θ), normalized by the Young’s modulus (E), viz. 229 

( )( )1 E Yθ = Δ Δγ , employing two yield strength increments 0.1Y Y−  and 0.2 0.1Y Y− . Considering the 230 

uncertainties in the determination of the values of θ  for the former and the latter intervals, these values 231 



 13

can be considered as shown in Fig. 5, to be temperature independent and equal to 0.8 and 0.5, 232 

respectively. 233 

 234 

Figure 5. Normalized strain hardening moduli θ determined based on 0.1Y Y−  (filled circles) and 235 

0.2 0.1Y Y− (open circles) increments as a function of 0T . Error bars correspond to the relatively high, ≈ 236 

10 %, uncertainty in the determination of θ . 237 

3c. Relaxation of shear stress in shock-loaded Ti3SiC2 238 

To better understand the processes governing plastic deformation we carried out two additional 239 

series of impact tests on samples of different thicknesses shock-loaded at 300 and 900 K. As noted 240 

above, the shock front in the elastic-plastic material is unstable and splits into elastic and plastic waves 241 

travelling with different velocities. Initially, at the impacted surface, the shear stresses are relatively 242 

high. In particular, in the case of the tests whose results are shown in Fig. 4a, it is about 243 

( )( )2 2
0 2in s l l Hc c c uτ ≈ ρ  or, normalized by the shear modulus 2

0 sG c= ρ , 32 6 10in H lG u c −τ ≈ ≈ × . 244 

After the 3 mm traverse (for, e.g., 300 K test, Fig. 4a), 49 10HEL G −τ ≈ × , is significantly reduced, i.e. 245 
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the elastic precursor wave decays with propagation distance and the shear stress behind the precursor 246 

front relaxes. Evidently, the relaxation occurs at the expense of plastic deformation. 247 

Duvall et al.[54] showed that in an acoustic approximation, the variation of HELσ  (and HELτ , as well) 248 

with propagation distance (h), is related to the initial plastic strain rate γ&  as: 249 

4
3

HEL

l

d G
dh c
σ γ= −

&
      (4) 250 

The two-test series with samples of various thicknesses were performed with the goal to obtain the 251 

dependences ( )HEL hσ  at different 0T . The sample free surface velocity histories recorded in these series 252 

are presented in Fig. 6a and b for T0 of 300 and 900 K, respectively.  Note that the time along the x-axis 253 

is normalized as * /lt tc d=  where t is time and d is sample thickness. This is done to account for the 254 

additional time that takes for the shock wave to travel in sample of different thickness.[42] 255 

 256 

Figure 6. Free surface velocity histories for samples of different thicknesses (indicated to right of 257 

waveforms) shock loaded at 0T  of, (a) 300 and, (b) 900 K. 258 
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 In order to quantify the amplitude decay of the elastic wave with h - Eq. (4), we used both HELσ  259 

(as defined in Eq. a and b), and the 0.1HELσ  (equal to the compressive stress corresponding to a 260 

plastic strain 0.001γ = , see Eqs. (A1) and (A5)). The latter, however, requires a reservation. Equations 261 

A - A  are applicable when the flow is steady,[50] i.e. when all the waveforms shown in Figs. 6a or 262 

6b coincide. Using Eqs. A2 and A6 in the case of a relaxing solid, is limited to very low levels of 263 

plastic strain, when the uncertainties in the stress and plastic strain are not too large. It may be some 2-264 

3% in the case of the 2 or 3 mm samples but may approach 10% for the 0.5 mm samples. 265 

 The values of HELσ  and 0.1HELσ  estimated at 300 and 900 K are shown in Fig. 7, as a function of 266 

h, for different d. As apparent from Fig. 7, with reasonable accuracy (a Pearson correlation coefficient 267 

better than 0.99) all the dependencies may be fit by a power function   268 

( ) ( )0 0h h h −ασ = σ       (5) 269 

where 0 1 mmh =  and σo  and α  are fitting parameters whose values for both HELσ  and 0.1HELσ are 270 

listed in Table 1 as a function of T0. 271 

 272 
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Figure 7. Log-log plot of HELσ (filled symbols) and 0.1HELσ (open symbols) as a function of propagation 273 

distance at 300 K and 900 K. Solid and dashed lines are the power fits ( ) ( )0 0h h h −ασ = σ . Error bars 274 

correspond to typical uncertainties in stress measurements for the 0.5 and 3 mm thick samples. 275 
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Combining (4) and (5) it is possible to relate σHEL with the initial plastic strain rate: 276 

10
0

0

4
3

m
HEL

l

h G A
c

α
α+⎛ ⎞

σ = σ γ = γ⎜ ⎟α σ⎝ ⎠
& &      (6) 277 

where A  is the strain rate factor with units GPa·sm, and m  is the strain rate exponent. The values of m,278 

A , and, for reference, the strain rate after a 1 mm traverse, are listed, respectively, in the three 279 

rightmost columns of Table 1. 280 

 Had the deformation been dislocation-based (not in our case), then the decay parameters shown 281 

in Table 1, can be used to shed more light on the problem. As mentioned above, all determined α  282 

values are typical for the control of dislocation motion and multiplication by the phonon viscous drag. 283 

In such case, the average dislocation velocity v  is related to the applied shear stress τ via linear 284 

expression [55] 285 

bv
B

= τ ,       (7) 286 

where b is the dislocation Burgers vector, and B is the phonon drag coefficient, responsible for the 287 

increase in both HELσ and 0.1HELσ with increasing temperatures in metals. Substituting Eq. 7 into 288 

Orowan’s equation one obtains: 289 

2

m m
bbv
B

γ = ρ = ρ τ& ,       (8) 290 

where ρm is the density of mobile dislocations. Since information on B in Ti3SiC2 is unavailable, 291 

estimating ρm from Eq. 8 is impossible. It is possible, however, to estimate the ratio mf miρ ρ  between 292 

the density corresponding to the very beginning of plastic deformation, ρmi, and the density ρmf, after 293 

some finite plastic deformation, e.g. 0.001γ = . Combining Eqs. (4), (5) and (8) for the same h one 294 

obtains: 295 
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mf f HELi f

mi i HELf i

ρ γ σ α
= =

ρ γ σ α
&

&
       (9) 296 

Substituting the values of α  from Table 1 into Eq. (9) leads to conclusion that increasing the strain 297 

from virtually zero to 0.001, decreases ρm by 30 % at 300 K and by 10 % and 900 K. Given the very 298 

high hardening observed, such a conclusion is physically untenable (see below). 299 

Table 1. Parameters of elastic precursor decay in Ti3SiC2 at different temperatures.  300 

* Values in parentheses correspond to uncertainty of the last digit of the measured property. 301 

4. Discussion  302 

 The most important result of this work is the uniqueness of the response of Ti3SiC2 vis-à-vis 303 

what is known to date about how metals and ceramics respond to high strain rates. This is best seen in 304 

Fig. 8, where the normalized strain hardening moduli are plotted as a function of σHEL for various 305 

metals and ceramics. From this plot alone, it is clear that Ti3SiC2, and presumably other MAX phases, 306 

is an outlier. The leitmotiv of what follows is that in some respects Ti3SiC2 behaves like a ductile metal 307 

but, crucially, in others, it behaves more as a hard, brittle ceramic material. In other words, Ti3SiC2 308 

behaves like nothing before it and thus most probably reflects how ripplocations respond to very high 309 

strain rates. We note in passing that in the case of the carbides and borides shown in Fig. 8, the post 310 

HEL behavior is brittle and immediately after HEL the material is damaged. Moreover, the post-HEL 311 

ramping of the signal (for example, particle velocity) is terminated in the compressive front whose 312 

velocity is essentially lower than the bulk speed of sound of pristine material.   313 

0 ,  KT  Stress 0,  GPaσ  α m A  (GPa·sm) ( ) 11 mm ,  s−γ&  

300 HELσ  0.34(1)a 0.64(2) 0.39 9.28×106 1.01×104 
300 0.1HELσ  0.97(5) 0.46(3) 0.32 4.01×107 2.11×104 
900 HELσ  0.67(2) 0.38(2) 0.28 4.73×107 1.29×104 
900 0.1HELσ  1.8(1) 0.33(3) 0.25 1.37×108 2.98×104 
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 314 

Figure 8. Normalized strain hardening moduli as a function of HEL for various materials.[56–62] 315 

4a. Principal Hugoniot of Ti3SiC2 316 

 The first surprise is the fact that all the waveforms of the velocity histories (Fig. 3a) are atypical 317 

for ceramic materials and are more reminiscent of metals. The elastic precursor wave - with a very 318 

modest amplitude ( 8 m sHELu ≈  vs. 100’s of m/s typical for ceramics) - is followed by a plastic wave 319 

terminated at the Ti3SiC2 Hugoniot. 320 

From Fig. 3b it is clear that σH of the lower velocity tests (232 and 443 m/s) lie some 0.5 GPa 321 

apart from the hydrostat. This, in turn, suggests that at the Hugoniot state, achieved by relatively low 322 

energy impacts, corresponds to a shear stress of about ( )3 4 380 MPaH Hpτ = σ − ≈ . By comparing 323 

this value, corresponding to the final stage of shock-induced plastic deformation, with that at its very 324 

beginning (HEL) it is reasonable to conclude that plastic deformation of Ti3SiC2, under relatively low 325 

impact energies, is accompanied by quite strong work hardening more typical of ceramics than 326 

metals (Fig. 8). As discussed in the introduction section, we have recently shown that such high 327 

hardening rates and moduli are a hallmark of deformation by ripplocations.[16]   328 



 20

Lastly in this section, it is important to note under more intense loading conditions, the complete 329 

comminution of the sample occurs accompanied by the vanishing of the deviatoric stresses and a loss 330 

of shear strength. This statement is justified by estimating the spall strength of Ti3SiC2 based on the 331 

velocity histories in Fig. 3a. While measuring the spall strength in experiments with low-impedance 332 

windows, like herein, are accompanied by substantial uncertainties,[41] the spall strength of Ti3SiC2 for 333 

the 232 and 443 m/s impacts is small but finite, viz. 0.29±0.05 and 0.32±0.06 GPa, respectively. The 334 

spall strength determined for stronger impacts is thus definitely zero, which is typical of ceramics 335 

shock-compressed above their HEL. 336 

4b. Temperature dependence of dynamic yield and tensile (spall) strengths of Ti3SiC2 337 

 The temperature dependencies shown in Fig. 4b are striking in that the ambient values of Y  and 338 

0.1Y  are low and increase with increasing temperatures. Such a response is atypical for ceramics and 339 

more typical of pure metals, with relatively low Peierls stresses. In contradistinction, under static 340 

loading conditions (Fig. 4b) the strengths decreases with increasing temperatures, which suggests 341 

thermal activation. 342 

 To date, two mechanisms have been proposed to explain of the increases in Y and Y0.1 with 343 

temperature (Fig. 2b): i) an increased stacking fault energy with temperature, resulting in a decrease in 344 

dislocations mobility, and/or ii) viscous phonon drag of dislocations that increases with increasing 345 

temperatures.[55] This mechanism controls dislocation motion when the acting shear stress is higher 346 

than the Peierls stress and dislocations glide is the over-barrier type.[63] Since neither apply to Ti3SiC2, 347 

they cannot be invoked here.  348 

 As apparent from Fig. 4b, and although the temperature dependences of Y and Y0.1 are parallel, 349 

the absolute values of Y0.1 are significantly higher. It was noted in subsection 4a that the RT impact 350 

response is associated with substantial work hardening, quantified in Fig. 5. Usually the values of the 351 

strain hardening moduli in strongly work hardened FCC metals are about 10-3-10-2, [61,64,65] i.e. the 352 
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strain hardening moduli of Ti3SiC2 (0.3 to 0.6, Table 1) are extraordinarily high, even by metal 353 

standards.  354 

 The temperature dependence of the spall strength spσ shown in Fig. 4b points to one more 355 

aspect of the dual nature of Ti3SiC2. Although the spall strength is more than modest, the values of 356 

spσ over the 300 – 600 K temperature interval are twice as high as its HELσ . Such a ratio between the 357 

dynamic tensile and compressive strengths is again typical of metals. Moreover, taking into account 358 

that the spall process comprises nucleation of voids and their growth, followed by voids 359 

coalescence,[52] and remarking that over this temperature interval (up to 600 K), spσ  and Y  correlate, 360 

one can conclude that over this temperature interval the spall process is governed by the growth of 361 

voids. However, it is not the case at temperatures higher than 600 K, where the behavior changes to 362 

that more common of ceramics. In ceramics the spσ values are typically smaller than HELσ  and no 363 

-sp Yσ  correlations are observed. It follows that at higher temperatures, control of the spall process 364 

seems to be passed to void or micro-cracks nucleation. It is worth mentioning that information about 365 

temperature variation of spall strength of any material (not only MAX ceramics) is extremely scarce in 366 

the literature. 367 

4c. Relaxation of shear stress in shock-loaded Ti3SiC2 368 

 From the first glance at Fig. 6 three things are apparent: i) in both cases, the amplitudes of the 369 

elastic precursor waves decrease with propagation distance, ii) the amplitudes of the elastic waves are 370 

greater at 900 K than those obtained at ambient temperatures, iii) the time intervals between the elastic 371 

and plastic waves are smaller at higher temperatures. The latter is possibly related to a faster decline 372 

with temperature of the longitudinal modulus ' 2
0 lE c= ρ  vs. the bulk modulus 2

0 bB c= ρ  [66]. 373 

Regardless of whether HELσ  or 0.1HELσ  is considered, their decrease with h (Fig. 7), is reminiscent of 374 

metals with relatively low Peierls stresses [63]. The fitted exponent α  is in the 0.3-0.7 range (Table 1) 375 
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which is typical for over-barrier glide of dislocations and also shows some decline with temperature as 376 

occurs in pure Al [67] or Cu [68]. However, substituting these α  values into Eq. (10) leads to the 377 

physically untenable result that increasing from the strain from virtually zero to 0.001, the density of 378 

mobile dislocations – if invoked – should decrease by some 30 % at 300 K and by 10 % and 900 K. 379 

Since such a conclusion is at odds with the large hardening rates observed herein, it is reasonable to 380 

conclude that the deformation is not mediated by basal dislocations.  381 

 Returning to Fig. 8, it is obvious that Ti3SiC2 is an outlier, with θ  values more typical of 382 

ceramics, but HELσ values that are reminiscent of metals. Based on these crucial results, we reach the 383 

following tentative conclusion: The signature of layered solids that deform by ripplocations is one 384 

where HELσ  is quite low and comparable to that of metals, while simultaneously having normalized 385 

hardening rates comparable to typical ceramics.  386 

 Currently, there is an existing body of work, that is rapidly expanding that suggests that 387 

deformation in layered solids is not mediated by BDs, but rather by ripplocations [14,16–21]. The 388 

results of this work comprise one more set of results that cannot be explained by dislocations in 389 

general, or more specifically, BDs (the only kind assumed present in layered solids). The very high 390 

hardening rates observed herein have been observed previously in nanoindentation experiments of 391 

Ti3SiC2 [16]. Since in this case, no external confinement was applied, like in a nanoindentation 392 

experiment, the bulk of the sample itself acts as its own confinement. We have also previously argued 393 

that the dependence of the failure stresses on confinement can be taken as a good indication that 394 

ripplocations and not BDs, are the operative micromechanism [16,18]. Nothing in this work contradicts 395 

any of these conclusions, if anything they confirm them.  396 

  397 
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5. Summary & Conclusions   398 

Herein the dynamic properties, at strain rates of > 104 s-1, such as Hugoniot hydrostat, Hugoniot 399 

elastic limit, yield strength, spallation strength and normalized work hardening moduli of the MAX 400 

phase Ti3SiC2 were determined for the first time. Additionally, the temperature dependencies of 401 

dynamic yield and tensile spallation strengths were established all for the first time.  402 

It was found that the elastic precursor wave has a relatively low amplitude that was followed by a 403 

plastic wave, terminated at the Hugoniot. Such behavior is typical of ductile metals. However, during 404 

plastic deformation, the work hardening rates were quite high and more typical of ceramics subjected to 405 

dynamic loading. 406 

 The yield strengths were also found to increase linearly with increasing test temperatures, which 407 

is atypical for ceramics. The temperature dependency of the spallation strength, however, was found to 408 

be quite similar to the quasi-static yield strength dependency. However, the values of SPσ were found 409 

to be double the HELσ  values, which again is more typical of metals. 410 

 Lastly, we show that if standard dislocation-based theory is used to estimate the mobile 411 

dislocation density, ρm, we reach the untenable conclusion that ρm decreases by 30% as the plastic 412 

strain rate increases from 0 to 0.001 %. Our results, however, are at least qualitatively consistent with 413 

the presence of ripplocations and ripplocation boundaries.  414 

 This conclusion is of paramount importance for several reasons. First and foremost, a totally 415 

new fracture mechanics at high strain rates – and slow ones for that matter – of layered solids has to be 416 

developed. As shown herein dislocation theory is of little use. This work could also be of great 417 

importance to seismology and seismologists at both the geological and nanoscales. We have recently 418 

shown using transmission electron microscopy, that at the atomic level deformed biotite was riddled by 419 

ripplocation bridges that in some cases were a few atomic layers thick and in other much thicker. In 420 
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general, most researchers working with layered solids have assumed implicitly or explicitly that BD 421 

were responsible for their deformation.  422 
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Appendix A: 423 

Compressive stress-strain function σ(ε): 424 

Assuming that the compressive part of the velocity history (u(t)) is a result of propagating of a simple 425 

wave, having Lagrangian velocity (a(u)) through the sample, the mass-momentum conservation 426 

equations is as follows:  427 

( )00

1
2

Hu duV
a u

= −
ρ∫         (A1) 428 

( )0
0

1
2

Hu

a u duσ = ρ ∫ ,         (A2) 429 

where σ  is considered as positive in compression, the factor ½ reflects the assumption that the particle 430 

velocity (up) is equal to one half of the free surface velocity (u), uH is the particle velocity at the top (on 431 

Hugoniot) of the shock wave. The specific volume V is related to the engineering strain by ε = (Vo – 432 

V)/Vo, where, V0 is the initial specific volume.  433 

The a(u) of propagation of the signal - with time t(u) - corresponding to the particle velocity value 434 

2pu u=  through a sample of thickness d  is 435 

( )
( )

2
2

l
l

l

d c t u
a c

d c t u
− Δ

=
+ Δ

,     (A3) 436 

where ( ) ( ) ( ) ( )0 lt u t u t u t u d cΔ = − = = − . 437 

Knowledge of the material Hugoniot hydrostat, 0s pU C su= +  gives the pressure 438 

( )
( )

2
0 0 21

p C
s
εε = ρ

− ε
      (A4) 439 

at the temperature of interest and allows us to find the dependencies of shear, τ   440 
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( ) ( )3
4

pτ = σ ε − ε⎡ ⎤⎣ ⎦ ,       (A5) 441 

and yield 2Y = τ  stresses on the plastic strain 442 

0

u du d
a G

τ⎛ ⎞γ = −⎜ ⎟
⎝ ⎠∫ .      (A6) 443 

When the dependence ( )Y γ  is obtained, the 0.1 % proof stress ( )0.1 0.001Y Y= γ =  can be found. The 444 

Ti3SiC2 Hugoniot hydrostat 0 6.47 1.61s p pU C su u= + = +  is known only for 300 K. Here we assume 445 

that this hydrostat and cb are not functions of temperature.  446 
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