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ABSTRACT  

Understanding and manipulating properties emerging at a surface or an interface 

require a thorough knowledge of structure-property relationships. We report a study of a 

prototype oxide system, La2/3Sr1/3MnO3 grown on SrTiO3(001), by combining in-situ angle-

resolved x-ray photoelectron spectroscopy, ex-situ x-ray diffraction, and scanning 

transmission electron microscopy/spectroscopy with electric transport measurements. We 

find that La2/3Sr1/3MnO3 films thicker than 20 unit cells (u.c.) exhibit a universal behavior 

with no more than one u.c. intermixing at the interface but at least 3 u.c. of Sr segregation 

near the surface which is (La/Sr)O terminated. The conductivity vs film thickness shows the 

existence of nonmetallic layers with thickness ~ 6.5 ± 0.9 u.c., which is independent of film 

thickness but mainly relates to the deviation of Sr concentration near the surface region. 

Below 20 u.c., the surface of the films appears mixed (La/Sr)O with MnO2 termination. 

Decreasing film thickness to less than 10 u.c. leads to the enhanced deviation of chemical 

composition in the films and eventually drives the film insulating. Our observation offers a 

natural explanation for the thickness-driven metal-nonmetal transition in thin films based on 

the variation of film stoichiometry. 
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I. Introduction 

It is common that a surface or an interface can have fundamentally different physical 

properties from the corresponding bulk. Examples span a wide range of phenomena: metallic 

surface states on simple semiconductors like Si [1] and complex oxide SrTiO3 (STO) [2], 

surface phases of ruthenates [3-5], 2D electron gas at an interface [6], or coexisting 

superconducting/ferromagnetic [7-9] interface states in LaAlO3/SrTiO3. Understanding the 

origin of surface or interface properties necessitates a thorough knowledge of spatially 

resolved chemical composition and structure-property relationships. This is more essential in 

artificially structured multi-component oxide materials. Surface termination, lattice structure, 

and chemical composition, as well as imperfections like defects, are crucially important for 

emergent properties. Understanding the  properties at an interface is challenging, as can be 

seen in the ongoing debates around  LaAlO3/SrTiO3,  where many proposed mechanisms for 

the observed interface phenomena are still hotly contested because of interface 

structure/composition issues, such as polarity effect [10], cationic mixing [11, 12], defects 

[13, 14], and thickness-dependent polar distortion [15].  

A long-standing issue is the nature of insulating phenomenon in metallic oxide 

materials in ultrathin films, i.e. “dead” layer behavior.  Many thin films of metallic oxides, 

such as undoped SrVO3 [16], SrRuO3 [17], and LaNiO3 [18,19], as well as many doped La1-

xSrxMnO3 [20,21], exhibit degraded metallicity with decreasing film thickness and eventually 

become insulating below a certain critical thickness. For La1-xSrxMnO3, several mechanisms 

for such as a dimensionality-driven metal-insulator transition (MIT) have been proposed: 

enhanced electron-electron correlations [9,17,22], change of electronic configuration 

[20,23,24], or interface induced effects (competing bond re-hybridization and structural 

mismatch) [25]. However, a clear understanding of what drives the insulating “dead” layer 

behavior is still elusive.   

One outstanding issue associated with the apparent “dead’ layer behavior is the 

variation of chemical composition. In La1-xSrxMnO3 films, Sr segregation at surface and 

interface has been suggested based on the spectroscopy with different tools such as X-ray 

photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM) 

[26-34]. Segregation was first discovered in metal alloys several centuries ago [35]. The grain 

boundary segregation has been extensively studied because the properties of the alloys can be 
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dramatically affected by the segregation [36,37]. Similarly, segregation is also present at the 

surface and interface of films, leading to significant changes in chemical composition 

between the surface/interface as well as the inside of doped oxide films. This has been 

addressed recently by both experimental and theoretical studies [34, 38-44]. Consequently, 

the deviation of chemical composition dramatically alters the physics properties of the films, 

such as electric conductivity [45-47], structural and optical properties [48,49], polarization 

and magnetic ordering [50-52]. Compared with thick films, the deviation from chemical 

stoichiometry of the ultrathin films is much more severe, which has been suggested as origin 

of the dead layer formation of the ultrathin films [48, 53-57]. However, there is almost no in-

situ characterization on the surface segregation, thus raising an issue about the effect of 

surface contamination, etc.  

Here we demonstrate that, in La2/3Sr1/3MnO3 (LSMO) thin films, both Sr segregation 

at the surface and intermixing at the interface occur in the film growth process, resulting in 

persistent nonmetallic layers in the films. Although Sr segregation at surface and interface 

have been previously suggested [26-34], we provide a quantitative study on the layer-by-layer 

chemical composition of LSMO films, which is critical to understand the nature of dead layer 

formation as well as the growth mechanism of these complex oxide films. For LSMO films 

that are relatively thick (≥ 20 u.c.), the surface and interfacial properties are independent of 

film thickness. Decreasing film thickness to less than 10 u.c. further enhances the off-

stoichiometry and eventually drives the films insulating.  

II. Experimental Details 

The LSMO films were grown on atomically flat TiO2 terminated STO (001) substrates 

(non-doped and 0.1 wt% Nb-doped) using ultrahigh vacuum pulsed laser deposition [58]. 

Doped substrates were used to avoid charging issues for in-situ surface characterization such 

as low-energy electron diffraction (LEED) and angle-resolved X-ray photoelectron 

spectroscopy (ARXPS).  Non-doped substrates used for ex-situ electrical resistivity and 

magnetic properties measurements. Different growth conditions, including changing oxidant 

background gas, growth temperature, laser operation condition, and so on, have been 

undertaken [58]. The growth condition for the films studied here has been optimized to obtain 

high quality films with minimized “dead” layer thickness. A KrF excimer laser (λ = 248 nm) 

with a repetition rate of 3 Hz and a laser flounce of ~ 1 J/cm2 was used for the growth. To 
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obtain a stoichiometric film, an oxidant background gas (99% O2 + 1% O3) with a pressure of 

80 mTorr was utilized. During growth, the substrate was maintained at 700 oC. Film growth 

and its thickness were monitored using in-situ reflection high-energy electron diffraction 

(RHEED). The film thickness is obtained by counting the number of oscillations with one 

complete oscillation corresponding to one u.c. thickness. LEED measurements were 

performed in-situ to study the surface structure. X-ray diffraction (XRD) was used to measure 

thin film structure. 

The atomically resolved lattice structure, composition, and valence state, were 

determined by cross-sectional scanning transmission electron microscopy (STEM) and 

spectroscopy. STEM samples were cut into 50 nm thick pieces by a focused ion beam with 

Ga+ ion milling, and then nano-milled with Ar+ ions to reduce surface damage and to further 

thin the samples to about 30 nm. All the samples were studied using a double-aberration-

corrected 200 kV JEOL ARM microscope. Two types of imaging modes were utilized: high-

angle annular dark-field (HAADF) imaging, in which the intensity is proportional to the 

atomic number of heavy elements [59], and annular bright-field (ABF) imaging, which is 

sensitive to light elements such as oxygen. To quantitatively analyze lattice parameters and 

octahedral distortions in LSMO/STO, we measured the positions of atomic columns from the 

HAADF- and intensity reversed ABF- images by fitting with 2D Gaussian peak profiles.  

To perform electron energy loss spectroscopy (EELS) with STEM, the imaging 

conditions were optimized with a probe size of 0.8 Å, a convergence semi-angle of 20 mrad, 

and a collection semi-angle of 88 mrad. EELS spectra mapping was obtained across the 

interface with a step size of 0.12 Å and a dwell time of 0.05 s/pixel. After background 

subtraction with a power-law function and correction by a Fourier deconvolution method for 

removing the multi-scattering effects, EELS intensity profiles were used to determine the 

elemental concentration with a calibration from a standard sample (La2/3Sr1/3MnO3 single 

crystal). 

ARXPS was utilized to determine the chemical composition near the surface. The 

core level spectra of Mn 2p, Sr 3d, and La 4d were in-situ measured by using a 

monochromated Al Kα X-ray source and PHOIBOS 150 energy analyzer, both from SPECS. 

The energy analyzer was calibrated with the core level of single crystalline gold (Au 4f7/2 

peak). The depth profile of chemical components can be extracted from the ARXPS data 
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knowing the relative photoionization cross-sections and mean free paths [60].  

Resistivity as a function of temperature [ρ(T)] was measured ex-situ using a physical 

properties measurement system (PPMS) with a standard four-probe method. The magnetic 

properties of the films were determined with a Quantum Design Superconducting Quantum 

Interference Device (SQUID), and the results are the same as those reported previously [58]. 

Except for RHEED diffraction, T-dependent transport and magnetic properties, all data were 

taken when the samples were at room temperature.  

III. Results and Discussion 

Figure 1(a) illustrates the ideal cubic-like structural model of LSMO films grown on a 

TiO2-terminated STO (001) substrate. The thin films were grown in a layer-by-layer mode, 

which was monitored by RHEED diffraction spot oscillations, as shown in Fig. 1(b) and (c). 

LEED images [see Fig. 1(d)] show no fractional spots, indicating that all films maintain well-

ordered p(1×1) surface structure.  

The film structure was first characterized by thin film XRD showing that all films 

have orthorhombic symmetry. Figure 1(e) presents a coupled (θ - 2θ) XRD spectrum around 

substrate [002] diffraction peak for a 40 u.c. LSMO film. The presence of Fresnel oscillations 

confirms the smoothness of the surface and interface as well as the high quality of the thin 

film on a macroscopic level. The STO substrate has a simple cubic “a0a0a0” structure without 

TiO6 octahedral tilt or rotation. Bulk LSMO has a pseudo cubic (rhombohedral “a-a-a-”) 

structure with MnO6 octahedral rotation and tilt. However, our XRD data with reciprocal 

lattice mappings (RLMs) shows that the film has orthorhombic (“a-a-c0”) structure. Figure 1(f) 

shows one RLM around the substrate cubic [-103] spot. The vertical (Q||) alignment of 

substrate and film reflections indicate that the film is fully strained with respect to the 

substrate. This will strongly suppress the rotational distortion of MnO6 about (001) direction. 

The film has an averaged out-of-plane (OOP) lattice constant (also the u.c. thickness) of c = 

3.848 ± 0.002 Å as schematically shown in Fig. 1(g). This value is slightly smaller than the 

bulk pseudocubic lattice constant (3.876 Å) due to tensile strain originating from the lattice 

mismatch with STO (3.904 Å). It was also found that the film has an OOP tilt distortion 

characterized by the tilt angle (α) [see Fig. 1(g)], which is the rotation of the octahedron 

about the [1-10] direction, will be discussed in detail later. 
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Figure 1(h) displays the T-dependence of resistivity for different film thickness. For 

thick films (> 7 u.c.), ρ(T) exhibits a T-driven MIT coupled with a ferromagnetic to 

paramagnetic transition with increasing temperature, similar to that in the bulk (~369 K) [61]. 

The transition temperature (TC) decreases with decreasing film thickness, from 330 K for 60 

u.c. to 260 K for 7 u.c. However, below 6 u.c., the films exhibit insulating behavior in all 

measured T-range, thus identifying a thickness-dependent MIT at critical thickness ncr = 6 

u.c. 

III A: Thick Films   

Figure 2 displays the STEM/EELS structural and chemical compositional data obtained along 

two different sample orientations [see Fig. 1(a)], [100] on the left and [1-10] on the right, for 

a 40 u.c. film. Figure 2 (a) displays HAADF-STEM images taken along the [100] direction 

with the integrated EELS elemental profiles superimposed, and 2(b) shows the corresponding 

intensity profiles of different atomic sites. The results clearly show the position of the 

interface and the continuity of the perovskite stacking sequence across the interface without 

any dislocation. Figure 2(c & d) display the Mn and Ti, La and Sr distribution as a function of 

distance (in u.c.) from the interface, respectively. The interface between STO and LSMO is 

defined between the TiO2 termination layer and the (La/Sr)O layer of LSMO [See Fig. 1(a)], 

so that its corresponding coordinate is -0.5 u.c. in horizontal axis (the same hereafter). There 

is no more than one u.c. intermixing of Mn/Ti and La/Sr, where the Sr concentration in the 

first (La/Sr)O layer is ~ 60% (x ~ 0.6). In the [1-10] direction, the HAADF image of Fig 2(e) 

and La/Sr profiles of Fig. 2(i) present the identical conclusions of the [100] direction shown 

in Fig. 2 (a) and (d).  

The quantitative analysis of the lattice constants and local displacements using STEM 

are summarized in Table I. The lattice spacing along the in-plane (IP) and OOP directions 

were determined from positions of A-site cations, by averaging 80 u.c. parallel to the 

interface. Figure 2(g) shows the OOP lattice constant as a function of distance from the 

interface obtained from Fig. 2(a) and (e). The blue and red solid lines mark the bulk lattice 

constant of STO (3.905 Å) and LSMO (3.87 Å), respectively. As shown in Fig. 2(g), the 

LSMO OOP c-axis lattice constant matches the bulk value except for the first few layers from 

the interface exhibiting slightly larger values than the bulk while still within the experimental 

error bar. Away from the interface, the lattice constant is slightly smaller than the bulk value 
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(3.87 Å) determined by XRD because of the tensile strain induced by STO.  

 

Table I:  Structural data for 40 u.c LSMO films from STEM. 

 Bulk (LSMO) LSMO/STO 

Tilt Angle α (deg.) 6.80 5.80 ± 0.09 

In-plane (a = b) (Å) 3.87 3.90 ± 0.03 

c-axis (Å) 3.87 3.85 ± 0.02 

Mn-O(2) (Å) 1.94 1.94 ± 0.06 

O(1)-O(2) (Å) 2.74 2.76 ± 0.06 

Octahedron Volume (Å3) 9.67 9.90 ± 0.17 

 

The MnO6 octahedral tilt distortion in LSMO [see Fig. 1(g)] was determined from the 

oxygen positions in the ABF images along the [1-10] direction. The ABF-STEM image [Fig. 

2(f)] shows a zig-zag pattern of oxygen atoms which is visible in the film (see the inset). The 

tilt angle, located at the ith-u.c. from the interface, was calculated by 1tan i
i

i

y
xα − Δ⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

where ixΔ and iyΔ is the distance of neighboring oxygen along the x ([110]) and y ([001]) 

directions, respectively. The evolution of the tilt angle across the interface was obtained by 

averaging alternately over 50 u.c. parallel to the interface. The results are shown in Fig. 2(h). 

The substrate is in cubic structure without tilt of octahedral. A reduced OOT angle, (3.5 ± 

1.3)° is clearly seen in the first u.c. of LSMO as compared to the bulk value of (6.8°) [62]. 

Away from the interface, the tilt angle gradually increases to an averaged value of (5.80 ± 

0.09)° in the film, which is still smaller than the bulk value. Such a reduction of tilt angle can 

be attributed to effects of substrate-induced tensile strain in the film, suppressing the tilt 

distortion of the MnO6 octahedra. The MnO6 IP rotation is difficult to identify due to the 

overlap of O atoms. Since all the films are fully strained by the substrate but still display 

excellent coherent structure across the interface, we do not expect any obvious IP MnO6 

rotation. Based on the STEM and XRD results, the detailed structures of the LSMO film are 

presented in Table I. From structural point of view, the reduced tilt of first few unite cell 

should enhance the metallicity based on the double-exchange mechanism. Therefore, the 

insulating behavior below 6 u.c. cannot be mainly caused by the substrate-induced strain. 
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The composition near the surface was determined by in-situ ARXPS. Figure 3(a) 

presents the ARXPS spectra of Mn 2p, Sr 3d and La 4d peaks as a function of emission angle 

(θ) for a 65 u.c. LSMO film. The finite inelastic mean free path of photoelectrons in ARXPS 

provides chemical composition information at different depths by varying the emission angle 

(θ). The angle dependence of the relative core-level intensity ratios, ISr3d/ILa4d for 20, 40, 

and 65 u.c. (thick films) LSMO films are shown in Fig. 3(b). The ratio ISr3d/ILa4d for these 

three different thicknesses have identical angular dependence, indicating universal variation 

of Sr concentration near the surface of thick films. These measurements cannot be interpreted 

for the films with thickness < 15 u.c. because of the considerable Sr contributions from the 

STO substrate.  

A qualitative inspection of Fig. 3(a) yields several important observations.  First, the 

intensity of the Mn 2p compared to either the Sr 3d or La 4d decreases dramatically with 

increasing emission angle.  This indicates that the surface is (La/Sr)O terminated which will 

be discussed later.  Secondly, the intensity of the Sr 3d compared to the La 4d increases as the 

emission angle increase, indicating a Sr rich surface found with the fitting procedure 

described presently.  

To obtain the Sr vs. La concentration, the data is fitted to the model function for the 

intensity ratio RAB(θ) between two elements (atom A and B) [31], given by: 

exp
cos

( )    ------  (1)
exp

cos

A
A r A i

i AA
AB

BB
B r B j

j B

idT f
IR
I jdT f

σ
λ θ

θ
σ

λ θ

⎛ ⎞−⋅ ⋅ ⋅ ⎜ ⎟
⎝ ⎠= =
⎛ ⎞−⋅ ⋅ ⋅ ⎜ ⎟
⎝ ⎠

∑

∑
, 

where σ is the photoionization cross section of each element obtained the library database 

from Spec software [63], Tr is  the transmission coefficient of the analyzer, varying as the 

kinetic energy of the emitted electrons [64], d the interlayer spacing, λ the inelastic mean 

free path of the photoelectrons calculated based on the Tanuma, Powell and Penn algorithm 

(TPP2M method) [65], θ the emission angle with respect to the surface normal, and fi the 

atomic fraction of element (A or B, which are Sr and La, respectively) at the ith-layer, 

which is assumed to have an exponential segregation profile [26]: 

( ) /    ------  (2)s sf b exp id lδ= + − , 
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where b is the bulk fraction of an element (1/3 for Sr and 2/3 for La in our case), and δs and ls 

are two parameters determined by fitting, which present the deviation of concentration from 

the bulk value and depth of segregation, respectively. Cation segregation of transition-metal 

oxides impacts the reactions that are often critical to the overall device performance and 

applications [66-74]. Sr segregation is commonly observed in LSMO, which cannot be 

avoided by changing growth condition or any post anneal treatment. For LSMO films, the 

insulating surface is a polar surface with (La3+/Sr2+)O2- layer termination. During the initial 

growth, and when the film is still not metallic, increasing Sr concentration at the surface helps 

to neutralize the polar surface by reducing the surface energy, although other factors such as 

surface reconstruction need to be considered. In many oxide surfaces, reducing surface polarity 

and/or interface polar discontinuity is the primary driving force for the change of 

surface/interface composition and lattice structure.  

The Sr concentration profiles are fitted using an exponential function given in Eq. (2) 

for both surface and interface regions by replacing d by n-d for the interface. The fitting 

results are given in Table II.  The Sr profiles near the surface of 20, 40, and 65 u.c. films are 

identical for the all film thicknesses, as shown in the right side of Fig. 3(c). The Sr 

concentration of the top layer reaches ~ 0.6 (increased by ~ 80%) and the deviation from the 

bulk value extends to more than 3 u.c. from the surface. The results are inconsistent with the 

previous rock-salt structured model with the very top SrO layer [34]. With the rock-

salt structured model, the fitting result of the intensity ratio between Sr and La cores would be 

1.66 at the photoelectron emission angle θ  = 81°, which is about twice value of measured 

Isr3d/ILa4d shown in the Fig. 3(b). 

Table II. Fitting results for Sr profiles near the surface and interface of LSMO films 

 Thickness n (u.c.) l (u.c.) δ 
Surface (ARXPS results) 20, 40 & 65 

 
1.02 ± 0.16 0.24 ± 0.01 

Interface (STEM results) 

40 
 

0.26 ± 0.06 
 

0.22 ± 0.01 

4 & 8 
 

0.95 ± 0.18 0.31 ± 0.02 

 

To determine the interface chemical composition, the layer-by-layer composition 

profile of films were also determined by analyzing the STEM EELS spectra [see Fig. 2(a)]. 

The La M4,5, Sr L2,3, Mn L2,3 and Ti L2,3 edges of the EELS spectra were integrated for each 
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column and then added across 6 u.c. line profiles parallel to the interface to provide layer-by-layer 

elemental profiles. To improve the statistics, we have taken STEM/EELS data from three 

different scanning areas and then averaged. To quantify the amount of Sr segregation, a 

calibration was achieved by referring the EELS intensity profiles of Sr acquired from the 

middle range (10 - 30 u.c.) of 40 u.c. film as the defined 33% Sr concentration in LSMO. This 

is justified by the fact that the 40 u.c. LSMO film shows almost the same transport and 

magnetic properties as the bulk LSMO with nominal Sr doping x = 1/3. An additional 

calibration was performed by measuring the La/Sr intensity ratio in bulk LSMO.   

By combining STEM/EELS with ARXPS results, the layer-by-layer Sr concentrations 

near the interface and surface for LSMO thick films were obtained and are shown in Fig. 

3(c). The only detailed STEM measurement was performed on a 40 u.c. sample, but we have 

no reason to expect different profiles for other thicknesses. Therefore, we conclude that for 

all LSMO films thicker than 20 u.c., there is Sr segregation at the surface and little if any 

intermixing at the interface [75]. 

The STEM images and EELS profiles near the surface of the LSMO films were also 

measured and confirmed the results from our ARXPS measurements. In general, STEM 

cannot be used to determine the Sr segregation to the free surface, since damage to the 

surface could occur in ex-situ STEM sample preparation. To avoid such uncertainty, we have 

characterized a 40 u.c. LSMO film capped with amorphous BaTiO3 by performing STEM 

imaging and EELS spectroscopy mapping. We found Sr surface segregation similar to what 

was concluded from ARXPS measurements. In addition, we observed that the thick film 

surface is terminated with a (La/Sr)O layer. 

The inhomogeneous Sr concentration in thick LSMO films suggests that there may be 

a systematic variation pattern in the transport properties with film thickness. Figure 4 (a) 

presents the thickness dependence of conductivity σ measured at T = 4 K for all films above 

the critical thickness (ncr = 6 u.c.).  For a uniform metallic film, if each layer of the film had 

the same metallic behavior, one would expect to have the same conductivity value at a fixed 

temperature regardless film thickness. However, this is not the case here. As shown in Fig. 

4(a), the measured conductivity decreases nonlinearly with decreasing film thickness (n). 

Interestingly, the product of conductivity and thickness, σ⋅n, linearly depends on thickness n. 

As shown in Fig. 4(a), σ⋅n vs. n for all the data shown in Fig. 5(a) can be fitted by a linear 



 

11 
 

function σ⋅n = σb⋅(n-n0) with the ‘dead’ layer thickness n0 = 6.5 ± 0.9 u.c. and the 

conductivity σb = 7344.6 ± 176.5 Ω-1⋅cm-1 of inside metallic part of films. Interestingly, the 

value of σb and n0 are similar to the bulk value of conductivity ~ 104 Ω-1⋅cm-1 [61] and the 

critical thickness (ncr) of the film [58], respectively. If the films were uniform, the linear 

function fitting would give n0 = 0. This implies that, if we exclude a certain thickness (n0) of 

nonmetallic layers regardless of film thickness, the film exhibits a thickness-independent 

bulk-like conductivity (σb) or becomes uniform. All the films show a Sr-rich surface and 

interface, thus suggesting that these nonmetallic layers should exist near the surface and 

interface. During the transport measurement, when these layers are much less conducting 

than the inside part of the film, the current will go through the inside part of films and “ignore” 

the existence of these nonmetallic layers, resulting in the offset of the linear fitting shown in 

Fig. 4(a).  

Figure 4(b) depicts a simple picture based on the conductivity measurements and 

layer-by-layer composition characterization, with the yellow shaded off-stoichiometry 

regions at the interface and surface exhibiting nonmetallic behavior and the blue region in the 

center part being the bulk-like metallic LSMO. The similarity between the value of n0 and ncr 

indicates that as the nonmetal layers at the surface overlap the nonmetallic layer(s) at 

interface (as n → n0 or ncr) the film becomes completely insulating, Thus, the off-

stoichiometry is the primary cause of dead layer. On the other hand, this is an oversimplified 

model since the conductivity can vary layer by layer away from the interface and surface. 

Furthermore, as depicted in Fig. 4(b), the nonmetallic region near the interface and surface is 

bigger than the off-stoichiometry region measured from these thick films, implying that such 

deviation of chemical composition and/or structure in the ultrathin film case may be more 

severe than what we observed in the thick films. The contribution to the formation of the 

dead layer also can be oxygen vacancy and strain. On the other hand, oxygen vacancy as a 

primary contribution can be ruled out by our experiment. Increasing oxygen pressure for the 

film growth or any post annealing in oxygen does not further reduce the dead layer thickness. 

Strain effect should not be the main contribution for the dead layer either since the reduction 

of tilt angle observed near the interface [Fig. 2(h)] would enhance the film metallicity based 

on the double-exchange mechanism.  

III.B, Thin Films 
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As we have discussed above and depicted in Fig. 4, the existence of nonmetallic and 

off-stoichiometric layers near the surface and interface persists for all thick films and is 

responsible for the dead layer behavior. This implies that the chemical profiles near the 

surface and interface would remain the same with further reduction of film thickness.  

Interestingly, this is not the case based on our study of ultrathin films. When film thickness is 

less than ~10 u.c., the effective role of surface and interface becomes more pronounced which 

leads to the enhanced deviation of chemical composition (increased Sr) in the films. The 

HAADF-STEM images and EELS profiles in Fig.5 (a) and (b) for uncapped 8 and 4 u.c. 

LSMO films show a roughly 2 u.c. intermixing region at the interface, compared to the only 

one u.c. intermixing interface region in thick films. The averaged intensity profiles of Fig. 5 

(c) and (d) further indicate the difference in thin films from thick films (presented in Fig. 

2(b)). To quantitatively exhibit the change in thin films, we have used EELS to determine the 

layer-by-layer concentrations of Mn, Ti, La and Sr near the interface and surface. The results 

are displayed in Fig. 5 (e), (g), (f), and (h) for 8 and 4 u.c. films, respectively. The Mn and Ti 

profile [see Fig. 5(e) and (f)] at the interface confirms an over 2.u.c intermixing region at the 

interface. The La/Sr profiles [see Fig. 5(h) and (h)] also show a much broader intermixing 

region for thin films. Although the surface results contain large error bars due to the weaker 

intensity and possible surface damage during TEM sample processing, the profiles clearly 

demonstrate Sr segregation on the thin film surface in Fig. 5 (g) and (h).  

We have also studied the LSMO films in-situ capped with amorphous BTO grown at 

room temperature. Compared with the uncapped thin films, similar behavior can be 

concluded as shown in Fig. 5(i-l). The only difference here is that due to the existence of the 

BTO capping layer, there is a small amount of Ba atoms diffusing to the surface layer of 

LSMO. To summarize, the Sr segregation in both thick and thin films is presented in the Fig. 

5 (m). For thin films, Sr concentration at the first layer (0 u.c.) at the interface is about 0.64, 

which is comparable to the thick film result. However, at the second layer (1 u.c.), Sr 

concentration is higher for the thin films (~ 0.42) than the thick films (~ 0.34).  

III.C, Surface Termination 

The surface termination of LSMO films exhibits a thickness-dependent behavior, 

evolving from mixed MnO2- and (La/Sr)O-layers to eventual (La/Sr)O-layer termination 

with increasing film thickness, as determined by ARXPS. To avoid the effect of the 
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substrate Sr contribution on Sr-core spectra, we used the ratio of the La 4d to the Mn 2p 

core levels to extract the information of the surface termination. The ratios as a function of 

emission-angle for different thickness of films are displayed in Fig. 6(a). For films thicker 

than 20 u.c. the core intensity ratios of La/Mn core have identical angular dependence 

within the error bar. The increase of La/Mn ratio with increasing emission angle indicates 

that the surface is terminated by a (La/Sr)O layer. In contrast, the ratio for thin films (4, 6, 

and 10 u.c.) exhibit similarly small angle-dependence compared to that for the thick films 

(see Fig. 6a). Moreover, the ratio has a thickness-dependent offset, increasing with 

increasing thickness. Three scenarios of the surface could explain these data for thin films; 

either a mixed surface termination between MnO2- and (La/Sr)O-layer without any Sr 

surface segregation, a pure (La/Sr)O layer termination with changing Sr surface segregation 

with thickness, or a mixed surface termination with thickness-dependent Sr surface 

segregation might explain this behavior. However, the first two scenarios are unlikely. 

STEM/EELS observations of surface segregation (see Fig. 5) rules out the first scenario.  In 

addition, as there is an extra (La/Sr)O layer at the initial deposition on the TiO2-terminated 

substrate, one would expect a decrease in the ratio of La/Mn at normal emission (θ) with the 

initial increase of film thickness, which contradicts the data shown in Fig. 6(b). The second 

scenario is also unlikely when comparing the simulation with experimental results at θ = 0° 

and 81° shown in Fig. 6(b). If we assume that the (La/Sr)O layer is the termination layer 

and use the Sr surface segregation profile determined from thick films (see Table II) as an 

approximation, the La/Mn core intensity ratio is calculated and shown as the dashed curves 

in Fig. 6(b). There is a clear deviation of calculated ratio from the experimental data in the 

thin film region, especially for the data taken at the emission of 81°. Therefore, the surface 

has both mixed termination and thickness-dependent Sr segregation for thin films.  

To further quantify the evolution of surface termination with film thickness, we have 

analyzed the data for the thickness dependence of the La/Mn ratio at 0° and 81° shown in Fig 

6(b) by fitting to the model function for the intensity ratio. Assuming the surface is composed 

with a fraction (y) of (La/Sr)O layer and (1-y) of MnO2 layer for a film with given thickness, 

the intensity ratio RAB(θ) given in Eq. (1) can be modified for the La/Mn ratio and given in 

Eq. (3).  



 

14 
 

1

0 0

/
1

0 0

( 0.5)exp (1 ) exp
cos cos

   ------  (3)
( 0.5)exp (1 ) exp

cos cos

n nLa La
i mi m

La LaLa r La
La Mn

n nMn rMn
j l

Mn Mn

id m dy f y f
TR
T j d ldy y

λ θ λ θσ
σ

λ θ λ θ

−

= =

−

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞− − ++ −⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠⎣ ⎦=
⎡ ⎤⎛ ⎞ ⎛ ⎞− + −+ −⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑
 

where fi (fm) is the atomic fraction of element at the ith (mth) layer. By using this model, the 

results are presented in Fig. 6(b). The (La/Sr)O termination fraction (y) as a function of film 

thickness is obtained and displayed in the inset of Fig. 6(b).  The mixed surface with 

dominant MnO2 layer termination occurs for the 4 u.c. film but the fraction of (La/Sr)O-layer 

termination increases with the film thickness. Eventually, the surface is completely 

terminated with a (La/Sr)O-layer. Although Sr segregation helps to reduce the surface energy, 

qualitatively, breaking MnO6 to have a MnO2 termination could cost more energy than 

(La/Sr)O-termination [76]. The evolution of surface termination observed here indicates that 

(La/Sr)O is the energetically favorable termination layer for the surface of LSMO films. The 

mixed surface termination in the thin film can be understood as a substrate effect during the 

initial growth because the substrate is terminated with a TiO2-layer.   

The STEM/EELS results further confirm such thickness dependent evolution of the 

surface termination. To examine the pristine surface of LSMO films, we grew both 40 u.c. 

and 6 u.c. LSMO films under the same conditions but in-situ capped them with a layer of 

amorphous BTO deposited at room temperature and performed STEM/EELS measurements. 

As shown in Fig. 6(c) and (d), a clear difference is demonstrated between these two surfaces.  

For the 40 u.c. LSMO film, the surface is uniformly terminated by (La/Sr)O-layer seen from 

both HAADF images and elemental-specific EELS spectroscopic mapping.  However, for the 

6 u.c. LSMO film, mixed termination is seen in the image. Especially, intermixing between 

Mn and Ti or La and Ba appears in the EELS mapping, confirming the termination difference 

between the thin and thick films. 

IV. Summary 

We demonstrate that metallic ferromagnetic LSMO films grown on SrTiO3 substrates 

exhibit Sr segregation at the surface and single layer or less intermixing at the interface. This 

property is universal for LSMO films of 20 u.c. thickness or more. Below 20 u.c., the surface 
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of the films appears mixed (La/Sr)O with MnO2 termination, imitating the substrate TiO2 

termination at the interface. Detailed measurements of the transport properties as a function 

of film thickness indicate that there are inherent nonmetallic layers independent of film 

thickness, driving the film insulating at a critical thickness. 
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Figure 1 (Color online) (a) Schematic lattice structure of LSMO/STO (001); RHEED (b) image and 
(c) intensity oscillation for the 40 u.c. LSMO film. (d) Typical LEED image from the surface of 
LSMO films. (e) Coupled symmetric (θ - 2θ) XRD around substrate [002] spot. (f) Reciprocal lattice 
mapping around STO [-103], where  is measured in a direction perpendicular to the interface. (g) 
Schematic picture of the octahedron tilt in LSMO. (h) T- dependence of resistivity of LSMO films 
with different thickness.   
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Figure 2 (Color online) STEM data for 40 u.c. LSMO grown on STO (001) for two different sample 
alignments, [100] to the left and [1-10] to the right. (a) HAADF-STEM image overlapped with the 
integrated EELS elemental profiles for La, Sr, Ti and Mn across the LSMO/STO interface. (b) The 
intensity in the HAADF image across the interface. (c) Mn and Ti, and (d) La/Sr concentration profiles as a 
function of distance (unit cells) from the interface, respectively. The interface is marked by the dashed line. 
(e) HAADF- and (f) ABF-STEM image in [1-10] orientation, with inset showing distortion of the 
octahedral in the LSMO. (g) The measured c-axis lattice constant, (h) octahedral tilt angle and (i) La/Sr 
concentration profiles as function of distance from the interface, respectively, with the solid lines being the 
bulk value and the dashed line the XRD determined value.  
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Figure 3 (Color online) (a) ARXPS spectra of a 65 u.c. LSMO film with an inset showing the schematic of 
ARXPS experimental setup. (b) The experimental (20, 40 and 65 u.c.) and fitted (65 u.c.) intensity ratios of 
Sr3d/La4d as a function of emission angle for LSMO films. (c) Layer-by-layer dependence of Sr 
concentration of LSMO thick films at the interface (left) determined by STEM/EELS and near the surface 
(right) determined by ARXPS. 
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Figure 4 (Color online) (a) Thickness dependence of measured conductivity σ and σ·n for LSMO films 
for the thickness n > ncr = 6 u.c. at 6 K. The solid data points are obtained from the films with thickness 
n ≥ 7 u.c., and dashed line is a guide to the eye. The solid red line is the linear fitting to data by 
assuming n0 as the nonmetallic layers existing at the surface and interface, (b) Schematic drawing of 
nonmetallic layers (yellow) and the conducting layers (blue) superimposed on the data from Fig. 2 with 
the inset as a model structure.  
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Figure 5 (Color online) HAADDF-STEM images and EELS profiles of (a) 8 u.c and (b) 4.u.c. LSMO 
films along [100] direction, respectively.  (c), (d) The corresponding image intensity profile across the 
STO/LSMO interface. (e) Mn, (f) Ti, (g) La and (h) Sr concentration profiles determined from EELS 
data.  (i) HAADDF-STEM image of 6 u.c. LSMO film capped with BTO and corresponding (j) image 
intensity profile, (k) Ti and Mn, and (l) Ba, La, and Sr concentration profiles. (m) EELS determined Sr 
concentration for 4, 8 and 40 u.c. LSMO films.  
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Figure 6 (Color online) (a) Intensity ratio of La4d to Mn2p cores as a function of the emission angle θ for 
different thickness of LSMO films. (b) Intensity ratio of La4d to Mn2p core as a function of film thickness 
for θ = 0o and 81o compared to the fitting results with (solid curve) and without (short dashed curve) mixed 
termination. The inset presents the determined fraction of surface La/Sr-O termination for different 
thickness of LSMO films. The shaded area denotes the thickness region of the films with mixed MnO2 and 
(La/Sr)O termination. HAADF-STEM image in the proximity of the surface of (c) 40 u.c and (d) 6.u.c. 
LSMO film overlapped with elemental-specific EELS spectroscopic mapping. The films were capped with 
amorphous BaTiO3 deposited at room temperature to protect the film surface which was marked by yellow 
dashed lines.  


