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We study the electronic structure of delafossite PtCoO2 to elucidate its extremely small resistivity
and high mobility. The band exhibits steep dispersion near the Fermi level despite the fact that it
is formed mainly by Pt d orbitals that are typically localized. We propose a picture based on two
hidden kagome-lattice-like electronic structure: one originating from Pt s+ px/py orbitals, and the
other from Pt d3z2−r2 + dxy/dx2

−y2 orbitals, each placed on the bonds of the triangular lattice. In
particular, we find that the underlying Pt s+ px/py bands actually determine the steepness of the
original dispersion, so that the large Fermi velocity can be attributed to the large width of the Pt
s+ px/py band. In addition, the kagome-like electronic structure gives rise to “orbital-momentum
locking” on the Fermi surface, which reduces the electron scattering by impurities. We conclude
that the combination of the large Fermi velocity and the orbital-momentum locking is likely to be
the origin of the extremely small resistivity in PtCoO2.

PACS numbers:

I. INTRODUCTION

The past decade has seen considerable attention paid
to an unusual series of metals PdCoO2, PdRhO2,
PdCrO2 and PtCoO2.

1 Their strongly two-dimensional
conduction takes place in triangular lattice layers of Pd or
Pt, separated by layers of edge-sharing transition metal-
oxygen octahedra in a three formula unit stacking se-
quence known as the delafossite structure. They are
particularly notable for their high electrical conductiv-
ity, which similar to that of elemental Cu or Ag at room
temperature even though their volume carrier density
is a factor of three lower. At low temperatures their
mean free paths are as high as tens of microns, open-
ing the way to the investigation of new regimes of elec-
trical transport2–5. Recent work on bulk single crystals
with well-defined electrical contact geometries defined us-
ing focused ion beam sculpting has established the low-
est room temperature resistivity among the series to be
that of PtCoO2: 1.8 µΩcm6. Intuitively, it is difficult
to imagine a three-component oxide having a resistiv-
ity this low, and there is a strong motivation to try and
understand why this happens. That is the purpose of
this paper. From the electronic structure point of view,
both first principles band structure calculations8–10 and
experiments such as the de Haas–van Alphen7 and an-
gle resolved photoemission9,11 measurements show a very
dispersive band crossing the Fermi level. Although this
is consistent with the high conductivity, it is itself puz-
zling since the orbital projection within first principles
calculations show that the band crossing the Fermi level
mainly originates from Pt d orbitals (Refs.8,10, see also
Fig.3), which usually give a narrow band width and a
small Fermi velocity. The possibility of a contribution of

FIG. 1. Schematic figure of the orbital-momentum locking.
The figure shows how the orbital character varies along the
Fermi Surface.

s orbitals has been discussed in this context1,7.

In the present work, we study the electronic structure
of PtCoO2, and show that the steep band intersecting
the Fermi level is composed of a mixture of two hidden
kagome-like electronic structures, one originating from
Pt 6s, 6px and 6py orbitals, and the other from Pt
5d3z2

−r2 , 5dx2
−y2 and 5dxy. The linear combination

of the orbitals forms a basis for a hypothetical atomic
orbital on a kagome lattice placed at the bond center
of the delafossite triangular lattice. In particular, the
s + px/py kagome-like electronic structure has a very
large band width of 30 eV, which gives rise to the steep
dispersion of the band intersecting the Fermi level in the
original band structure, despite the fact that d-orbital
character is much stronger than s + px/py character
in this band. Speaking of a kagome lattice (to be
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precise, a tight-binding model on a kagome lattice with
one orbital per site), one may think of Dirac cones at
the K and K′ points, or the presence of a flat band12.
Here, however, we will focus on another aspect of the
kagome-like electronic structure, namely the presence of
the quadratic band crossing point13 at the Γ point: the
kagome lattice is known to have this degeneracy with
the Berry phase 2π, as a touching of the flat band and
one of the dispersive bands. This degenerate point is
robust under a six-fold rotational symmetry along with
an anti-unitary symmetry, so that the present system
is expected to have peculiar properties derived from
this touching, although the degeneracy is lifted in the
actual band structure due to spin-orbit coupling. In
fact, in the electronic structure of PtCoO2, the orbital
character varies along the Fermi surface, as sketched
in Fig.1, giving rise to “orbital-momentum locking”,
which reduces the rate of the electron scattering by
impurities14. We conclude that the combination of the
large Fermi velocity and the orbital-momentum locking
is likely to be the origin of the extremely small resistivity
in PtCoO2.

II. BAND STRUCTURE

The first principles band calculation of PtCoO2, whose
crystal structure is shown in Fig. 2, was performed using
the WIEN2K package16 with the PBE-GGA exchange-
correlation functional17 and adopting the lattice param-
eters obtained in Ref.8. The value of RKmax is set to
8, and 1,000 k-points are taken for the self-consistent
calculation. In our first principles calculation, we have
omitted spin-orbit coupling for the sake of the clarity
of the argument regarding the hidden kagome-like elec-
tronic structure, but we will consider spin-orbit coupling
in section V. The calculation result is shown in Fig. 3(a)
and (c). This calculation shows that the bands around
the Fermi level have strong Pt d orbital character, which
is expected to give a narrow band width. However, the
band dispersion around the Fermi level is very steep, con-
sistent with that observed experimentally11, and with its
very high room-temperature conductivity..

III. ORBITAL DECOMPOSITION

In order to understand the origin of this steep disper-
sion, we first construct a 20 orbital tight-binding model,
which consists of Pt s, p × 3, d × 5, Co d × 5, and O
p × 3 orbitals, exploiting maximally localized Wannier
functions18,19. Some of the nearest neighbor hopping in-
tegrals obtained are given in table I. As shown in Fig.
3(b), the tight-binding model accurately reproduces the
original band structure. From this model, we can ex-
tract a hypothetical band structure in which only the
hoppings among, say, Pt s orbital is considered, with no

Pt
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Co

PtPt Pt

Pt Pt
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FIG. 2. The crystal structure of PtCoO2 depicted using
VESTA15. The inset shows the triangular lattice of Pt atoms.

other orbitals mixed. Similar hypothetical band struc-
tures can also be obtained for Pt px/py, Pt d3z2

−r2 , or
Pt dxy/dx2

−y2 orbitals, as shown in Fig. 4. As expected,
the d orbital-originated bands have a narrow band width.
In fact, the mixture of Pt s and px/py gives rise to a
band structure that has very large band width with a
steep dispersion, as shown in Fig. 5(b). The steep band
intersecting the Fermi level in the original band struc-
ture can basically be decomposed into Pt s+ px/py and
Pt d3z2

−r2 + dxy/dx2
−y2 orbital components, where the

steepness comes from the former, despite the fact that a
strong contribution near the Fermi level comes from the
latter.

TABLE I. The value of the nearest neighbor hopping integrals
between s, px, py and d3z2−r2 orbitals and the on-site energy
of these orbitals. t1 and t2 are the nearest neighbor hoppings
from (0,0) to (1,0) and (0,1), respectively. (n,m) stands for
na+mb, where a and b are the primitive translation vectors
shown in Fig. 2. The “on-site” in the bottom row is the
hopping within the same site.

s px py d3z2−r2

on-site 2.41 11.31 11.31 -1.30
s t1 -1.20 - - -

t2 -1.20 - - -
px t1 1.87 3.25 - -

t2 -0.93 1.00 - -
py t1 - - 0.24 -

t2 1.62 -1.30 2.50 -
d3z2−r2 t1 -0.37 -0.63 - -0.15

t2 -0.37 0.32 -0.55 -0.15
on-site -0.87 - - -

If we look more closely into the Pt s+ px/py band, it
has a Dirac-cone-like feature similar to that of the hon-
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FIG. 3. (a) first principles band structure of PtCoO2. The
thickness represents the strength of the d orbital character.
(b) the band structure of the 20 orbital tight-binding model.
(c) the density of states of PtCoO2.
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FIG. 4. Bands which consist solely of (a) Pt s, (b) Pt px/py,
(c) Pt dxy/dx2

−y2 , or (d) Pt d3z2−r2 orbital components, ex-
tracted from the 20 orbital model derived from the first prin-
ciples band structure.

eycomb lattice. Figure 6 shows how the mixture of s and
px/py orbitals results in a Dirac-cone-like feature by hy-
pothetically varying the s-orbital on-site energy; namely,
when the s energy level is lowered (Fig. 6(c)), the s and
px/py bands are clearly separated, but the Dirac cone be-
comes apparent when the s level is raised and the bands
are sufficiently mixed (Fig. 6(a)). Speaking of the hon-
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FIG. 5. Band structure of models that consist of (a) Pt s,
px/py , d3z2−r2 , dxy/dx2

−y2 , and Opz, (b) Pt s and px/py ,
(c) Pt d3z2−r2 and dxy/dx2

−y2 orbitals. Dashed circles in (a)
denote the steep band intersecting the Fermi level.
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FIG. 6. (a)-(c) Evoloution of the s + px/py band structure
upon varying the on-site energy level of the s orbital. The
thickness repsents the strength of the s orbital component.

eycomb lattice, the present Pt s+px/py band has a total
band width of nearly 30 eV, which is even larger than
that of the graphene. Hence the large group velocity of
the band intersecting the Fermi level in the original band
structure (dashed circles in Fig. 5(a)) can be traced back
to the steep dispersion of the Pt s+ px/py bands.

IV. HIDDEN KAGOME LATTICE AND

ORBITAL MOMENTUM LOCKING

To further understand the origin of this peculiar band
structure, we now try to construct a tighbinding model
on a triangular lattice for a simpler system that consists
of only s and px/py orbitals with no other bands mix-
ing. To obtain such a model, here we consider a simple
hypothetical material, Si on a triangular lattice (a = 5
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FIG. 7. (a) First principles band structure of triangular lattice
Si. (b) s + px/py three orbital model derived from the first
principles band structure.

Bohr and c = 10 Bohr), where s and px/py hybridize
with no other bands mixing. In Fig. 7, we show the
original band structure along with the s + px/py three
orbital tight-binding model constructed from maximally
localized Wannier functions obtained using VASP20–22

and wannier9018 packages. Interestingly, the band struc-
ture of this model (Fig. 7(b)) looks very similar to the Pt
s+ px/py bands of PtCoO2 (Fig. 5(b)); in the latter the
degeneracy of the lower two bands at the M point is lifted,
but otherwise the two band structures look just alike. In
Fig. 8, we show the Wannier orbitals of the triangular
lattice Si, which is constructed with the projection of the
s orbital centered at the bond center of two neighbor-
ing Si atoms. Thus, the Wannier centers actually form
a kagome lattice as shown in Fig. 823. The relation be-
tween the present three band model and the tight-binding
model on a kagome lattice with nearest neighbor hopping
only can be seen by adding distant hoppings one by one
as in Fig. 9. When there is only the nearest neigh-
bor hopping, there is a perfectly flat band in addition to
the two bands that form Dirac cones, but as the distant
hoppings are added, the flat band gets dispersive24, and
becomes nearly degenerate with the other two bands at
the K point.

From the above, we have understood that the steep
dispersion of the band intersecting the Fermi level in
PtCoO2 originates from the underlying kagome-like elec-
tronic structure consisting of Pt s+px/py orbitals. How-
ever, this is not the whole story. If we look closely at
the Pt d3z2

−r2 + dxy/dx2
−y2 portion of the band (Fig.

5), which makes a large contribution to the Fermi sur-
face, this itself also has a (strongly deformed) kagome-like

t t’’

t  = -2.82 eV

t’ = -1.07 eV (-0.38t)

t’’= 0.94 eV (0.33t)

center of 

the Wannier orbitals

Si

t’

Si

(b)

(a)

FIG. 8. (a) Wannier orbitals of the s + px/py three orbital
model of triangular lattice Si depicted using VESTA15. (b)
The center of the Wannier orbitals form a kagome lattice.
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FIG. 9. The relation between the kagome lattice with nearest
neighbor hopping only and the Si s + px/py model is shown
by adding the distant hoppings one by one. The values of the
hopping integrals are shown in Fig. 8.

electronic structure as seen from the comparison of the
reversed blow-up of d3z2

−r2 + dxy/dx2
−y2 and s+ px/py

bands in Fig. 10. Namely, there is a Dirac-cone like fea-
ture at the K point, and a two-fold degeneracy at the
Γ point. This may be naturally understood because the
d3z2

−r2 (a1g symmetry) and the degenerate dxy/dx2
−y2

(eg symmetry) orbitals are likely to play the same role as
s and the degenerate px/py orbitals, respectively.

In fact, a relation between the kagome lattice and 3d
band manifold in a cobaltate NaxCoO2, where Co atoms
form a triangular lattice, has also been pointed out in
refs.25–30. In NaxCoO2 also, the a1g and the doubly de-
generate e′g orbitals are the foundation of the relevant
band structure. On the other hand, in NaxCoO2, the
s and p orbitals do not play any role in the bands near
the Fermi level. The difference between NaxCoO2 and
PtCoO2 lies in that in the former, the bands around the
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Fermi level mainly originate from the 3d orbitals of the
Co atoms, which are surrounded by oxygen atoms that
strongly push up the energy level of the widely spread
Co 4s and 4p orbitals. By contrast, in PtCoO2, the main
player is Pt, which by itself forms a layer of triangular
lattice.

Now, as mentioned in the Introduction, a characteric
feature of the kagome-like band structure is the Berry
phase of 2π arising from the touching of the two-bands
at the Γ point. Let us first see this feature directly in
the original kagome lattice. We show in Fig. 11 how the
wavefunction, plotted on a real space unit cell, varies as
we move along a certain energy contour around the Γ
point. It can be seen that the phase of the wavefunction
rotates, and it is exactly reversed as we move to the oppo-
site side of the contour31. Here we considered the kagome
lattice with only the isotropic nearest neighbor hopping,
but this feature remains even with distant hoppings.

We can say that this topological feature of the kagome-
like electronic structure manifests itself as “orbital-
momentum locking” in PtCoO2 in the following sense.
As mentioned above, the Fermi surface of PtCoO2 mainly
consists of the above mentioned Pt d orbitals with a small
amount of Pt p and s orbital mixture. In Fig. 12, we
show how the orbital weight varies along the Fermi sur-
face. This variance of the orbital character results in
a “rotation” of the total wavefunction along the Fermi
surface as shown in Fig. 1. Namely, a wave function,
which looks somewhat like a well-known d3z2

−r2 orbital
laid down in the x−y plane, rotates along the Fermi sur-
face. (To be more strict, the wavefunction has a different
shape at the corners of the Fermi surface.) Therefore, at
each point on the Fermi surface, the orbital character is
different.

We note that orbital-momentum locking in itself is not
an extraordinary feature; it can in general be realized
in multiorbital systems. For example, in a two orbital
system originating from px and py orbitals (or dxy and
dx2

−y2 orbitals) on a triangular lattice, the two orbitals
give rise to two Fermi surfaces, and the mixture of the
two orbitals results in a rotation of the p orbital (or d
orbital) along each Fermi surface. Specific features of
PtCoO2 are that the Fermi surface essentially consists of
only one band despite the strong multiorbital nature, and
also that a very large Fermi velocity is realized due to the
”hidden” mixture of s+ px/py orbitals. The effect of the
orbital-momentum locking on the transport properties
will be discussed in the next section.

Finally, let us point out an interesting feature regard-
ing the kagome-like electronic structure observed above.
In the original kagome lattice, the bands are two-fold de-
generate at the K point (Fig. 9(a)), but in all of the
kagome-like band structures hidden in the materials con-
sidered here, there is a (near) three-fold degeneracy, as
seen in Fig. 10 and Fig. 9(d). One may think that this is
related to some kind of symmetry peculiar to the trian-
gular lattice structure. However, we have found that this
degeneracy can be lifted by employing artificial lattice
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FIG. 10. The simlarity between the band structure of Pt
s + px/py (right) and that of Pt d3z2−r2 + dxy/dx2

−y2 (left)
is shown.

FIG. 11. Wavefunction of the original kagome lattice plotted
on a real space unit cell. The large circle is a certain energy
contour that encircles the Γ point, and the wavefunction is
plotted along this contour. The radius of the circle represents
the weight on each site, and the color denotes the sign (red:
negative, blue: positive).

structure parameters (e.g., varying the internal coordi-
nate values of the oxygen atoms) without changing the
symmetry of the triangular lattice structure. Also, this
three-fold degeneracy is absent in the kagome-like elec-
tronic structure found in NaxCoO2

25. At present, we are
not certain about the origin of this interesting three-fold
degeneracy.

V. IMPURITY SCATTERING

In order to understand how the steep dispersion and
the orbital-momentum locking are responsible for the ex-
tremely small resistivity observed in PtCoO2, we evalu-
ate the quasi-particle lifetime within the second order
Born approximation32, which is justified for weak disor-
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der. When the on-site disorder potential U0 is uniformly
distributed within the interval (−U0/2, U0/2), the self-

energy Σ̂ due to disorder is defined through

(EF − Ĥ0 − Σ̂)−1 = 〈(EF − Ĥ)−1〉, (1)

where Ĥ0 is the Hamiltonian without disorder (i.e., the
tight-binding Hamiltonian in this study), EF the Fermi

energy, and Ĥ the Hamiltonian with the disorder poten-
tial, while 〈O〉 denotes the disorder average of a operator

O. Σ̂ is self-consistently determined as follows,

Σ̂ =
1

12
U2
0

∑

k

[

EF + i0+ − Ĥ0(k)− Σ̂
]

−1

. (2)

In the small U0 regime, where the self energy is small, we
can approximate Eq. (2) as

Σ̂ ≃
U2
0

12

∑

k

∑

n

|nk〉〈nk|

EF + i0+ − εn(k)− 〈nk|Σ̂|nk〉
, (3)

where |nk〉 is the wave function of Ĥ0 at wave vec-
tor k and the n-th band. This equation is solved self-
consistently to obtain the self energy. We then calculate
its imaginary part

τ−1
θ = 〈θ| − ImΣ̂|θ〉, (4)

where |θ〉 is the wave function |nk〉 on the Fermi sur-
face at the angle θ = tan−1(ky/kx). This quantity corre-
sponds to the scattering rate by impurities14. We average
〈θ| − ImΣ̂|θ〉 over the Fermi surface and plot it against
the disorder parameter g = U2

0 /12 (Fig. 14(a)).
For the calculation of the self energy, we construct a

6 orbital model on a triangular lattice consisting of Pt
s, px, py, d3z2

−r2 and dxy orbitals. This 6 orbital model
does not explicitly comprise the O pz orbitals (whose
weight lies well below the Fermi level, see Fig. 5), but
it accurately reproduces the band dispersion of the 8 or-
bital model near the Fermi level. It also appropriately
considers the orbital components on the Fermi surface.
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FIG. 13. The band structure of the 6 orbital model with
the spin-orbit coupling included. The blue line represents the
dispersion of the single orbital model, which is obtained by
extracting the band intersecting the Fermi level (see text).

Hence this model can be considered as a minimal model
to investigate the impurity scattering. Here we further
consider the spin-orbit coupling for the d-orbitals with a
coupling constant of λ = 0.75 eV in order to get rid of
the small pocket-like Fermi surface around the M point,
so as to reproduce the experimental observations11,33. To
be strict, we have found that the Pt dxz, dyz , pz orbitals
mix significantly with the present orbtials when the spin-
orbit coupling is turned on, and in this sense it is more
accurate to use a 9 orbital model. However, we have
checked this mixing of the additional three orbitals does
not strongly affect the states near the Fermi level and
hence the present calculation results. Therefore, here we
concentrate on the 6 orbital model. The Hamiltonian Ĥ0

in Eq. (1) for the 6 orbital model is described as follows,

Ĥ0 = ĤTB + ĤSO, (5)

ĤSO = σz ⊗















0 −iλ 0 0 0
iλ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0















, (6)

where ĤTB contains the hoppings and the on-site ener-
gies of the 6 Wannier orbitals (orbital 1:dxy, 2:dx2

−y2 ,

3:d3z2
−r2 , 4:px, 5:py, 6:pz), ĤSO is the spin-orbit cou-

pling term, and σz is the z-component of the Pauli matri-
ces. Note that we consider only spin preserving scattering
here. We show in Fig. 13 the band structure of this 6 or-
bital model with the spin-orbit coupling included, and in
Fig. 14 the imaginary part of the self energy calculated
by using this model is plotted as a function of g.

In order to gain intuitive understanding, we now derive
an approximate expression for the self energy. With the
power series expansion for Eq. (2), the imaginary part of
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the self energy can be described as follows,

ImΣ̂ ∼ −gπ
∑

k,n

δ (EF − εn(k)) |nk〉〈nk|. (7)

Because PtCoO2 exhibits a single-band, strongly two-
dimensional Fermi surface, we can describe Eq. (7) with
|θ〉 and the distance from the Γ point kF (θ) = (k2x +
k2y)

1/2,

ImΣ̂ = −
gS0

4π

∫ 2π

0

dθ

∫

∞

0

dk
kδ (k − kF (θ))

vF (θ)
|θ〉〈θ|, (8)

where S0 is the area of the unit cell within the xy plane
and vF is the Fermi velocity at angle θ. The self energy
for angle θ is thus given by

Im〈θ|Σ̂|θ〉 ≃ −
gS0

4π

∫ 2π

0

dθ′
kF (θ

′)

vF (θ′)
|〈θ|θ′〉|2. (9)

The overlap factor |〈θ|θ′〉|2 in Eq. (9) is reduced from
unity when states at θ and θ′ have different orbital char-
acters. Hence, Eq. (3) shows that both the large group
velocity near the Fermi level and the orbital-momentum
locking reduce the imaginary part of the self energy, and
thus lead to large conductivity.

In order to highlight how orbital-momentum locking
helps increase the conductivity, we also calculate, using
Eq. (3), the self energy for a single orbital model. In
order to exclude the effect of the Fermi velocity, we con-
sider a single orbital model that has exactly the same
energy dispersion as that of the band that intersects the
Fermi level in the 6 orbital model, i.e., the band with the
third-lowest energy (blue line in Fig. 13). As shown in
Fig. 14(a), the self energy of the single orbital model is
much larger than that of the 6 orbital model. This result
can be understood by looking into the inner product of
the wave function on the Fermi surface for this model. As
seen in Fig. 14(b), the scattering on the Fermi surface is
strongly reduced, and about 70% reduction of the self en-
ergy (the average of |〈θ|θ′〉|2 is about 0.3) is attained by
the orbital-momentum locking. We may hence conclude
that the orbital-momentum locking on the Fermi surface
with 6 orbitals involved, in addition to the large Fermi
velocity originating from the kagome lattice of s+ px/py
orbitals, is the origin of the extremely small resistivity
observed in PtCoO2.
The reduction mechanism for impurity scattering is

reminiscent of that in graphene. Namely, in graphene,
the backward scattering of electrons by impurities is
prohibited due to the pseudospin-momentum locking34,
where the pseudospin originates from the AB sublattices
of the honeycomb lattice. In the present case, the mul-
tiorbital character plays the role of the pseudospins in
graphene. From a topological viewpoint, in graphene the
pseudospin-momentum locking is directly linked to the
Berry phase of π around the K point in graphene, whereas
in the present case, the Berry phase of 2π around the two-
fold degenerate band structure at the Γ-point, a feature
of the kagome lattice, plays a similar role (see Fig. 1).
The difference lies in that in the present case, the back-
ward scattering(θ = π) is not strongly suppressed, but
the scatterings around θ = π/2, 3π/2 are suppressed,
reflecting the Berry phase of 2π instead of π.

VI. CONCLUSION

To conclude, the electronic structure of PtCoO2 near
the Fermi level is constructed from a mixture of Pt
s+px/py and Pt d3z2

−r2 +dxy/dx2
−y2 bands, both form-

ing a hidden kagome-like electronic structure. The steep
dispersion itself can give rise to a large mobility. In addi-
tion, these kagome-like features result in a mixture of six
orbital characters on the Fermi surface, and the orbital-
momentum locking, in addition to the steep dispersion
itself, reduces the rate of the electron scattering by impu-
rities. In fact, the experimentally observed Fermi velocity
of 0.89 × 106 m/s is comparable to, but not as large as
those of very good metals such as copper or silver. Hence,
the orbital-momentum locking is likely to be playing an
important role in the realization of the extremely large
conductivity. In total, we have concluded that the com-
bined hidden kagome-like electronic structures, peculiar
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to the delaffosite compound, is the origin of the peculiar
transport properties observed experimentally.
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