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The anomalous Hall effect (AHE) is a well-known fundamental property of ferromagnetic metals, commonly associated with 
the presence of a net magnetization. Recently, an AHE has been discovered in non-collinear antiferromagnetic (AFM) metals. 
Driven by non-vanishing Berry curvature of AFM materials with certain magnetic space group symmetry, anomalous Hall 
conductivity (AHC) is very sensitive to the specific type of magnetic ordering. Here, we investigate the appearance of AHC 
in antiperovskite materials family ANMn3 (A = Ga, Sn, Ni), where different types of non-collinear magnetic ordering can 
emerge.  Using symmetry analyses and first-principles density-functional theory calculations, we show that with almost 
identical band structure, the nearly degenerate non-collinear AFM Γ5g and Γ4g phases of GaNMn3 have zero and finite AHC, 
respectively. In a non-collinear ferrimagnetic M-1 phase, GaNMn3 exhibits a large AHC due to the presence of a sizable net 
magnetic moment. In the non-collinear antiperovskite magnets, transitions between different magnetic phases, exhibiting 
different AHC states, can be produced by doping, strain, or spin transfer torque, which makes these materials promising for 
novel spintronic applications.    

I. Introduction 

It is known that the anomalous Hall effect (AHE) emerges in 
metals with broken time-reversal symmetry (TRS) and strong 
spin-orbit coupling (SOC) [1]. Usually, the AHE is found in 
ferromagnetic (FM) metals, where a transverse voltage 
generated by a longitudinal charge current is sensitive to the net 
magnetization. The intrinsic AHE is driven by a fictitious 
magnetic field in the momentum space associated with the Berry 
curvature, a quantity inherent in the electronic band structure [2]. 
With the magnitude and direction determined by the 
magnetization and SOC, this fictitious magnetic field controls 
the charge current in a similar way as a real magnetic field in the 
ordinary Hall effect. The AHE vanishes in conventional collinear 
antiferromagnetic (AFM) metals due to the anomalous Hall 
conductivities being opposite in sign and hence cancelling each 
other for the two ferromagnetic sublattices with opposite 
magnetization. In other words, the existence of symmetry 
combining time reversal and lattice translation prohibits the 
AHE. This observation suggested that the presence of a non-
vanishing net magnetic moment is the necessary condition to 
break the related symmetry and produce the AHE [3]. 

It appeared, however, that the AHE can be observed in 
certain types of non-collinear antiferromagnets, such as Mn3X 
alloys (X = Ga, Ge, Ir, etc.) [4–8]. In these metals, the Mn 
moments are arranged in a Kagome-type lattice within the (111) 
plane. The magnetic space group symmetry operations in these 
compounds cannot eliminate the total Berry curvature, leading to 
a non-vanishing AHE [4]. The presence of a sizable AHE in non-
collinear AFM metals is interesting for AFM spintronics, where 
an AFM order parameter, as a state variable, can be controlled 
on a much shorter time scale compared to magnetization in 
ferromagnets [9–11]. 

Importantly, specifics of magnetic ordering in non-collinear 
AFM materials associated with different magnetic space group 
symmetries have a strong impact on the AHE [12, 13]. For 
example, it was found that the AHC tensors have a different form 
in Mn3X (X = Ga, Ge, and Sn) and Mn3Y (Y = Rh, Ir, and Pt) 
compounds, due to different magnetic moment configurations. 
One can expect therefore that a significant change in the 
anomalous Hall conductivity (AHC) can emerge at the magnetic 
phase transition associated with switching between different 
non-collinear magnetic orderings. Realizing such an effect in 
practice would be interesting for potential spintronic applications, 
and therefore exploring the AHE in possible material systems 
with competing and tunable non-collinear magnetic phases is 
valuable.  

Antiperovskite materials are potential candidates for the 
control of the AHE by tunable non-collinear magnetism. 
Antiperovskites have a perovskite structure, where cation and 
anion positions are interchanged [Fig. 1(a)]. Abundant functional 
properties have been discovered in these materials, such as 
superconductivity [ 14 ], magnetoresistance [ 15 ], and 
magnetovolume [ 16 – 18 ], magnetocaloric [ 19 , 20 ], and 
barocaloric [ 21  ] effects. Manganese nitride antiperovskites 
ANMn3 (A = Ga, Cu, Ni, etc.) are typically metallic and often 
reveal complex magnetic orderings [16, 22 , 23 ]. Various 
magnetic phases, such as non-collinear AFM Γ5g and Γ4g phases 
and a non-collinear ferrimagnetic M-1 phase have been found in 
these compounds [Fig. 1]. Transformations between these 
magnetic phases can be induced by perturbations, such as doping, 
pressure, and temperature [23–25]. It has also been predicted that 
the transition between the Γ5g and Γ4g phases can be achieved 
using a spin transfer torque [26]. These properties make ANMn3 
compounds promising for a functional control of the non-



2 
 

collinear magnetism and thus interesting for exploring the AHE 
in different magnetic phases.  

In this paper, we consider gallium manganese nitride 
GaNMn3 as a representative antiperovskite material to 
investigate the magnetic phase dependent AHC of the whole 
ANMn3 family.  The high temperature paramagnetic phase of 
GaNMn3 has a cubic crystal structure with the space group 
ܲ݉3ത݉. The Γ5g phase emerges below room temperature [Fig. 
1(a)] and represents the most common non-collinear AFM phase 
of the ANMn3 compounds. In this phase, to avoid the frustration 
from the triangular geometry of the Ga-Mn Kagome-type lattice 
in the (111) plane, the magnetic moments of the three Mn atoms 
form a chiral configuration with the 120° angle between each 
other. The Γ4g magnetic structure is another common non-
collinear AFM phase in the ANMn3 family, which can be 
obtained from the Γ5g phase by rotating all magnetic moments 
around the [111] axis by 90° [Fig. 1(b)]. Both the Γ5g and Γ4g 
phases have zero net magnetization.  GaNMn3 also exhibits a 
non-collinear ferrimagnetic M-1 phase [Fig. 1(c)], which can be 
stabilized by stoichiometric deficiency or high pressure [23]. In 
this phase, the Mn magnetic moments are antiferromagnetically 
(ferromagnetically) coupled in (between) the Ga-Mn (001) 
planes, resulting in collinear AFM sublattices within these planes. 
On the other hand, the magnetic moments in the Mn-N (002) 
planes are arranged non-collinearly (Fig. 1(c)), leading to the net 
magnetic moment along the [001] direction. 

Using symmetry analyses and first-principles density-
functional theory (DFT) calculations, we explore the AHE of the 
three non-collinear magnetic phases of GaNMn3. We show that 
with nearly identical band structure, the nearly degenerate AFM 
Γ5g and Γ4g phases have zero and finite AHC, respectively. A 
similar behavior is exhibited by non-collinear antiferromagnetic 
antiperovskites SnNMn3 and NiNMn3. In a non-collinear 
ferrimagnetic M-1 phase, GaNMn3 exhibits a large AHC due to 
the presence of a sizeable net magnetization. With a possibility 
to control the appearance of these magnetic phases by external 
stimulus, the predicted variation of the AHC between different 
magnetic phases in the same material point to a new approach of 
designing the AHE-based functional devices for spintronic 
applications.  

II. Symmetry analysis  

Within the linear response theory, the intrinsic AHC is expressed 
as the integral of the total Berry curvature (Ωαβ) over the 
Brillouin zone (BZ) of the crystal [1, 27] 

ఈఉߪ ൌ െ
݁ଶ


න

݀ଷሬ݇Ԧ

ሺ2ߨሻଷ
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where the total Berry curvature Ωఈఉ ൌ ∑ ݂ሺሬ݇ԦሻΩ
ఊ

 ሺሬ݇Ԧሻ  is the 

sum of the Berry curvatures Ω,ఈఉሺሬ݇Ԧሻ  corresponding the 

individual bands n,  ݂൫ሬ݇Ԧ൯ is the Fermi distribution function, and 
indices (α, β) denote Cartesian co-ordinates. The expression for 

the Berry curvature Ω,ఈఉሺሬ݇Ԧሻ is given by [1, 27] 
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where ߰,ሬԦ  is the Bloch function and ݒԦ is the velocity operator. 

Space group symmetry of a material determines the presence or 

absence of a finite AHC. For example, since Ω,ఈఉ൫ሬ݇Ԧ൯ is odd 

with respect to time reversal symmetry, i.e. Ω,ఈఉ൫െሬ݇Ԧ൯ ൌ

െΩ,ఈఉ൫ሬ݇Ԧ൯, the total Berry curvature Ωఈఉ and hence the AHC 

are zero for non-magnetic materials. Similarly, if there is 

symmetry operation O transforming ሬ݇Ԧ to ሬ݇Ԧᇱ (i.e., ሬ݇Ԧᇱ ൌ O ሬ݇Ԧ), such 

as two-fold rotation or mirror reflection, for which OΩሺሬ݇Ԧ′൯ ൌ

െΩሺሬ݇Ԧ൯ , the AHC vanishes [12, 13]. In non-collinear AFM 
materials, such as GaNMn3, various magnetic phases are 
associated with different magnetic space group symmetries 
(TABLE I), resulting in different AHC. 

The Γ5g phase of GaNMn3 is characterized by a lattice of 
magnetic “whirls” composed of non-collinear Mn magnetic 
moments in the (111) plane [Fig. 2(a)]. This arrangement forms 
the magnetic space group ܴ3ത݉, which has three mirrors planes 
perpendicular to the (111) plane. Mirror symmetry M preserves 
the spin component perpendicular to the mirror plane and 
reverses the spin components parallel to the mirror plane. As 
shown in Fig. 2(a), the magnetic moments of the Mn atoms at the 
mirror planes (indicated by the dashed lines in Fig. 2(a)) are 
always perpendicular to this plane. Therefore, application of the 
symmetry transformations ܯ ൌ ,ଵഥଵܯ ,	ଵଵഥܯ  or  ଵഥଵܯ		
preserves the original configuration of magnetic moments. The 
invariance under these three mirror symmetry transformations 
causes the AHE in the Γ5g phase to vanish. For example, under 
the 	ܯଵഥଵ  symmetry operation, the Berry curvature is 
transformed as 	ܯଵഥଵΩ௫௬൫݇௬, ݇௫, ݇௭൯ ൌ െΩ௫௬൫݇௫, ݇௬, ݇௭൯ , 
which implies that the integral over the whole Brillouin zone in 

Eq. (1) leads to a zero ߪ௫௬. Similarly, Ωݖݕ and Ωݔݖ are odd with 

FIG. 1. Different non-collinear magnetic phases in AFM antiperovskite
GaNMn3: (a) Γ5g, (b) Γ4g, and (c) M-1. Red arrows denote magnetic
moments. 
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respect to ܯଵഥଵ and ܯଵଵഥ, respectively. Table IV in Appendix B 
shows details of different symmtry transfromations.   

This odd property of the Berry curvature in GaNMn3 under 
the mirror symmetry transformations is broken in the Γ4g phase.  
In this phase, the Mn magnetic moments form a lattice of 
“vertices” in the (111) plane, in which the magnetic moments of 
the Mn atoms within the mirror plane are parallel to this plane 
[Fig. 2(b)]. This configuration corresponds to the magnetic space 
group ܴ3ത݉′, in which the mirror symmetries are broken. As seen 
from Fig. 2(b), mirror symmetry transformation ܯ reverses all 
the magnetic moments. 

In contrast, the product of mirror symmetry ܯ	  and time 
reversal symmetry ܶ is preserved in the Γ4g phase. As shown in 
Fig. 2(b), when reversal of all moments by the mirror symmetry 
operation ܯ  is followed by the time reversal symmetry 
transformation ܶ  all the moments are reversed back to their 
initial configuration. The presence of the combined ܶܯ 
symmetry makes the Berry curvature an even function of wave 

vector ሬ݇Ԧ. For example, applying the ܶܯଵഥଵ transformation we 
obtain  ܶܯଵഥଵΩ௫௬൫݇௬, ݇௫, ݇௭൯ ൌ Ω௫௬ሺെ݇௫,െ݇௬,െ݇௭ሻ . This 
even property of the Berry curvature with respect to 
 ଵଵ൧  makes the AHC non-zero in theൣܯܶ ଵଵ൧, andൣܯܶ	,ଵഥଵܯܶ

Γ4g phase. The complete analysis of the TM symmetry 
transformations is given in Table IV (Appendix B). 

Magnetic space group symmetry determines the shape of the 
AHC tensor. While in the Γ5g phase, all the nine components of 
the AHC tensor are zero, in the Γ4g phase, corresponding to the 
magnetic space group ܴ3ത݉′ , the AHC tensor is non-zero.  
TABLE I shows that there are six non-vanishing matrix elements 

of the AHC tensor in the Γ4g phase with only one ߪ௫௬  being 
independent. 

In the non-collinear ferrimagnetic M-1 phase, the unit cell is 

a tetragonal √2 ൈ √2 ൈ 1  supercell of the conventional cubic 
unit cell without any distortion [Fig. 1 (c)]. In this phase, 
GaNMn3 has a net magnetization along the [001] direction. 
Therefore, a non-zero AHC is expected in this case similar to that 
in ferromagnetic metals. TABLE I shows the AHC tensor for the 
magnetic space group symmetry P4 corresponding to the M-1 
phase. Like in collinear ferromagnetic metals, the AHC tensor 
has two non-zero components with only one ߪ௫௬  being 
independent. 

III. Methods 

Next, we perform first-principles DFT calculations to obtain the 
AHC of the three non-collinear magnetic phases of GaNMn3. 
The DFT calculations are performed using a plane-wave 
pseudopotential method with the fully-relativistic ultrasoft 
pseudopotentials [ 28 ] implemented in Quantum-ESPRESSO 
[29]. The exchange and correlation effects are treated within the 
generalized gradient approximation (GGA) [30]. We use the 
plane-wave cut-off energy of 52 Ry, the charge density cut-off 
energy of 520 Ry, and the k-point mesh of 16 × 16 × 16 for the 
cubic Γ5g and Γ4g phases and 12 × 12 × 16 for the tetragonal M-
1 phase in GaNMn3. Spin-orbit coupling is included in all the 
calculations. The electronic structure is converged to 10-7 eV/cell. 
The lattice parameters are obtained by fitting the calculated total 
energy to the Murnaghan equation of state [31]. 

The AHC is calculated using the PAOFLOW code [32] 
based on pseudo-atomic orbitals (PAO) [33,34 ]. Tight-binding 
Hamiltonians are constructed from the non-self-consistent DFT 
calculations with a 16 × 16 × 16 k-point mesh for the Γ5g and Γ4g 
phases and a 12 × 12 × 16 k-point mesh for the M-1 phase. Then, 
the AHC are calculated with a 48 × 48 × 48 k-point mesh for the 
Γ5g and Γ4g phases and a 46 × 46 × 48 k-point mesh for the M-1 
phase using the adaptive broadening method. We find 

TABLE I. Matrix elements of the AHC tensor for different magnetic 
phases in GaNMn3. Here, the ordinary Cartesian coordinates are used, 
i.e. ݔො||ሾ100ሿ, ݕො||ሾ010ሿ, and ̂ݖ||ሾ001ሿ. 

Magnetic Phase Γ5g  Γ4g M-1 

Magnetic 
Space Group  R3തm R3ത݉′ P4 

AHC tensor 
0 0 0
0 0 0
0 0 0

൩ 
0 ௫௬ߪ െߪ௫௬

െߪ௫௬ 0 ௫௬ߪ
௫௬ߪ െߪ௫௬ 0

 
0 ௫௬ߪ 0

െߪ௫௬ 0 0
0 0 0

൩

 
FIG. 2. Symmetry operations for non-collinear AFM phases Γ5g (a) and 
Γ4g (b) in the (111) Ga-Mn plane of GaNMn3. (a) The Γ5g phase
preserves mirror planes (1ത10ሻ, (101തሻ and (01ത1ሻ (denoted by dashed
lines) and is invariant under symmetry transformations ܯ ൌ
ଵഥଵ. (b) The Γ4g phase does not preserve the mirrorܯ		ଵଵഥ orܯ,ଵഥଵܯ
planes, but is invariant under the product of mirror symmetry M and 
time reversal symmetry T. Red arrows denote the magnetic moments. 
Dotted lines denote the mirror planes.  
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satisfactory convergence of the calculated AHC for a k-mesh of 
denser than 40×40×40. Increasing the grid size to 100×100×100 
changed the AHC negligibly.  

The symmetry determined geometries of the AHC tensor are 
obtained using the FINDSYM code and the linear response 
symmetry code [35]. The figures are created using VESTA [36] 
and gnuplot [37]. 

IV. Results  

The calculated lattice parameters of GaNMn3 in different 
magnetic phases are listed in TABLE II. For the Γ5g phase of 
GaNMn3, we find a = 3.869 Å, which is close to the experimental 
and previously calculated values [22, 23,  38, 39, 40], and is 
identical to the calculated lattice parameter of Γ4g. The calculated 
lattice parameter of the M-1 phase is smaller, which is consistent 
with the emergence of the M-1 phase in GaNMn3 under high 
pressure in experiment. We find that the Γ5g phase is the ground 
state of GaNMn3, while the total energies of the Γ4g and M-1 
phases are higher by 0.49 meV/f.u. and 164.35 meV/f.u., 
respectively. This result is consistent with the experimental 
observations showing the appearance of the Γ5g phase in 
GaNMn3 at low temperature [21, 22, 24].  

The calculated local magnetic moment in the Γ5g and Γ4g 
phases is about 2.16 B/Mn atom, which is in a qualitative 
agreement with the experimental and previously calculated 
values [22,23,38,39]. As expected, the non-collinear AFM 
configuration leads to a zero net magnetic moment.  For the 
ferrimagnetic M-1 phase, we obtain 2.00 B per Mn atom in the 
(001) plane and 1.47 B per Mn atom in the (002) plane, resulting 
in the net magnetic moment of 1.80 B/f.u pointing along the z 
direction.  

Since Γ5g and Γ4g have similar magnetic structures, we first 
investigate the AHE in these two phases of GaNMn3. Figure 3(a) 
shows the band structure of the Γ5g phase. Five bands cross the 
Fermi energy (EF). These dispersive bands are largely composed 
of the Mn-3d orbitals. It is seen that in some directions the bands 
are very close to each other. For example, along the -Z and R-
 directions, there are nearly degenerate bands.  

Figure 3(b) shows the calculated Berry curvature Ω௫௬.  It is 
seen that there are peaks along the R-Γ direction, which appear, 
according to Eq. (2), due to the small band separation between 
the three bands crossing EF along this direction close to the Γ 
point (see Fig. 3(a)). Along the Γ-Z direction, the Berry curvature 
Ω௫௬ is zero within the computation accuracy. This is due to the 

mirror symmetry	ܯଵഥଵ which holds along this high symmetry 
direction, resulting in 	ܯଵഥଵΩ௫௬ሺ0,0, ݇௭ሻ ൌ െΩ௫௬ሺ0,0, ݇௭ሻ, and 

hence  Ω௫௬ሺ0,0, ݇௭ሻ ൌ 0. 
In order to demonstrate the odd nature of the Berry curvature 

under the mirror symmetry	ܯଵഥଵ, we plot in Figure 3(c) the color 
map of Ω௫௬  around the Γ point in the (110) plane, which is 

perpendicular to the ሺ1ത10ሻ plane. It is seen that hot spots (i.e. 
regions where the absolute values of the Berry curvature are 
large) appear around the k-points where the Fermi surfaces of 
different bands (indicated by solid lines in [Fig. 3(c)]) cross. As 
is evident from Figure 3(c),  Ω௫௬ changes sign with respect to the 

mirror symmetry transformation 	ܯଵഥଵ  (reflection with respect 
to the dashed line in [Fig. 3(c)]). Clearly, integration of the Ω௫௬ 
over the whole Brillouin zone using Eq. (1) leads to zero AHC 

TABLE II. Calculated lattice parameters a and AHC σxy for different 
magnetic phases of ANMn3 (A = Ga, Ni, Sn). 

 a (Å)  σxy (	Ωିଵcmିଵ) 

ANMn3 Γ5g Γ4g M-1  Γ5g Γ4g M-1 

GaNMn3 3.87 3.87 3.82  0 40 377 

NiNMn3 3.84 3.84 -  0 130 - 

SnNMn3 3.99 3.99 -  0 133 - 

 

FIG. 3. (a-c) The calculated band structure (a), Berry curvature Ω௫௬
along high symmetry path (b), and the color map of Ω௫௬ in the (1ത10) 
plane (c) for the Γ5g phase of GaNMn3. (d-f) The calculated band 
structure (d), Ω௫௬ along high symmetry path (e), and the color map of 

Ω௫௬ in the (1ത10) plane (f) for the Γ4g phase of GaNMn3. The inset of (b) 
shows the Brillouin zone. The solid lines and the dashed line in (c) and 
(f) denote the Fermi surfaces and the mirror plane  .ଵഥଵܯ
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(within the computational accuracy) for the Γ5g phase. As seen 
from Fig. 5(a), this property is independent of energy (Fermi 
energy).  

Figure 3(d) shows the band structure of GaNMn3 in the Γ4g 
phase. The Γ4g phase can be obtained from the Γ5g phase by 
rotation of all magnetic moments around the [111] axis by 90°, 
in the absence of SOC the band structure of the two phases 
should be identical. Thus, the subtle differences in the bands 
structures in Figures 3(a) and 3(d) are due to SOC. These 
differences are seen, particularly, along the Γ-Z and Γ-R 
directions, where there is a slight increase in the band splitting 
around the Fermi energy.   

Figure 3(e) shows the calculated Berry curvature of 
GaNMn3 in the Γ4g phase and reveals pronounced peaks in Ω௫௬  

along the Γ-Z and Γ-R directions.  According to the ܶܯଵഥଵ 

symmetry, Ω௫௬  is an even function of the wave vector ሬ݇Ԧ, i.e. 

,ଵഥଵΩ௫௬൫݇௬ܯܶ ݇௫, ݇௭൯ ൌ Ω௫௬ሺെ݇௫,െ݇௬, െ݇௭ሻ. This is reflected 

in the calculated color map of Ω௫௬ around the Γ point in the (110) 
plane, which is shown in Figure 3(f). It is seen that the hot spots 
of  Ω௫௬	 appear nearly at the same locations as for the Γ5g phase 
[Fig. 3 (c)]. However, in the Γ4g phase, they are distributed 
symmetrically and have the same sign, proving that Ω௫௬  is an 

even function with respect the ܶܯଵഥଵ symmetry transformation. 
The AHC is calculated by integration of Ω௫௬ according to Eq. 

(2).  Figure 5(a) shows that ߪ௫௬  is finite as a function of energy 

and at the Fermi energy ߪ௫௬ ൌ െ40	Ωିଵܿ݉ିଵ . Clearly, the 
difference in the AHC between the Γ5g and Γ4g phases is due to 
the different magnetic space group symmetry of these phases.  

Figure 4(a) shows the calculated band structure of GaNMn3 
in the M-1 phase along high symmetry directions in the Brillouin 

zone. The band structure is more intricate compared to those for 
the Γ5g and Γ4g phases, because of a larger unit cell and more 
complex magnetic configuration. The presence on the net 
magnetic moment breaks time reversal symmetry, which makes 
the AHC non-zero. Figure 5(b) shows the calculated Berry 
curvature Ω௫௬ along the high symmetry directions. It is seen that 
there are number of pronounced broad peaks which are 
associated with the multiple low dispersive bands around the 
Fermi energy which are coupled by the spin-orbit interaction.  
Figure 5(b) shows the calculated AHC as a function of energy in 
the M-1 phase. At the Fermi energy, ߪ௫௬ ൌ 377	Ωିଵܿ݉ିଵ which 
is much larger than the AHC in the Γ4g phase, due to the presence 
of the net magnetic moment in the M-1 phase. It is notable that 
 .௫௬ can be strongly enhanced in the M-1 phase by hole dopingߪ

For example, at E = EF – 0.1 eV, the calculated value of ߪ௫௬	 is 

as large as 816 Ωିଵܿ݉ିଵ which is larger than the AHC in Fe 
 .(Ωିଵܿ݉ିଵ [41]	௫௬~700ߪ)

Similar properties are expected for other antiperovskite 
compounds, which may exhibit the non-collinear magnetic Γ4g 
or Γ5g phases.  For comparison, we have calculated the AHC of 
antiperovskites NiNMn3 and SnNMn3, in which the Γ4g phase 
exists at room temperature [16]. Consistent with the experiment, 
our calculations find that the Γ4g phase is the ground state for 
these compounds. The calculated energy difference ∆ܧ ൌ ହܧ െ
 .ସ is 0.19 meV/f.u. for NiNMn3 and 0.16 meV/f.u. for SnNMn3ܧ	

Large AHC over 100 	Ωିଵcmିଵ is predicted for the Γ4g phase of 
NiNMn3 and SnNMn3, as indicated in Table II. The AHE in the 
Γ4g phase of NiNMn3 has been recently observed experimentally, 
which confirms our results [42]. Contrary to GaNMn3, we find 
that the M-1 magnetic configuration is unstable in the NiNMn3 
and SnNMn3 antiperovskites. 

FIG. 4. Calculated band structure (a) and Berry curvature ߗ௫௬ (b) of 
GaNMn3 in the M-1 phase along high symmetry paths in the Brillouin
zone. The inset of (b) shows the Brillouin zone.  

FIG. 5. (a,b) Calculated AHC ߪ௫௬ as a function of energy for the Γ5g

and Γ4g (a) and M-1 (b) phases of GaNMn3. 
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V.  Discussion 

Our results demonstrate that in the family of antiperovskite 
compounds, as represented by ANMn3, the AHC is strongly 
dependent on the specific magnetic configuration. A significant 
change in the AHC can be produced by transitions between 
different magnetic phases. Such transitions can be driven by an 
external stimulus, provided that the energies of the different non-
collinear magnetic phases are engineered to be nearly degenerate.  

In experiment, the Γ5g phase is found in the ANMn3 
compounds with A = Zn, Ga, and the Γ4g phase is found for  A = 
Ni, Ag, Sn [16]. The M-1 phase can be produced by non-
stoichiometry and pressure [23]. These facts imply the sensitivity 
of the non-collinear magnetic phases to the chemical 
composition and lattice volume. Recently, monocrystalline 
ANMn3 films have been successfully grown on different 
substrates, such as SrTiO3, BaTiO3, and LSAT [43,44]. This 
opens a possibility to engineer antiperovskite compounds with 
nearly degenerate energies of the different magnetic phases by 
proper doping and suitable epitaxial strain produced by the 
substrate. In particular, the dynamic strain generated by a 
piezoelectric substrate, such as PMN-PT, can be used to realize 
the reversible switching between different magnetic phases. 

Furthermore, since the AHC is odd under time reversal 
symmetry, the antiferromagnetic Γ4g phase with a reversed Néel 
vector (corresponding to 180o rotation of all magnetic moments 
in the (111) plane) is expected to have AHC of opposite sign. 
The Néel vector can be switched using a spin transfer torque 
induced by a spin polarized current [26], and its switching can 
be detected by the sign change of AHC. This functionality can 
be engineered by stoichiometry design of the antiperovskite 
compounds to tune the energy barrier between the two Γ4g states 
of the opposite Néel vector (∆ܧ ൌ ହܧ െ	ܧସ ) to a lower 
positive value. These possibilities make the ANMn3 family of 
materials a promising platform for the AHE based applications 
of spintronic devices.   

VI.  Summary 

In this work, we have studied the intrinsic AHC in different non-
collinear magnetic phases of GaNMn3, as a representative of a 
broader materials family of antiperovskite compounds ANMn3 
(A is a main group element).  Based on the symmetry analysis 
and first-principles DFT calculations, we showed that the nearly 
degenerate non-collinear AFM Γ5g and Γ4g phases of GaNMn3 

have zero and finite AHC, respectively. This difference was 
explained by the different magnetic space group symmetry of 
these phases. We also predicted that GaNMn3, in the non-
collinear ferrimagnetic M-1 phase, exhibits large AHC which is 
comparable to the AHC in elemental ferromagnets, such as iron, 
and calculated the AHC of antiperovskites SnNMn3 and NiNMn3 
exhibiting the Γ4g ground state. We argued that by doping and 

strain it is possible to engineer the ANMn3 compounds where the 
energy difference between these magnetic phases could be small, 
so that an external stimulus, such as the dynamic strain or the 
spin transfer torque could produce switchable magnetic phase 
transitions. Our work demonstrates that the antiperovskite family 
of non-collinear magnetic materials is a good platform to realize 
the multiple AHE states in a single compound, which is 
promising for novel spintronic applications.    

Note added. After the submission of our work, we became aware 
of two relevant works on the anomalous Hall effect in ANMn3 
compounds [42, 45]. 
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APPENDIX 

A. Geometry dependence of AHC 

The AHC tensor depends on geometry used in transport 
measurements. TABLE I (Section II) above shows the AHC 
tensor for GaNMn3 (001) growth orientation corresponding to 
the standard Cartesian coordinates with x along [100], y along 
[010], and z along [001] directions. For GaNMn3 (111) sample, 
the AHC can be measured for a charge current parallel to the Ga-
Mn Kagome lattice. Here we show the AHC tensor for a 
GaNMn3 (111) sample, with x pointing along ሾ1ത10ሿ, y along 
ሾ1ത1ത2ሿ and z along [111] directions. The respective AHC tensor 
  ሾଵଵଵሿ can be obtained fromߪ

ሾଵଵଵሿߪ ൌ ܴିଵ	ሾଵሿߪ	ܴ ሺ3ሻ 

where  ߪሾଵሿ  is the AHC tensor for GaNMn3 (001) and R 
represents the respective rotation matrix. The resulting AHC  
tensors for Γ4g and Γ5g phases are shown in TABLE III, where 
௫௬′ߪ ൌ െ68	Ωିଵܿ݉ିଵ.  

 

TABLE III. AHC matrix tensors for Γ5g and Γ4g magnetic phases with 
 .ሾ111ሿ||ݖ̂ ො||ሾ1ത1ത2ሿ andݕ ,ො||ሾ1ത10ሿݔ

Magnetic 
Phase 

Γ5g   Γ4g 

AHC 
tensor 

0 0 0
0 0 0
0 0 0

൩ 
0 ௫௬′ߪ 0

െߪ′௫௬ 0 0
0 0 0
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B. M and TM symmetry operations on the Berry curvature 

TABLE IV. Symmetry transformations of wave vector k and Berry curvature ߗ. 

 Transformation of k Transformation of  ࢹ 

,ሾଵଵሿ൫݇௬ܯ ሾሿࡹ ݇௫, ݇௭൯ ൌ ൫݇௫, ݇௬, ݇௭൯ 

,ଵଵ൧Ω௫௬൫݇௬ൣܯ ݇௫, ݇௭൯ ൌ െΩ௫௬൫݇௫, ݇௬, ݇௭൯ 

,ሾଵଵሿΩ௭௫൫݇௬ܯ ݇௫, ݇௭൯ ൌ െΩ௬௭൫݇௫, ݇௬, ݇௭൯ 

,ሾଵଵሿΩ௬௭൫݇௬ܯ ݇௫, ݇௭൯ ൌ െΩ௭௫൫݇௫, ݇௬, ݇௭൯ 

,ሾଵଵሿ൫݇௫ܯ ሾሿࡹ ݇௭, ݇௬൯ ൌ ൫݇௫, ݇௬, ݇௭൯ 

,ଵଵ൧Ω௫௬൫݇௫ൣܯ ݇௭, ݇௬൯ ൌ െΩ௭௫൫݇௫, ݇௬, ݇௭൯ 

,ሾଵଵሿΩ௬௭൫݇௫ܯ ݇௭, ݇௬൯ ൌ െΩ௬௭൫݇௫, ݇௬, ݇௭൯ 

,ሾଵଵሿΩ௭௫൫݇௫ܯ ݇௭, ݇௬൯ ൌ െΩ௫௬൫݇௫, ݇௬, ݇௭൯ 

,ሾଵଵሿ൫݇௭ܯ ሾሿࡹ ݇௬, ݇௫൯ ൌ ൫݇௫, ݇௬, ݇௭൯ 

,ሾଵଵሿΩ௫௬൫݇௭ܯ ݇௬, ݇௫൯ ൌ െΩ௬௭൫݇௫, ݇௬, ݇௭൯ 

,ሾଵଵሿΩ௬௭൫݇௭ܯ ݇௬, ݇௫൯ ൌ െΩ௫௬൫݇௫, ݇௬, ݇௭൯ 

,ሾଵଵሿΩ௭௫൫݇௭ܯ ݇௬, ݇௫൯ ൌ െΩ௭௫൫݇௫, ݇௬, ݇௭൯ 

 ഥࡹࢀ
,ଵഥଵ൫݇௬ܯܶ ݇௫, ݇௭൯ ൌ ሺെ݇௫,െ݇௬,െ݇௭ሻ 

 

,ଵଵ൧Ω௫௬൫݇௬ൣܯܶ ݇௫, ݇௭൯ ൌ Ω௫௬൫െ݇௫, െ݇௬, െ݇௭൯ 

,ଵଵ൧Ω௬௭൫݇௬ൣܯܶ ݇௫, ݇௭൯ ൌ Ω௭௫൫െ݇௫,െ݇௬,െ݇௭൯ 

,ଵଵ൧Ω௭௫൫݇௬ൣܯܶ ݇௫, ݇௭൯ ൌ Ω௬௭ሺെ݇௫, െ݇௬, െ݇௭ሻ 

,ଵଵ൧൫݇௫ൣܯܶ ൧ൣࡹࢀ ݇௭, ݇௬൯ ൌ ሺെ݇௫,െ݇௬,െ݇௭ሻ 

,ଵଵ൧Ω௫௬൫݇௫ൣܯܶ ݇௭, ݇௬൯ ൌ Ω௭௫ሺെ݇௫, െ݇௬, െ݇௭ሻ 

,ଵଵ൧Ω௬௭൫݇௫ൣܯܶ ݇௭, ݇௬൯ ൌ Ω௬௭ሺെ݇௫,െ݇௬,െ݇௭ሻ 

,ଵଵ൧Ω௭௫൫݇௫ൣܯܶ ݇௭, ݇௬൯ ൌ Ω௫௬ሺെ݇௫, െ݇௬, െ݇௭ሻ 

,ଵଵ൧൫݇௭ൣܯܶ ൧ൣࡹࢀ ݇௬, ݇௫൯ ൌ ሺെ݇௫,െ݇௬,െ݇௭ሻ 

,ଵଵ൧Ω௫௬൫݇௭ൣܯܶ ݇௬, ݇௫൯ ൌ Ω௬௭ሺെ݇௫,െ݇௬,െ݇௭ሻ 

,ଵଵ൧Ω௬௭൫݇௭ൣܯܶ ݇௬, ݇௫൯ ൌ Ω௫௬ሺെ݇௫,െ݇௬,െ݇௭ሻ 

,ଵଵ൧Ω௭௫൫݇௭ൣܯܶ ݇௬, ݇௫൯ ൌ Ω௭௫ሺെ݇௫, െ݇௬, െ݇௭ሻ 
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