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We study the influence of sample termination on the electronic properties of the novel quan-
tum spin Hall insulator monolayer 1T ′-WTe2. For this purpose, we construct an accurate, mini-
mal 4-orbital tight-binding model with spin-orbit coupling by employing a combination of density-
functional theory calculations, symmetry considerations, and fitting to experimental data. Based
on this model, we compute energy bands and 2-terminal conductance spectra for various ribbon
geometries with different terminations, with and without magnetic field. Because of the strong
electron-hole asymmetry we find that the edge Dirac point is buried in the bulk bands for most edge
terminations. In the presence of a magnetic field, an in-gap edge Dirac point leads to exponential
suppression of conductance as an edge Zeeman gap opens, whereas the conductance stays at the
quantized value when the Dirac point is buried in the bulk bands. Finally, we find that disorder in
the edge termination drastically changes this picture: the conductance of a sufficiently rough edge
is uniformly suppressed for all energies in the bulk gap regardless of the orientation of the edge.

I. INTRODUCTION

Quantum spin Hall (QSH) insulators are two-
dimensional (2D) materials with a pair of counter-
propagating, helical electronic modes along their edges
protected from backscattering by time-reversal symme-
try.1–6 They represent celebrated examples of topological
insulators7–10 and have a nonzero Z2 topological invari-
ant ν. Their hallmark is a quantized electronic conduc-
tance of G = 2e2/h as a consequence of the eponymous
quantum spin Hall effect. More specifically, each of the
two oppositely spin-polarized, conducting edge channels
contributes one conductance quantum e2/h. This is a
robust feature since backscattering between the two edge
channels is forbidden by time-reversal symmetry. The de-
scribed robustness, however, is expected to break down
once time-reversal symmetry is broken, for instance by a
magnetic field.

Experimental efforts in realizing QSH insulators have
mostly focused on quantum-well heterostructures based
on three-dimensional semiconductors such as HgTe/CdTe
or InAs/GaSb quantum wells.6,11–15 Recently, techno-
logical advances in the preparation of monolayer ma-
terials have shifted the focus to truly 2D materials as
platform for QSH insulators.16–19 Those materials in-
clude the graphene descendants silicene, germanene, and
stanene,18,20,21 as well as the related Bismuthene.22

Another materials class that has attracted attention
in this context are single-layer transition metal dichalco-
genides.16,23–32 Specifically, monolayer WTe2 has been
identified theoretically to realize a QSH phase,16,33–35

and various experiments have verified its key features: an
insulating bulk, the presence of conducting edge chan-
nels, and a quantized electronic conductance of 2e2/h
over a large range of temperatures.36–42 Furthermore, a
magnetic field has been shown to lead to a breakdown of

conductance in the investigated samples.42 This suggests
the opening of a Zeeman-type gap in the edge-state spec-
trum, contrary to other QSH insulator candidate materi-
als.14,15,43 It remains elusive, however, whether the pres-
ence of a Zeeman gap is a generic feature of single-layer
WTe2, or which type of edge terminations show such a
gap. To answer this question on a theoretical footing, an
accurate low-energy lattice model is required.

In this article, we study the electronic properties of
monolayer WTe2 in the framework of a minimal 4-orbital
tight-binding model with spin-orbit coupling (SOC). In
order to obtain an accurate low-energy description, we
derive our model using a hybrid approach that com-
bines density-functional theory (DFT) calculations, sym-
metry considerations, and experimental data from angle-
resolved photoemission spectroscopy (ARPES). We first
show that our model captures all the essential features
that contribute to the nontrivial topology of the mate-
rial. When applied to different nanoribbon geometries,
this model provides a qualitative understanding of the
influence of a magnetic field and of edge disorder: we
find that the exponential suppression of conductance, as-
sociated with an edge Zeeman gap, is observed only for
sufficiently clean edges that feature an in-gap edge Dirac
point.

II. TIGHT-BINDING MODEL FOR
MONOLAYER WTE2

WTe2 is a member of the transition metal dichalco-
genide family of materials. Single layers in this materials
class crystallize in a variety of polytypic structures such
as the hexagonal 2H, the tetragonal 1T , and the dis-
torted 1T ′ structure.16,44,45 While the former represent
trivial semiconductors, the 1T ′ configuration gives rise
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Figure 1. Lattice and tight-binding model of WTe2: (a) top
view of the lattice; (b) side view of the lattice. The dashed
box indicates the 6-site unit cell. (c) Reduced 4-site lattice
used for the tight-binding model with sublattices A and B
indicated. The arrows depict the hopping terms (s0) and the
SOC terms (sx,y,z) of the model. We provide a more detailed
schematic in the Supplemental Material.47

to 2D QSH insulators.16 Furthermore, monolayer WTe2

is the only member of this materials class that is known
to realize the topologically nontrivial 1T ′ structure as its
stable ground state.16,24,25,46

The crystal structure is generated from the tetrago-
nal 1T configuration by a lattice distortion:16,44,45 the
original 1T configuration is composed of three hexagonal
layers in rhombohedral ABC stacking with one W layer
sandwiched between two Te layers. A structural distor-
tion then shifts the W atoms along the b direction to form
zigzag chains. At the same time, the three atomic sheets
of the lattice are buckled in the out-of-plane direction.
The resulting 1T ′ structure has a rectangular unit cell,
containing two W sites and four Te sites. We show a top
view and a side view of the lattice in Figs. 1(a) and (b),
respectively.

The lattice distortion of the 1T ′ configuration is the
key ingredient to the nontrivial topology16,33 of WTe2.
It enlarges the unit cell and leads to a reconstruction of
the electronic bands in the 2D Brillouin zone. As a conse-
quence, a band inversion takes place at the Γ point.16,33

In contrast to other QSH insulator materials, this band
inversion is not induced by SOC. In fact, theoretical cal-
culations show that the respective bands are inverted al-
ready in the nonrelativistic limit, i.e., when SOC is ne-
glected. The corresponding “spinless” band structure,
however, does not have a full bulk energy gap. Instead,
it realizes a 2D type-II Dirac semimetal due to the pres-
ence of two tilted, unpinned Dirac cones near the Γ point,
protected by a glide reflection symmetry.48 Recovering
the spin-degree of freedom by including SOC then lifts
the degeneracy at the Dirac cones and leads to a sizeable,
indirect bulk energy gap.

Our aim is to investigate the electronic properties of
WTe2 in ribbons with arbitrary terminations including
rough edges. So far, theoretical studies of this material
have mostly been limited to DFT calculations and low-
energy k · p models.16,23,27,28,33–35 For the former, it is
computationally expensive to model large ribbons with
disordered edges. The latter, on the other hand, is a
long wave-length theory and does not capture geomet-
ric details at small length scales. In the following, we
therefore construct a minimal tight-binding model suit-
able for studying the low-energy electronic properties of
monolayer WTe2 on arbitrarily terminated lattices.

Effective tight-binding models for monolayer WTe2

have been derived from DFT calculations in Refs. 48
and 49. Such models are typically extracted from DFT
via a projection of the DFT wavefunctions onto a sub-
set of atomic orbitals. Fully-relativistic DFT calcula-
tions, which take into account the spin degree of free-
dom of the electrons, however, have not been able to
reproduce quantitatively the size of the energy gap and
the dispersion of the valence band close to the Fermi
level, as measured in scanning tunneling spectroscopy
and ARPES experiments.35,37,40,50 To overcome this is-
sue, we choose to take an alternative route by combining
scalar-relativistic DFT calculations with symmetry con-
siderations and data from ARPES, thereby obtaining an
accurate bulk model.

A. DFT calculations and optimized Wannier fit

As a first step of our construction, we perform DFT
calculations of the electronic structure of freestanding
1T ′-WTe2 monolayers in an all-electron full-potential
local-orbital basis using the FPLO code.51,52 We employ
the PBE implementation53 of the generalized gradient
approximation (GGA) including scalar relativistic correc-
tions. For the numerical integration, we use a (12×12×1)
k-mesh in the full Brillouin zone along with the linear
tetrahedron method. Moreover, we take the lattice pa-
rameters and the atomic positions from Ref. 54.

In agreement with the literature,33,48 we find that the
four bands closest to the Fermi level are composed mainly
of contributions from two 3dx2−y2-type orbitals centered
at W sites and from two 5px-type orbitals centered at
a subset of Te sites. Hence, a tight-binding model con-
sisting of these four orbitals represents a suitable minimal
model. We therefore construct localized Wannier orbitals
from the two W-d and two Te-p orbitals [see Fig. 1(c)],
and compute the corresponding real-space overlaps to
obtain the tight-binding parameters for our minimal 4-
orbital model. Figure 2 shows the resulting tight-binding
bands, corresponding to the Wannier fit, along with the
DFT band structure.

The Wannier tight-binding model reproduces the key
features of the DFT band structure close to the Fermi
level reasonably well, including the tilted type-II Dirac
cones near the Γ point. It turns out, however, that the
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Figure 2. Energy bands without SOC along high-symmetry
lines in the Brillouin zone: DFT calculations (solid black
lines), Wannier tight-binding fit (dashed orange lines), and
energy bands from the optimized tight-binding fit (solid red
lines).

small number of orbitals requires the inclusion of a large
number of neighbors in the Wannier fit. At the same
time, irrespective of the number of neighbors, the lo-
cation of the Dirac point in k space is slightly shifted
compared to the DFT bandstructure. To obtain a more
accurate low-energy description, we therefore adopt a
hybrid approach: we take the onsite energies and the
largest hopping parameters (≥ 0.4eV) from DFT, while
we treat others above a certain energy cutoff as effective
hopping parameters (see Supplemental Material for de-
tails47). Finally, we optimize the latter to fit the DFT
energy bands close to the Fermi level. In the Supplemen-
tal Material,47 we demonstrate that such an optimization
is indeed needed in order not to overestimate the SOC
terms in the next step and that this does not affect the
final conclusions of our study.

Figure 1(c) illustrates the hopping terms of the result-
ing tight-binding Hamiltonian without SOC. We provide
a more detailed depiction in the Supplemental Mate-
rial.47 The corresponding Bloch Hamiltonian is

H0 =
[µp

2
+ tpx cos(akx) + tpy cos(bky)

]
Γ−1

+
[µd

2
+ tdx cos(akx)

]
Γ+

1

+ tdAB e
−ibky

(
1 + eiakx

)
eik·∆1Γ+

2

+ tpAB

(
1 + eiakx

)
eik·∆2Γ−2

+ t0AB

(
1− eiakx

)
eik·∆3Γ3

− 2it0x sin(akx)
[
eik·∆4Γ+

4 + e−ik·∆4Γ−4
]

+ t0ABx

(
e−iakx − e2iakx

)
eik·∆3Γ3

+ H.c. (1)

The 4 × 4 matrices Γi are linear combinations of prod-
ucts τjσi of Pauli matrices (see Supplemental Mate-

Figure 3. Energy bands of the final tight-binding model with
and without SOC (λi=0) compared with intensity peaks from
ARPES measurements (courtesy of Ref. 40).

rial47) acting in orbital space with respect to the basis
{dkAds, dkAps, dkBds, dkBps}, where dkcls annihilates an
electron with momentum k, spin-Sz eigenvalue s =↑, ↓
and orbital l = p, d (Te, W) in sublattice c = A,B. We
have further defined ∆1 = rAd − rBd, ∆2 = rAp − rBp,
∆3 = rAd−rBp and ∆4 = rAd−rAp, where the vector rcl
denotes the position of the corresponding lattice site, as-
sociated with an orbital l in sublattice c, in the unit cell.
The lattice constants are a = 3.477 Å and b = 6.249 Å.

Figure 2 shows a comparison of the energy bands of
the optimized tight-binding model with the DFT bands
close to the Fermi level. We find that the model indeed
gives an accurate description of the DFT bands around
the Fermi level and correctly reproduces the positions of
the Dirac points.

B. Spin-orbit coupling from symmetries

Having established an accurate minimal tight-binding
model without SOC, we now add a set of symmetry-
allowed SOC terms to our model. The symmetry group
of the WTe2 lattice is generated by the following opera-
tions:48 lattice translations T (a) and T (b), where a = ax̂
and b = bŷ with unit vectors x̂, ŷ; a glide reflection
M̃x = T (a/2)Mx with the regular reflection Mx about
the yz plane acting as Mx : (x, y, z) → (−x, y, z); inver-
sion I acting as I : (x, y, z) → (−x,−y,−z); and time
reversal Θ. In the basis of the Hamiltonian in Eq. (1), the
matrix representations of the symmetry operations are
Θ̂ = isyΓ0K with complex conjugation K, Î = s0τ1σ3,

and M̂x = isxτ0σ3 for the non-translational component
of M̃x.

By making use of the Python package Qsymm,55 we
generate all symmetry-allowed SOC terms up to near-
est neighbors and also include symmetry-allowed, next-
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µp −1.75 eV λy
0AB 0.011 eV

µd 0.74 eV λy
0 0.051 eV

tpx 1.13 eV λz
0 0.012 eV

tdx −0.41 eV λ
′y
0 0.050 eV

tpAB 0.40 eV λ
′z
0 0.012 eV

tdAB 0.51 eV λy
px −0.040 eV

t0AB 0.39 eV λz
px −0.010 eV

t0ABx 0.29 eV λy
dx −0.031 eV

t0x 0.14 eV λz
dx −0.008 eV

tpy 0.13 eV

a 3.477 Å b 6.249 Å

rAd (−0.25a, 0.32b) rBp (0.25a, 0.07b)

rAp (−0.25a,−0.07b) rBd (0.25a,−0.32b)

Table I. Tight-binding and lattice parameters of the final 4-
orbital model.

nearest neighbor SOC terms in the x direction. Fig-
ure 1(c) illustrates all SOC terms taken into account.
The Bloch Hamiltonian of the final tight-binding model
with SOC is H(k) = s0H0(k) +HSOC(k), with

HSOC =
[
(λzdx sz + λydx sy) sin(akx)

]
Γ+

5

+
[
(λzpx sz + λypx sy) sin(akx)

]
Γ−5

−iλy0AB sy
(
1 + eiakx

)
eik·∆3 Γ6

−i
(
λz0 sz + λy0 sy

)(
eik·∆4 Γ+

4 − e−ik·∆4 Γ−4

)
−i
(
λ

′z
0 sz + λ

′y
0 sy

)
×
(
e−ibkyeik·∆4 Γ+

4 − eibkye−ik·∆4 Γ−4

)
+ H.c., (2)

where the sx,y,z are Pauli matrices acting in spin space
and s0 is the corresponding identity.

We obtain the parameters of the SOC terms in Eq. (2)
by fitting to ARPES data close to the Fermi level from
Ref. 40. The large number of free parameters in the fit is
handled using a LASSO regression analysis (see Supple-
mental Material47 for details). As illustrated in Fig. 3,
the energy bands of the resulting model provide an ex-
cellent fit to the ARPES data. We have tabulated the
parameter values of the final Hamiltonian in Tab. I.

Figure 4 shows the full band structure of the tight-
binding model. Due to the simultaneous presence of
time-reversal and inversion symmetry, all bands are two-
fold degenerate. Most importantly, the model has an in-
direct energy gap of ∆E = 56 meV, compatible with ex-
periments.37,40,50 Moreover, close to the Fermi level, the
dispersion of our model matches experimental results40,50

by construction. An analysis of the parities ξ of the states
at the four time-reversal invariant momenta Γ, X, Y ,
and M shows that the lowest conduction band and the
lowest valence band in our model are inverted at Γ [see
Fig. 4(a)], as expected from DFT calculations.33 Finally,
we compute the Z2 invariant of the model at half filling

ky

Γ X

Y M kx

Figure 4. Bulk energy bands of the monolayer-WTe2 tight-
binding model: (a) along high-symmetry lines in the Brillouin
zone. We have indicated the parities ξ of states at the time-
reversal invariant momenta. (b) Bulk Brillouin zone. (c) En-
ergy bands close to Γ along ΓX in a small energy window
around the bulk energy gap. The dashed lines indicate the
edges of the bulk energy gap.

using the parities of occupied states at time-reversal in-
variant momenta.56 We obtain ν = 1, confirming that
our model realizes a QSH insulator, in agreement with
experiments.40,42

III. FINITE GEOMETRIES WITHOUT
MAGNETIC FIELD

With an accurate bulk tight-binding model at hand,
we now study how its low-energy electronic properties
depend on the specific termination in a finite geometry.
Obtaining an equally accurate model of the edge is not
possible from the available experimental data. Neverthe-
less, using a truncated bulk Hamiltonian is sufficient to
understand the qualitative effects of various lattice termi-
nations (the limitations of this approach are discussed in
the Supplemental Material47). For that purpose, we put
our monolayer-WTe2 model into different ribbon geome-
tries, each of which has only a single direction d of trans-
lational symmetry. In this direction, we impose periodic
boundary conditions. In the perpendicular direction, in
which the ribbon has a width W , we use open boundary
conditions. Here, we discuss four representative exam-
ples of terminations, which are depicted in the insets of
Fig. 5. For these systems, we choose W to be between
80 and 100 unit cells. In the following, we present en-
ergy spectra and 2-terminal conductance calculations for
these geometries, for now, without magnetic field.

A. Energy spectra

As we have shown in the previous section, our model
realizes a 2D topological insulator. Hence, for any finite
geometry isolated bands of helical edge states are ex-
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Figure 5. Energy dispersion of ribbons with different termi-
nations close to the Fermi level without magnetic field. The
dashed lines indicate the bulk energy gap. The insets show
the respective terminations using the same color code as in
Fig. 1(c).

pected to connect the bulk valence and conduction bands
across the bulk energy gap. To analyze how the disper-
sion of these edge bands depend on the considered termi-
nation, we compute the energy states of the ribbons as a
function of the momentum k‖ parallel to the translation-
ally invariant direction d. Figure 5 shows the resulting
energy spectra close to the Fermi level.

The general observations are the same for all ribbons:
two pairs of isolated bands, corresponding to counter-
propagating helical edge states, traverse the bulk energy
gap. Moreover, these states are spatially separated and
localized to opposite edges of the ribbon. This is a hall-
mark of QSH insulators. The specific edge-state disper-
sions, however, differ qualitatively.

Figure 5(a) shows the dispersion of a ribbon termi-
nated between the W sites with d = x̂. This termi-
nation has edge energy bands that do not cross each
other. In contrast to that, ribbons terminated between
Te sites with d = x̂ have edge bands that cross at the
time-reversal invariant edge momentum k‖ = kx = 0 [see
Fig. 5(b)]. The crossing represents a Kramers doublet, or
Dirac point, and is protected by time-reversal symmetry.
It is, however, energetically far outside the bulk energy
gap. We make a similar observation for straight termina-
tions with d = ŷ, as shown in Fig. 5(c). Here, the Dirac

Figure 6. 2-terminal conductance of differently terminated
WTe2 ribbons: (a) without magnetic field (EZ = 0); (b) with
an out-of-plane magnetic field corresponding to EZ = 2 meV
(B = 9.4 T). The dashed vertical lines indicate the edges of
the bulk conduction and of the bulk valence band. We have
also indicated the induced edge energy gap of the sawtooth
y-ribbon by vertical dash-dot lines in red.

point is at k‖ = ky = π/b and energetically far below the
bulk energy gap.

The situation is different for ribbons with d = ŷ and a
sawtooth termination [see Fig. 5(d)]. Again, we find two
pairs of helical edge bands traversing the bulk energy gap,
but in this geometry the bands cross inside the bulk en-
ergy gap at the time-reversal invariant edge momentum
k‖ = ky = 0: the edge-state spectrum has a so-called
in-gap Dirac point. In contrast, the edge Dirac points
of most terminations, including the ones discussed be-
fore, are “hidden” or buried43 in the bulk energy bands.
This is due to the strong electron-hole asymmetry of the
material. We will see that the distinction between termi-
nations with buried and with in-gap edge Dirac points is
crucial in the presence of a magnetic field.

B. 2-terminal conductance

We now look at how the termination of the ribbons
affects their transport properties. Specifically, we look
into the 2-terminal conductance of our systems. For that
purpose, we remove the periodic boundary conditions of
the ribbon under consideration and attach metallic leads
of the same width as the ribbon on each side. This is
achieved by shifting the chemical potential deep into the
valence band at both ends of the ribbon. The samples
considered here have a length L of 200 unit cells. This
is of similar magnitude as the edge length of samples
studied in experiments with sizes ranging from 60 to 100
nm.42

We compute the corresponding scattering matrix S(E)
as a function of energy E using the quantum transport
software package Kwant.57 The conductance is then given
by G = e2/h

∑
nm |Snm|2, where n,m run over all elec-

tronic modes in the leads. We show our results for G as
a function of E without magnetic field in Fig. 6(a).
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Figure 7. Energy dispersion of ribbons with different termi-
nations close to the Fermi level with an out-of-plane magnetic
field corresponding to EZ = 2 meV (B = 9.4 T). The dashed
lines indicate the edges of the bulk energy gap. We have also
highlighted the edge energy gap of the sawtooth y-ribbon by
red dash-dot lines. The insets in panels (b) and (c) show
magnified spectra around the gapped edge Dirac points.

IV. FINITE GEOMETRIES WITH MAGNETIC
FIELD

We proceed by studying the effect of an out-of-plane
magnetic field B = Bẑ on the edge-state dispersions
and on the conductance of monolayer WTe2. For this
purpose, we add an on-site Zeeman term of the form
HZ = EZ szΓ0 to the time-reversal symmetric Hamilto-
nian H(k) of Eqs. (1) and (2), where Γ0 is the 4 × 4
identity matrix in orbital space. We establish the rela-
tion between the Zeeman energy EZ and the magnetic
field B later on.

Figure 7 shows energy spectra corresponding to the
ribbons studied in the previous section under a finite
magnetic field. First of all, we observe that the bulk en-
ergy gap is slightly smaller. Moreover, we generally find
that the degeneracy of edge states localized to opposite
boundaries of the ribbon is lifted because of the broken
time-reversal symmetry. However, a Zeeman gap opens
in the edge-state spectrum only if the lifted degeneracy
involves states localized to the same boundary, such as
states of a Dirac point. We discuss the implications be-
low.

W-terminated x-ribbons do not have a Dirac point in
their edge-state spectrum. Consequently, the edge-state
dispersion remains gapless even at finite magnetic fields,
as we show in Fig. 7(a). In contrast to that, the spec-
tra of Te-terminated x-ribbons and of straight y-ribbons
do have an edge Dirac point far outside the bulk energy
gap. These Dirac points are gapped out by the magnetic
field, but lead only to a “warped” Zeeman gap in the
energy spectrum. In other words, bulk valence and con-
duction bands are no longer connected by edge bands,
but there still exist electronic states (bulk and/or edge
states) for any fixed energy E [see Figs. 7(b)-(c)]. Due
to the nature of the edge energy gap, the ribbons are ef-
fectively still gapless in the presence of a magnetic field.
Hence, the edge Zeeman gap, without other states cross-
ing it, must be inside the bulk energy gap to suppress
electronic transport.

The sawtooth y-termination satisfies this requirement
with an edge Zeeman gap at ky = 0 inside the bulk energy
gap, which we show in Fig. 7(d). This behavior is fun-
damentally different from the other ribbon geometries:
there now exists a small energy window inside the bulk
energy gap without any available states. Moreover, from
the size of the Zeeman gap and from the effective out-
of-plane g factor,42 we estimate the relation between the
Zeemann energy EZ and the magnetic field strength B
to be B[T] ≈ 4.7EZ [meV] (see Supplemental Material47

for details).
Also the conductance reflects the qualitative difference

of edge-state spectra between different ribbons. Fig-
ure 6(b) shows the conductance corresponding to the rib-
bons analyzed above as a function of energy under mag-
netic field. We still find G = 2e2/h throughout the bulk
energy gap for the two x-ribbons and for the straight y-
ribbon. The conductance remains quantized because the
considered edges preserve translational symmetry. On
the contrary, the conductance of the sawtooth y-ribbon
drops to zero around the Dirac-point energy, while be-
ing quantized to 2e2/h outside this small energy window.
Furthermore, by comparing to the edge-state spectrum
in Fig. 7(d), we directly attribute the position and the
width of the conductance drop to the presence of an edge
energy gap.

V. RIBBONS WITH DISORDERED EDGES
UNDER MAGNETIC FIELD

The edges of typical samples used in experiments on
2D monolayer materials are highly irregular, i.e., they
have cracks, steps or bumps.42,50 Hence, the samples are
no longer translationally invariant along their boundary,
enabling backscattering of edge states when time-reversal
symmetry is broken. We model a rough edge by the
boundary following a random walk with a step appear-
ing at every site with probability p (see Supplemental
Material47 for details). The parameter p is therefore a
measure of disorder strength.



7

Figure 8. Conductance G of sawtooth y-ribbons under mag-
netic field [EZ = 2 meV (B = 9.4 T)] as a function of energy
E for different disorder strengths p. Thin lines represent sin-
gle samples with different realizations of disordered edges at
fixed p. Bold lines correspond to the average conductance
Gav for an ensemble of 50 disorder realizations. The verti-
cal dashed lines indicate the edges of the bulk energy gap.
The black arrows point to the energy values considered in
Figs. 9(a) and (b), respectively.

Figure 8 shows the conductance G of single sawtooth
y-ribbons and the corresponding disorder-averaged con-
ductance Gav for different disorder strengths p. For a
given disordered sample the conductance fluctuates con-
siderably as a function of energy. We find that the charac-
teristic exponential suppression of conductance is visible
only in the low-disorder regime for edges with an in-gap
Dirac point. This is also reflected in a dip of the average
conductance Gav around the Dirac-point energy. Away
from a Dirac point, however, Gav shows only a weak en-
ergy dependence. The height of this conductance plateau
decreases with increasing disorder p due to the onset of
Anderson localization. On the other hand, strong disor-
der removes the conductance suppression in the Zeeman
gap and the conductance shows the same plateau be-
havior throughout the entire bulk energy gap. In other
words, the edge energy gap effectively closes for strong
disorder, thereby becoming statistically indistinguishable
from an edge without in-gap Dirac point [see Fig. 8].

We observe a qualitatively similar behavior for the
conductance as a function of the Zeeman energy EZ

(see Fig. 9). For weak disorder, the conductance at
the Dirac point decays exponentially to zero, which is in
agreement with experimental results,42 whereas it decays
much slower in the plateau regime. As expected from
Anderson localization, the conductance in the plateau
regime is suppressed with increasing disorder. Contrary
to this, the conductance at the Dirac point is enhanced by
the edge disorder. This happens because localized states,
whose finite overlap with the leads enables transport, fill
the Zeeman gap. Moreover, as we show in the inset of
Fig. 9(b), the Gav(p) curves of the two regimes gradually
approach each other until they coincide for sufficiently

Figure 9. Conductance G of sawtooth y-ribbons at fixed en-
ergies E as a function of the disorder strength p and the Zee-
man energy EZ : (a) at the plateau (E = −20 meV); (b) at
the Dirac point (E = 8.15 meV) with exponential decay in
the clean limit (λ = 1.8 meV−1). Thin lines correspond to
single samples with particular realizations of edge disorder at
fixed p. Bold lines depict the average conductance Gav over
50 disorder realizations. The inset in panel (b) shows the av-
erage conductance as a function of p at fixed EZ = 2 meV
(B = 9.4 T).

strong disorder.
We have seen that, in the clean limit, there are two

qualitatively different behaviors in the presence of mag-
netic field. For samples with an in-gap edge Dirac point,
the conductance drops to zero around the energy of the
Dirac point. For terminations with a buried Dirac point,
the conductance is constant and equal to 2e2/h. We ob-
serve the same plateau behavior of quantized conduc-
tance also for terminations with in-gap Dirac points if
the conductance is measured away from the Dirac-point
energy. While this is qualitatively reproduced in sam-
ples with weak edge disorder, strong disorder washes out
the Zeeman gap. The experiments in Ref. 42 have ob-
served exponential conductance suppression. Therefore,
we expect the edges of the samples investigated there to
contain sufficiently long straight segments.

VI. CONCLUSION

We have studied edge-state dispersions and 2-terminal
conductance of the quantum spin-Hall insulator mono-
layer 1T ′-WTe2 in a 4-orbital tight-binding model in var-
ious geometries. We have derived our model combining
density-functional theory calculations, symmetry consid-
erations, and photo-emission spectroscopy data. By con-
struction, our model provides a better fit to experimen-
tal results than previous approaches. We use this model
to study the effects of magnetic field and disorder on
differently terminated nanoribbons. Without magnetic
field, the topological nature of the system gives rise to
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helical edge states independent of the system geome-
try. Nonetheless, we find that the edge-state dispersion
strongly depends on the termination: for some termina-
tions there is an in-gap edge Dirac point, whereas for
others the edge Dirac point is buried in the bulk energy
bands. This has important consequences for the conduc-
tance in the time-reversal symmetry broken regime.

For terminations with a buried edge Dirac point, the
conductance fluctuates around a plateau, the value of
which decreases slowly with magnetic field and with the
magnitude of disorder along the edge. For terminations
with an in-gap Dirac point, there is an additional sup-
pression of conductance around the energy of the Dirac
point due to a Zeeman gap. There, the conductance
exponentially decays to zero as a function of the mag-
netic field. We further observe that the conductance is
gradually enhanced around the Dirac-point energy as the
edge disorder is increased. Hence, the characteristic ex-
ponential suppression of conductance is only visible for
sufficiently clean edge terminations with an in-gap Dirac
point.

Our results help to understand recent experimental
findings in 1T ′-WTe2 monolayers. Moreover, the tight-
binding model derived in this work provides a mini-
mal but realistic low-energy description to study other
promising directions in this materials class, such as the
1T ′-phase24,25 in WSe2 or superconductivity in 1T ′-
WTe2 monolayers.29,30
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