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ZnGeNy offers a low-cost alternative to InGaN with the potential for bandgap tuning to span
the green gap using cation site ordering. The addition of oxygen on the anion site creates an

additional degree of electronic tunability.

Here, we investigate the structure and optoelectronic

properties of an epitaxial ZnGeN2_;O, thin film library grown by combinatorial co-sputtering on c-
Al;O3. Samples exhibit X-ray diffraction patterns and X-ray pole figures characteristic of a wurtzite
(cation-disordered) structure with the expected 6-fold in-plane symmetry. Transmission electron
microscopy reveals a semi-coherent interface with periodic dislocations that relieve strain from the
large lattice mismatch, and confirms the in-plane and out-of-plane crystallographic orientation.
Room-temperature photoluminescence exhibits peaks between 2.4 and 2.8 eV which are consistent
with a sharp absorption onset observed by UV-vis spectroscopy. These results demonstrate low-cost
synthesis of optically active yet cation disordered ZnGeNz_,O,, indicating a path toward application

as a blue-green emitter.

I. INTRODUCTION

The III-V family of semiconductors revolutionized op-
toelectronics, from high-efficiency GaAs solar cells to the
GaN-based LEDs which won the 2014 Nobel Prize for
their record-breaking brightness and energy efficiency.'2
However, there are serious limitations to the III-Vs, in-
cluding (1) the requirement for low defect density which
necessitates expensive epitaxial growth, and (2) the mis-
cibility gap of InGaN which makes spanning the visible
light spectrum difficult.?* A prospective solution to both
issues is found in the II-IV-Vy family of semiconductors,
which are analogs to the III-Vs produced by heterovalent
cation mutation (e.g. GaN becomes ZnGeNsy by replac-
ing each pair of Ga atoms with elements with one fewer
and one more electron, maintaining the total charge).
In general, adding elements into a compound offers more
tunability than binaries, and nitride and oxynitride phase
spaces are relatively unexplored.>® Additionally, the II-
IV-V, phases crystallize in either a cation ordered or dis-
ordered structure, which is predicted to tune the bandgap
at constant lattice parameter, enabling control of opto-
electronic properties.”

ZnGeNy, which is analogous and lattice-matched to
GaN, was first synthesized in 1970 and is theorized
to have a bandgap of 3.5eV in its cation-ordered
structure.® 10 Like the other II-IV-V, materials, which
are predicted to have ~1.0eV of bandgap tunability, the
bandgap of ZnGeNy may be tunable down to ~2.5eV by
introducing cation disorder. This range spans most of
the visible spectrum, which could enable lattice-matched
but bandgap-tunable optoelectronics that integrate with
GaN. Control of cation ordering with synthesis tem-
perature has been demonstrated for this system, but
has not yet been correlated with optical properties.'!
While high-quality crystalline and epitaxial thin films
have been synthesized by sputtering, molecular beam epi-
taxy (MBE) and metal-organic chemical vapor deposi-

tion (MOCVD), a thorough investigation of the impact
of ordering on optoelectronic properties is lacking.!?~16
Photoluminescence has been demonstrated both at room
temperature!* and colder'®'"19 for cation ordered ma-
terial grown by MOVPE and other vapor growth meth-
ods. Only once has photoluminescence been demon-
strated for cation disordered material, in this case grown
by MOCVD.'6:20 Though bandgap tunability with order-
ing is an appealing goal, the optical properties of high-
quality disordered material have not yet been fully ex-
plored.

Meanwhile, the past 15 years have seen a surge in in-
terest in the ZnGeNy-ZnO alloy system for an entirely
different application: photocatalytic processes.?' 24 The
majority of this experimental work has been performed
by either synthesizing precursor powder of Zn,GeQO,4 or
mixing Zn and Ge oxide precursors, and exposing this to
ammonia while heating, creating a compound of the form
(Zny4,Ge)(N20,).2123725 The structure of this alloy is
reported to be wurtzite-like, with no observed peak split-
ting which would indicate orthorhombic ordering. In-
deed, many of the reported studies of this system find
that the reaction terminates in an orthorhombic (cation-
ordered) ZnGeNjy structure, but the orthorhombic super-
structure peaks do not appear in XRD until the (nom-
inally oxygen-free) end of the reaction.?’2* While the
bandgap of ZnO is 3.37 eV, the alloy system with ZnGeN,
exhibits bandgap bowing that lowers the bandgap to 2.0-
3.0eV.?2:23 This is similar to the solid solution between
ZnO and GaN.20 Since the lattice constants of ZnO and
ZnGeNy are very similar (less than 2% mismatch), this
system offers another opportunity for bandgap tunabil-
ity without significantly altering the lattice constant. No
reports exist of thin films of this alloy, and the impact of
cation disorder on the properties of this system has not
been explored.

Here we present an epitaxial ZnGeNs;_,O, sample
library on c-Al;O3 grown by combinatorial sputtering



which exhibits room-temperature photoluminescence be-
tween 2.4 and 2.8eV. This result demonstrates that a
cation-disordered ZnGeNy_, O, thin film that is optically
active in the green range can be grown with an inex-
pensive and scalable technique, indicating a path toward
bandgap-tunable optoelectronic devices.

II. EXPERIMENTAL METHODS

ZnGeNy_, O, thin film sample libraries were deposited
by radio frequency co-sputtering onto stationary c-plane
AlyO3 substrates with a 1° off-cut in the [100] direction
heated to a set point of 750°C. Metallic zinc and germa-
nium targets angled at 45° to the substrate normal cre-
ated a gradient in cation flux during synthesis, generating
an array of composition conditions for each deposition.
The sputtering chamber was evacuated to a base pres-
sure of 7-10~7 Torr before deposition, and maintained at
a working pressure of 15 mTorr during deposition with
a gas flow of 10sccm Ar and 20sccm No. Oxygen was
not intentionally introduced, but was incorporated from
background in the sputtering chamber.

Films were first characterized using the suite of spa-
tially resolved characterization tools available at the Na-
tional Renewable Energy Laboratory, which has been
used to great success for previous Zn-IV-Ny work.27 29
Cation composition, here reported as %Zn/(Zn+Ge),
was characterized using X-ray fluorescence (XRF) with
Rh L-series excitation in energy-dispersive mode using
Fischer XDV-SDD software. X-ray diffraction (XRD)
was performed using a Bruker D8 Discover equipped
with an area detector. Transmission and reflection spec-
tra were collected in the UV-visible (UV-Vis) spectral
ranges using a custom thin film optical spectroscopy sys-
tem equipped with deuterium and tungsten/halogen light
sources and Si detector arrays. The spectra were then
used to calculate absorption coefficient «, using the re-
lationship o« = —In[T'/(1 — R)]/d, where T, R, and d are
transmission, reflection, and film thickness, respectively.

Specific points on the sample library were selected for
further investigation. For characterization of epitaxial
films, X-ray diffraction pole figure measurements were
performed using an RU200 Rigaku DMAX-A instrument
with a rotating Cu Ka anode X-ray source operating at
40kV/250mA. A Rigaku SmartLab diffractometer was
used to collect reciprocal space maps.

To investigate anion composition, Rutherford
backscattering spectroscopy (RBS) was performed
in a 130° backscattering geometry with a 2MeV He+
beam energy using a model 3S-MR10 RBS system from
National Electrostatics Corporation. A 2MeV beam
energy was used to avoid the non-Rutherford resonant
scattering that occurs at 3 MeV for nitrogen and oxygen.
The 130° scattering angle was chosen to provide well
separated step edges in the scattered spectrum for, in
order of increasing energy, substrate oxygen, film nitro-
gen, film oxygen and substrate aluminum. To obtain a

spectrum with sufficient signal-to-noise ratio to observe
the scattering from oxygen, RBS data was collected until
the total integrated charge delivered to the sample was
400 C. The film composition was determined by fitting
using the RUMP analysis software®® with the major
cation ratio fixed at Zn/(Ge+Zn) = 0.51 as determined
by XRF since Zn and Ge are too close in mass to be
distinguished by RBS using a 2 MeV beam energy.
TEM micrographs were acquired with an FEI Co. Ta-
los F200X transmission electron microscope with scan-
ning capabilities operating at an accelerating voltage
of 200keV. Specimens for TEM were prepared from
sputtered films via in-situ focused ion beam lift-out
methods®' using an FEI Co. Helios Nanolab 600i
SEM/FIB DualBeam workstation. Specimens were ion
milled at 2keV and 77 pA to remove Ga ion beam dam-
age and achieve a final thickness of approximately 75 nm.
Structural characterization was conducted by acquiring
selected area electron diffraction (SAED) patterns on an
FEI Co. Ceta 16M pixel CMOS camera at a camera
length of 660 mm. The AlyO3 substrate was used to cali-
brate the camera constant, allowing SAED reflections to
be accurately measured and indexed. Chemical mapping
was performed in the TEM using the Super-X energy-
dispersive X-ray spectroscopy (EDS) system.
Photoluminescence was acquired using a Newport
MS260i imaging spectrometer, an InstaSpec X array de-
tector with a 300/500 grating and an exposure time of
5 seconds. The PL was measured at room temperature
with a 325nm laser line at 4.5mW. The CCD UV edge
was at 400 nm and the long pass filter used was at 365 nm.
Tapping mode atomic force microscopy (AFM) was per-
formed on an Asylum Research system using a tip with a
150 N/m force constant to characterize surface morphol-

ogy.

III. RESULTS

In this study, the substrate temperature and gun pow-
ers were fixed, resulting in a sample library with a lin-
ear composition gradient. This library consisted of 9
unique cation compositions from Zn/(Zn+Ge) = 0.47 to
0.51. After all spatially resolved characterization was
performed, the library was cleaved into smaller pieces
for single-point measurements (such as XRD pole figures,
RBS and TEM).

A. X-ray Diffraction

X-ray diffraction patterns are shown as a function of
cation composition in Fig. la. At lower (~47%) Zn con-
centrations, three wurtzite peaks are present. No super-
structure peaks or peak splitting are visible, indicating
cation-disordered material has been synthesized.'® The
Al,O3 (001) substrate peak is also present, and no addi-
tional peaks indicating secondary phases are observed.
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FIG. 1. (a) X-ray diffraction patterns as a function of cation
composition (color axis). At lower Zn concentrations, three
peaks indicating wurtzite ZnGeN2_,O, are present, in ad-
dition to the AloOs peak. At stoichiometric and higher Zn
concentrations, only the (002) wurtzite peak is present. (b)
X-ray pole figures, which investigate in-plane orientation of
a film, reveal 6-fold symmetry of the (101) peak indicating
epitaxial alignment of the ZnGeN3_,O, film with the Al,O3
substrate. The film is 30° rotated from the substrate (see
Fig. S1 of the Supplemental Material®?), which is the same
epitaxial relationship as GaN on c-Al,05.33

As the Zn concentration increases, the wurtzite (002)
peak increases in intensity and all other peaks are no
longer observed, indicating a high degree of c-plane tex-
turing in the film.

While the polycrystalline side of this library is eas-
ily identifiable as wurtzite from X-ray diffraction, the
strongly textured side reveals a film peak position rang-
ing from 34.3 to 34.5 degrees. This is slightly smaller than
the theoretical values for the (002) peaks for the wurtzite
and orthorhombic ZnGeNy structures, which are 34.56
degrees and 34.51 degrees respectively.®® Though slightly
shifted, this peak position is consistent with reported val-
ues (002) peak of ZnGeNsy, ZnO, and ZnGeNs_, O, since
these structures are all wurtzite and have a very similar
lattice constant. In order to further investigate structure,
X-ray pole figures were performed on the points where
XRD indicated strong texturing. Peaks are present at
the 20 and ¥ positions that correspond to the wurtzite
(101) peak, indicating that the film is indeed crystallized
in the wurtzite structure. A representative scan of the
(101) peak is shown in Fig. 1b. Six-fold symmetry in-
dicates epitaxial alignment of the film with the Al;Oj3
substrate. The pole figures reveal a 30° in-plane rotation
between the film and the substrate (Fig. S1), the same
epitaxial relationship as between GaN and Al;03.33

Reciprocal space maps (RSMs) reveal full-width at
half-max (FWHM) values of 120 arcminutes for the (002)
peak and 150 arcminutes for the (101) peak. In com-
parison, Daigo et. al. measured FWHM values of 100-
140 arcminutes for a GaN film grown by sputter epitaxy
on Si.3* Additional RSMs were performed to determine
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FIG. 2. (a) Simulated peak positions in 26 for ordered (or-
thorhombic) ZnGeNs, each with a rotation of 60° in ¢. The
(201) family of reflections (blue) exhibit the same position in
20, while the two peaks in the (121) family (green) exhibit
a distinct higher position in 20. (b) Line scans in 20 from
each RSM with each color at a rotation of ~60° in ¢. The
traces are indexed assuming a wurtzite structure. The slight
shifts in 260 are likely due to a small instrument misalignment,
and no trend is seen indicating orthorhombic distortion when
compared to (a). The red reference line is for the (101) peak
of Zn1_231Geo‘68900,782N1_213 reported in Ref. 25, while the
blue and green reference lines are the orthorhombic ZnGeN,
(121) and (201) positions shown in (a).

whether any cation ordering was occurring in the epi-
taxial sample. Orthorhombic distortion due to order-
ing would cause systematic peak shifting from the ideal
wurtzite structure as a function of ¢, as simulated in
Fig. 2a. The (101) peak of the epitaxial film is observed
to shift slightly to 20 values lower than the ideal ZnGeNy
structures, which is consistent with the incorporation of
oxygen, as shown in Fig. 2b. The (101) peak displays
small shifts with ¢, but no systematic shifts that would
indicate cation ordering (Fig. 2b). The observed peak
shifts follow a sinusoid that is coincident with the mea-
sured alignment offset of the instrument. It is important
to note that across the X-ray scan area, the superposi-
tion of cation-ordered orthorhombic grains with different
in-plane orientations could yield a superposition of the
orthorhombic (121) and (201) peaks shown in Fig. 2a. It
is possible that the low signal and broad XRD peaks of
this sputtered film are masking this type of spatially inho-
mogenous ordering in Fig. 2b. However, the width of the
asymmetric scan is the same order of magnitude as the
symmetric scan rocking curve, which is not sensitive to
ordering, suggesting that the broadening is due to sput-
tered material quality and not orthorhombic distortion.
Additionally, considering that the ordered orthorhombic
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FIG. 3. Rutherford backscattering (RBS) analysis of one
ZnGeNa_, O, film on Al2O3 substrate with thin Au coating to
avoid sample charging. Black: measured spectrum; Red: full
fit to three layer model (Au/Zn-Ge-Sn-N-O/Al>O3); Green:
N contribution to fit; Blue; O contribution to fit. Vertical
red arrows indicate the front surface scattering energy for ele-
ments as labelled. The inset spectrum section shows the mea-
sured oxygen and nitrogen region with the modeled substrate
signal subtracted expanded by 5X and offset for clarity.

structure of ZnGeNy has never been synthesized below
850°C,! we hypothesize that this film is disordered.

B. Composition

Specific points on the sample library were selected
for Rutherford backscattering (RBS) analysis to quantify
oxygen and nitrogen content (Fig. 3). A thin gold coating
was used to eliminate sample charging issues. Analysis
was performed with different starting compositions in or-
der to determine a standard error for the model. The Zn
and Ge compositions were set by X-ray fluorescence to
be 1.02 and 0.98 formula unit, respectively. The film
was also found to contain 1 at.% of a heavy contami-
nant, here assumed to be Sn due to previous sputtering
with this element in the synthesis chamber. This yields
a compound composition of Zny g2Geg.9sN1.9100.18, with
an anion-to-cation ratio of 1.05 and an oxygen composi-
tion of 8.8% O/(O+N). This is on the lower end of the
reported oxygen content for ZnGeNs_, O, material (dis-
cussed further in Section IITE). Quantified EDS analysis
shows uniform composition spatially throughout the in-
vestigated film, and confirms the composition numbers
from RBS to an order of magnitude. EDS shows some
carbon contamination as well, which mainly occurs at the
substrate-film interface. It is promising that despite the
Sn and C contaminants, the film is optically active and
of relatively high crystalline quality.
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FIG. 4. (a) Bright-field TEM reveals a uniform, columnar film
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approximately 200nm thick. (b) Dark-field TEM acquired
using the film (110) and the substrate (330) peaks (circled
in selected area electron diffraction, inset). The film is non-
uniform and shows a few dark regions indicating non-epitaxial
grains. However, the majority of the film is aligned with the
substrate and the same orientation. The substrate appears
darker than the film due to the lower intensity of the substrate
peak. (c) Fourier filtered high-resolution TEM micrograph
showing a semi-coherent substrate-film interface with periodic
dislocations approximately every 7-8 lattice planes to relieve
strain due to large lattice mismatch between ZnGeN2_,O,
and Al;Os. (The original lattice image is shown in Fig. S2 of
the Supplemental Material32.)

C. Microscopy

Figure 4a-b shows TEM bright-field and dark-field mi-
crographs of the epitaxial ZnGeNy_, O, film on Al;Og3
substrate. Selected area electron diffraction in the inset
of (b) shows reflections corresponding to the [110] zone
axis of the Al,O3 substrate and the [110] zone axis of the
ZnGeNy_, O, film; the purple circle indicates the (110)
film and (330) substrate reflections used for dark-field
imaging. As expected for a combinatorial sample grown
by sputtering, the film is non-uniform and shows some



dark regions indicating non-epitaxial grains. However,
the majority of the film is aligned with the substrate
and a consistent crystallographic orientation. Fig. 4c
shows a Fourier filtered high-resolution TEM micrograph
of the substrate-film interface. Peaks in the Fourier
transform of the as-acquired micrograph corresponding
to the Al;03(330) and ZnGeNy_,0,(110) lattice planes
were selectively filtered out to better view their crystal-
lographic relationship. A semi-coherent interface is ob-
served exhibiting periodic dislocations every 7-8 lattice
planes which relieve strain due to lattice mismatch be-
tween the film and substrate.

The X-ray diffraction results from Section IIT A and
the SAED results allow us to calculate the epitaxial
alignment between substrate and film. Since only the
(002) ZnGeNy_, O, peak appears by X-ray diffraction,
this suggests that the c-planes are aligned between the
film and the substrate. This is confirmed by SAED,
which demonstrates that ZnGeNy_, O, (002) is parallel
to Al;O3 (006). With regard to in-plane alignment, the
X-ray pole figures reveal a 30° rotation between the film
and the substrate. This is also confirmed by TEM: Fig. 4c
demonstrates alignment between the ZnGeNs_, O, (110)
planes and the AlyO3 (330) planes, which corresponds to
a 30° rotation. This is the same relationship as reported
previously for ZnGeNs on c-Al;O3, and for GaN on c-
Al;03.16:33 Based on these in-plane and out-of-plane re-
lationships, the calculated in-plane lattice mismatch is
13.3%, which is reflected in the SAED and the high-
resolution TEM (Fig. 4b-c).

Interestingly, the reciprocal space maps, pole figures
and SAED all reveal a ~3.6° tilt between the film and
the substrate. While Nagai tilt has been observed in GaN
due to substrate off-cut, the tilt we observe is rotated 90°
from the angle of the off-cut, inconsistent with the Nagai
model.?® The origin of this tilt is unknown and warrants
further exploration.

Finally, AFM was performed at multiple points on the
film to investigate surface morphology and growth mi-
crostructure (see Fig. S3 of the Supplemental Mate-
rial?). Scans revealed a dense, round microstructure
with features ranging 75-250nm diameter, with RMS
roughness of 5-6 nm. Four-point electrical measurements
were also performed, and the film was found to be insu-
lating. This is expected considering the insulating prop-
erties of ZnGeNy predicted by DFT.36

D. Optical Properties

In order to determine the feasibility of incorporation of
ZnGeNy_, O, into optoelectronic devices, optical prop-
erties of these films were studied using UV-visible spec-
troscopy and room-temperature photoluminescence. Fig-
ure 5a shows the absorption coefficient from UV-vis spec-
troscopy as a function of energy, with different colors
representing different points on the sample library. The
absorption onset is ~1.0eV lower than the theoretical
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FIG. 5. (a) UV-Vis Spectroscopy reveals an absorption on-
set at approximately 2.6eV for all samples. This is ~1.0eV
lower than the theoretical absorption onset for ordered (or-
thorhombic) ZnGeNy, shown as a black curve, consistent with
bandgap tuning due to oxygen incorporation. The dashed
line at 2.6eV represents the energy at an absorption coeffi-
cient of 10* cm™'. Colors are added to distinguish individual
samples used in both UV-vis and PL. DFT calculations repro-
duced from Ref.”. (b) Room-temperature photoluminescence
of ZnGeNy_,O; films reveal peaks from 2.4 to 2.8 eV. Differ-
ent points on the sample yield a slightly different set of peak
positions and intensities. No trend is observed with cation
composition variation. These values align with the observed
10* absorption coefficient value from the UV-vis spectroscopy
(dashed line).

absorption onset for ordered ZnGeNs (shown as a solid
black line), but remains a similar shape to theory, with-
out band tailing that would indicate a high defect con-
centration. The energy value at an absorption coeffi-
cient of 10*/cm is 2.6 eV, shown as a dashed line. Little
change is observed with cation composition. Normalized
room-temperature photoluminescence for different points
on the sample library is shown in Fig. 5b. Though the PL
signal was spatially varying throughout each film, bright
spots were identified, revealing peaks from 2.4 to 2.8eV.
The peak variation does not correlate with changes in
cation composition. These values are consistent with
the UV-vis optical absorption onset of 2.6eV (dashed
line). Multiple varying-energy PL peaks is characteristic
of a material exhibiting potential fluctuations near the
band edge, which is expected in materials with structural
disorder.?8:37

Due to the alignment of our PL results with the
measured absorption data, we hypothesize that our
PL emission is due to band-like recombination in the
ZnGeNy_, O, thin film. Though we could be observing
“yellow band” defect states, to which other groups have
attributed PL emission between 2 and 3eV for cation-
ordered ZnGeNy, the traditional yellow band is ~0.5eV
wide.!” The PL peaks reported here exhibit an average
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FIG. 6. Plot of reported bandgap versus O/N ratio from the
literature, with triangular traces denoting a reaction process
using oxide precursors. Circular traces denote a reaction pro-
cess from metallic and/or nitride precursors. Diamonds rep-
resent the PL peak positions reported in this work (Fig. 5b).
Zn/Ge ratio is plotted on the color axis.

FWHM value of 0.16 eV when each spectrum is fit with
one Gaussian envelope. When each individual peak is
fit, the average FWHM value is 0.08eV. These widths
are narrow compared to traditional defect band lumines-
cence, and since the PL energies match the sharp UV-
vis absorption onset and the high-energy tails follow a
Maxwell-Boltzman distribution, this suggests that the
optical signal originates from band-like luminescence.

E. Discussion

To place our results in historical context, data of re-
ported bandgap versus O/N ratio was collected from
the literature and is shown in Fig. 6. Triangular traces
are plotted for material grown using a reaction process
starting from oxygen-containing precursors, while circu-
lar traces denote a reaction from metallic and/or nitride
precursors. Diamond traces represent values reported
in this study. A clear decrease in bandgap is observed
with increasing oxygen content that follows the energy
bandgap bowing trend. The cation composition (color
axis in Fig. 6) follows the expected trend as well, since
an alloy between ZnGeNs and ZnO implies a trend of in-
creasing Zn content with increasing O content. Many of
the data points that report pure ZnGeNy material (cor-
responding to an O/N ratio of 0) do not report charac-
terization of oxygen, suggesting that some unintentional
oxygen content may be decreasing the bandgap and con-
tributing to the large bandgap spread at O/N=0.

Though all reported ZnGeNs_, O, material exhibits
the disordered wurtzite structure, one could conceive
of a cation-ordered ZnGeN,_, O, structure of the same
orthorhombic superstructure as the ground state of
ZnGeNs. This raises a few questions about the
ZnGeNy_, O, system: Could cation ordering be used to
tune the optical properties of ZnGeNs_,O, at a fixed
composition and lattice parameter? On the other hand,
could a small amount of oxygen be used to trap ZnGeNy
in a cation-disordered state? Control of cation order-
ing has been a sought-after research goal in the ZnGeNy
system for optoelectronic researchers, but the presence
of oxygen (intentional or not) may help or hinder this
prospect. From a physical vapor deposition perspective,
oxygen often incorporates unintentionally into thin films
due to background contamination in vacuum systems,
causing deleterious defects in material systems that re-
quire high purity. This work demonstrates that har-
nessing oxygen incorporation could provide an additional
knob with which to tune properties of the ZnGeNy_, O,
system. Since this alloy exhibits only small changes in
lattice parameter, this provides a tunable bandgap ma-
terial from 2.4eV to 3.4eV that is lattice matched to
GaN.

It is also important to note the diversity of character-
ization methods used to collect the bandgaps shown in
this plot; the studies on ZnGeNsy thin films typically re-
port bandgaps from PL!%1719 or Tauc plots from UV-
Vis data,'?20 while most ZnGeN,_,O, studies report
Kubelka-Munk absorbance curves.?23:24 We have plot-
ted PL peak positions (2.60, 2.70, and 2.73eV). None of
these optical characterization methods are perfect, and it
is evident that more data is necessary to deconvolve these
results. Additionally, while Fig. 6 shows the impact of
Zn/Ge and O/N on the bandgap, some of the variation
in the data may be due to order parameter, which has
not been taken into account. Further optical and struc-
tural characterization is key to deconvolve the impacts of
cation composition, anion composition, and disorder on
optical properties of ZnGeNy_,O,.

IV. CONCLUSION

In this work, we have reported an epitaxial
ZnGeN,_, O, sample library grown on c-plane AloO3 by
sputtering. X-ray diffraction and TEM confirm epitax-
ial alignment with the substrate despite 13.3% in-plane
lattice mismatch. The sputter-deposited samples are
optically active with room-temperature PL peaks that
are narrow compared to traditional defect band lumi-
nescence. These peaks align with a sharp optical ab-
sorption onset at 2.6eV, and we hypothesize this opti-
cal signal originates from band-related luminescence in
ZnGeNy_,O,. To the authors’ knowledge, this result is
the first reported ZnGeNy_, O, thin film, and sets the
stage for low-cost light-emitting devices which integrate
with GaN based on the ZnGeNs-ZnO material system.
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