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Abstract

We present the electron-phonon averaged via Gaussian process regression (EPA-GPR) method,

in which the electron-phonon coupling matrix is represented as a function of two energies and is in

turn modeled as a Gaussian process. The EPA-GPR method can be used as an efficient method to

estimate thermoelectric properties of materials for fast-screening applications, comparable to the

original electron-phonon averaged (EPA) method and the electron-phonon averaged via moving-

least-squares (EPA-MLS) method. The EPA-GPR method does not require specification of any

open parameter, unlike the other EPA-related methods, since all the hyperparameters in the model

can be unambiguously estimated within the type II maximum likelihood (ML-II) approximation.

Thus, the EPA-GPR method is a parameter-free estimation method. Additionally, the concept of

Gaussian processes in the EPA-GPR method allows us to quantify the uncertainty in estimated

properties of thermoelectric materials. One can randomly realize the electron-phonon coupling

coefficients from the identified Gaussian process, and those realized samples can be further ana-

lyzed in the solution process of the semiclassical Boltzmann transport equation for charge carriers.

The results of the semiclassical Boltzmann transport equation provide the statistical properties of

the thermoelectric properties of interest. The means, standard deviations, histograms, and confi-

dence intervals of the Seebeck coefficient, the electrical conductivity, and the power factor can be

constructed and analyzed. The proposed EPA-GPR method is applied to a p-type half-Heusler

compound, i.e., HfCoSb, as a case example, the results of which clearly present the advantages of

the method.
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I. INTRODUCTION13

The performance of thermoelectric (TE) energy conversion, where thermal energy is di-14

rectly converted into electrical energy or vice versa by using thermoelectric materials, de-15

pends on the thermoelectric figure of merit, i.e., ZT of the material1. ZT is defined as a16

combination of thermal and electrical properties of the material, as follows:17

ZT =
S2σT

k
, (1)

where S is the Seebeck coefficient, σ is the electrical conductivity, k is the thermal con-18

ductivity of the material, and T is the operating temperature. Researchers in the compu-19

tational materials science community interested in thermoelectric energy conversion have20

exerted tremendous efforts to develop methods that can be used for estimating these prop-21

erties from the first principles to discover better thermoelectric materials. For example,22

many computational studies estimating k and other related thermal properties have been23

reported2–4.24

On the other hand, the electrical properties of inorganic materials, including S and σ,25

can be obtained by solving the semiclassical Boltzmann transport equation within the re-26

laxation time approximation5. The simplest approach that can be used for estimation of27

these electronic transport properties is the constant relaxation time (CRT) approximation,28

in which one single value for relaxation time τ is arbitrarily assumed6. However, such an ap-29

proach naturally introduces an arbitrary constant, i.e., relaxation time, and does not possess30

any predictive capacity, rendering the approach unsatisfactory for screening thermoelectric31

materials from the first principles. It is, therefore, necessary to develop a more predictive32

method for dealing with the relaxation time.33

Matthiessen’s rule states that the total scattering rate τ−1 of electrons is the sum of the34

rates associated with intrinsic (electron-electron, electron-phonon) and extrinsic (impurities,35

grain boundaries, alloy disorder) scattering mechanisms. To screen potentially promising36

candidates for thermoelectric applications, one must first identify the intrinsic properties37

of the material, since the extrinsic properties are tuned during the synthesis process. In38

automotive TE power generation, the relevant temperature is around 400◦C at the hot side39

of the device, at which electron-phonon (el-ph) interaction becomes the dominant scattering40

mechanism7,8. The first-principles estimation of the el-ph interaction has been pursued41
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by several different approaches with various levels of computational complication. The42

deformation potential (DP) approximation is one of the simplest approaches9, but such43

simplification often cannot be justified for complex TE materials. The other extreme is44

the electron-phonon Wannier (EPW) method10, which fully describes the el-ph scattering.45

However, the EPW method is not appropriate for fast-screening applications due to its high46

computational cost.47

More recently, a new approach, i.e., the electron-phonon averaged (EPA) method, which48

combines simplicity and speed with a fully first-principles treatment of the el-ph interaction,49

has been introduced11. By turning the complex momentum-space integration into an inte-50

gration over energies and simultaneously replacing several terms with their averages within51

bins over an energy range, the EPA method allows for automated rapid calculations for op-52

timization of electronic transport quantities, while being more predictive than the CRT and53

DP approximations. The method has been successfully used for screening potential TE ma-54

terials from a group of half-Heusler (HH) compounds11. Later, it was proposed to modify the55

standard EPA method through combination with a moving-least-squares (MLS) averaging56

strategy12. It was demonstrated that the electron-phonon averaged via moving-least-squares57

(EPA-MLS) method could make a similar prediction of thermoelectric properties of materials58

with a much coarser momentum grid than was required for the standard EPA method12.59

However, several limitations remain in the EPA and EPA-MLS methods. First, these60

methods require specification of an open parameter, i.e., either the bin size or the length61

scale of the smoothing kernel. Second, although the sample variance during the averaging62

process can roughly provide the amount of uncertainty in the estimated electron-phonon63

coupling effects, rigorous analysis of uncertainty and sensitivity can be difficult within the64

EPA and EPA-MLS methods. The first problem is of minor importance, especially because65

the result of the EPA-MLS method seems rather insensitive to particular choices of the open66

parameter12. The lack of a rigorous strategy for uncertainty quantification in the numerical67

procedure is a more serious issue that requires immediate attention. One should not place68

blind confidence in his or her prediction without describing the underlying uncertainty. The69

same issue is essentially shared by most of the first-principles methods used in the study of70

thermoelectric properties. None of the methods we have mentioned so far, i.e., the CRT,71

DP, and EPW methods, currently has a rigorous quantification strategy of uncertainty in72

its numerical procedures.73
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In this paper, we investigate the possibility of using a mathematically rigorous alternative74

method. Here, the electron-phonon coupling matrix is modeled as a Gaussian process, which75

is widely used in the context of machine learning13. During regression, the characteristic76

length-scale of the covariance function of the Gaussian process, which serves a similar pur-77

pose to the smoothing scale in the EPA-MLS method, can be estimated within the type II78

maximum likelihood (ML-II) approximation without any ambiguity. At the same time, all79

the statistical tools that can be used for Gaussian processes are readily available for further80

analysis of uncertainty and sensitivity of the results. The resulting formulation, i.e., the81

electron-phonon averaged via Gaussian process regression (EPA-GPR) method, may resolve82

the above issues.83

The paper is organized as follows. We first describe the basic theory of the EPA-GPR84

method in Section II. We continue to test the method on a p-type HH compound in Sec-85

tion III. The values of the thermoelectric properties, i.e., S and σ, estimated by the EPA-86

GPR method are compared to those using other related methods and experiments. The87

uncertainties in the thermoelectric properties are also quantified by the method described88

in Section II. A brief summary follows in Section IV.89

II. THEORY90

A. The EPA and EPA-MLS Methods91

We first briefly review the main features of the EPA and EPA-MLS methods. Details92

may be found in12. The main task of predicting the electronic transport coefficients for93

electrons within the relaxation time approximation is evaluation of the inverse of the electron94

energy relaxation time induced by the electron-phonon (el-ph) interaction, which is given as95

follows14,15:96

τ−1
nk (µ, T ) =

Ω

(2π)2 ~

∑

mν

∫

BZ

dq
∣

∣gSEmnν(k,q)
∣

∣

2

×

{

[

n(ωνq, T ) + f(ǫmk+q, µ, T )
]

δ (ǫnk + ωνq − ǫmk+q)

+
[

n(ωνq, T ) + 1− f(ǫmk+q, µ, T )
]

δ (ǫnk − ωνq − ǫmk+q)

}

, (2)
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where Ω is the volume of the primitive cell, m and n are the electron band indices, ν is the97

phonon mode index, k is the electron wavevector, q is the phonon wavevector, ǫnk is the98

electron energy, ωνq is the phonon energy, gSEmnν(k,q) is the el-ph coupling matrix element,99

n(ω, T ) is the Bose-Einstein distribution function, f(ǫ, µ, T ) is the Fermi-Dirac distribution100

function, δ is the Dirac delta function, µ is the chemical potential of electrons, kB is the101

Boltzmann constant, and ~ is the reduced Planck constant.102

The el-ph coupling matrix elements, i.e., gSEmnν(k,q), can be obtained from the DFPT103

calculations16, which are relatively costly for materials with a large unit cell. The main ele-104

ment of the EPA approximation is to replace the momentum-dependent quantities in Eq. (2)105

with their energy-dependent averages. Accordingly, the el-ph coupling matrix elements are106

averaged over the directions of k and k+ q wavevectors:107

∣

∣gSEmnν(k,q)
∣

∣

2
7→ g2ν(ǫnk, ǫmk+q). (3)

As a result, g2ν becomes a function of two energies, ǫ1 and ǫ2, which represent the energy of the108

incoming electron state and that of the outgoing electron state, respectively. Additionally,109

ωνq is also replaced with its average:110

ωνq 7→ ω̄ν . (4)

With these substitutions, the integration over q and the summation over m in Eq. (2) can111

be evaluated analytically, yielding112

τ−1(ǫ, µ, T ) =
2πΩ

gs ~

∑

ν
{

g2ν(ǫ, ǫ+ ω̄ν)
[

n(ω̄ν , T ) + f(ǫ+ ω̄ν , µ, T )
]

ρ (ǫ+ ω̄ν)

+ g2ν(ǫ, ǫ− ω̄ν)
[

n(ω̄ν , T ) + 1− f(ǫ− ω̄ν , µ, T )
]

ρ (ǫ− ω̄ν)

}

. (5)

Here, ρ(ǫ) is the electron density of states defined as the number of electronic states per unit113

energy and unit volume, and gs = 2 is the spin degeneracy.114

Various methods can be used to achieve the mapping of Eq. (3). In the original EPA115

method11, a bin-based averaging strategy was employed with a predefined bin size δBin. On116
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the other hand, in12, we proposed the use of an MLS averaging strategy17, where g2ν(ǫ1, ǫ2)117

for each pair of ǫ1 and ǫ2 is obtained by minimizing118

∑

mn

∫∫

BZ

dkdq
(

g2ν(ǫ1, ǫ2)−
∣

∣gSEmnν(k,q)
∣

∣

2
)2

× exp

(

−
(ǫnk − ǫ1)

2 + (ǫmk+q − ǫ2)
2

2σ2
Gauss

)

, (6)

in which σGauss represents the smoothing scale of the Gaussian function. Since BZ inte-119

grations are typically performed by sampling over k and q-point grids, the expression for120

g2ν(ǫ1, ǫ2) is given by the weighted sample mean of
∣

∣gSEmnν(k,q)
∣

∣

2
. Setting V1 =

∑

mnkq wmnkq,121

where wmnkq is the weight of each sample, including both the degeneracy of the sample point122

in the Brillouin zone and the Gaussian factor shown in Eq. (6), we get123

g2ν(ǫ1, ǫ2) =
1

V1

∑

mnkq

wmnkq

∣

∣gSEmnν(k,q)
∣

∣

2
. (7)

Since the phonon calculations typically dominate the computational cost during the en-124

tire calculation process during the evaluation of electron-phonon coupling matrix, the use125

of a coarser q-point grid directly leads to an almost proportional reduction of the overall126

computational cost. It was reported in11 that the el-ph calculation, i.e., the phonon calcu-127

lation, took about 100 core-hours on 4×4×4 q-point grids and 4600 core-hours on 8×8×8128

grids for a single HH compound. It was also reported that, for a given chemical potential129

of electrons and temperature, the CRT and EPA calculations took about 0.15 core-hours130

each when using 8×8×8 q-point grids for phonon calculations and 48×48×48 k-point grids131

for the band structure calculations, while a comparable EPW calculation took about 2600132

core-hours when using 4×4×4 and 32×32×32 grids11. On the other hand, it was shown in12
133

that the EPA-MLS method could allow the use of a much coarser grid, i.e., 2×2×2 q-point134

grid, for the phonon calculation with an acceptable result for fast-screening purposes.135

While the use of the EPA-MLS method achieved a reasonable balance between perfor-136

mance and accuracy12, there are still problems. First, the method still requires specification137

of an open parameter, the smoothing scale of the smoothing kernel. Although the computed138

results were not very sensitive to this parameter, it is an annoying nuisance. Second, al-139

though the sample variance can be used for a rough estimate of uncertainty in the estimated140

el-ph coupling effects12, a rigorous analysis of uncertainty and sensitivity is rather difficult141

within the EPA-MLS method.142
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B. Gaussian Process Regression of Electron-Phonon Coupling143

A more rigorous alternative method to achieve the transformation of Eq. (3) is to model144

g2ν(ǫ1, ǫ2) as a Gaussian process13 and to perform regression based on the observed elements of145

the electron-phonon coupling matrix. Then, during Gaussian process regression (GPR), the146

characteristic length-scale of the covariance function of the Gaussian process, which serves147

the same purpose as the smoothing scale in the EPA-MLS method, can be estimated using148

the type II maximum likelihood (ML-II) approximation. At the same time, the analysis of149

uncertainty and sensitivity can become theoretically more straightforward.150

Formally, a Gaussian process is a collection of random variables, any finite number of151

which have a joint Gaussian distribution13. In this paper, g2ν is modeled as a Gaussian152

process. Thus,153

g2ν(x) ∼ GP(m(x), k(x,x′)), (8)

where x represents the two-dimensional vector coordinate (ǫ1, ǫ2), and m(x) and k(x,x′) are154

the mean and covariance functions of g2ν(x), respectively. We consider 0 as the mean, since155

virtually no prior knowledge is available. Many different covariance functions can be used,156

but a simple square exponential kernel is employed here as the covariance function of the157

choice:158

k(x,x′) = σ2
SEK exp

(

−
(ǫ1 − ǫ′1)

2 + (ǫ2 − ǫ′2)
2

2ℓ2SEK

)

. (9)

ℓSEK is the correlation length scale of the Gaussian process, essentially playing the same role159

as that of σGauss in the EPA-MLS method.160

Then, we make noisy observations of g2ν at various training points in two-dimensional161

energy space. The set of training points is denoted as X , and the DFPT calculations of the162

values of
∣

∣gSEmnν(k,q)
∣

∣

2
on these training points are considered to be such observations. That163

is,164

∣

∣gSEmnν(k,q)
∣

∣

2
= g2ν(ǫnk, ǫmk+q) + ǫnoise, (10)

where ǫnoise is additive, independent, identically distributed Gaussian noise with variance165

σ2
noise. The total number of observed

∣

∣gSEmnν(k,q)
∣

∣

2
is NS.166
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The objective of Gaussian process regression is to predict the values of g2ν at NT test167

points x∗,j (1 ≤ j ≤ NT ). The training vector is constructed by combining the noisy168

observations, i.e., y =
[

∣

∣gSEmnν

∣

∣

2

1

∣

∣gSEmnν

∣

∣

2

2

∣

∣gSEmnν

∣

∣

2

3
· · ·

∣

∣gSEmnν

∣

∣

2

NS

]⊤

. We define the test output169

vector as f∗ =
[

g2ν∗,1 g2ν∗,2 g2ν∗,3 · · · g
2
ν∗,NT

]⊤

, where g2ν∗,j is the estimated value of g2ν(x∗,j) plus170

an additive noise:171

g2ν∗,j = g2ν(x∗,j) + ǫnoise. (11)

Here, ǫnoise has the same variance σ2
noise as in Eq. (10). The definition of the test output172

vector in this paper is slightly different from that of typical GPR cases. Typically, the173

test output is specified as the estimated value of the Gaussian process only, excluding any174

additive noise. However, in our case, the Gaussian process, i.e., g2ν , is only an approximate175

representation of the physical quantity of interest, i.e.,
∣

∣gSEmnν(k,q)
∣

∣

2
. Since

∣

∣gSEmnν(k,q)
∣

∣

2
176

is the sum of g2ν and ǫnoise as represented in Eq. (10), it is more appropriate to include177

ǫnoise during realization of the random Gaussian process, which must reproduce not g2ν but178

∣

∣gSEmnν(k,q)
∣

∣

2
.179

According to the prior, the joint distribution of the training vector and the test output180

vector is given as follows:181





y

f∗



 ∼ N



0,





A C

C⊤ B







 , (12)

where A = KX,X + σ2
noiseI, B = KX∗,X∗

+ σ2
noiseI, and C = KX,X∗

. KX,X∗
denotes the182

NS ×NT matrix of the covariances evaluated at all pairs of training and test points, and the183

other entries are defined in a similar way. I represents an identity matrix of an appropriate184

size.185

Applying a standard argument for multivariate Gaussian distributions to this distribution13,186

we construct the conditional distribution, which provides the key predictive equations for187

Gaussian process regression:188

f∗|X,y, X∗ ∼ N (f̄∗, cov(f∗)), (13)

where189
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f̄∗ = E[f∗|X,y, X∗] = C⊤A−1y, (14)

and190

cov(f∗) = B−C⊤A−1C. (15)

The log marginal likelihood is given as follows:191

log p(y|X) = −
1

2
y⊤A−1y −

1

2
log |A| −

NS

2
log 2. (16)

To complete the specification of the model, we need to determine hyperparameters. There192

are three hyperparameters in the model: ℓSEK, σSEK, and σnoise. One of the most widely used193

methods for identification of hyperparameters is the type II maximum likelihood (ML-II)194

approximation, in which the marginal likelihood of the available observations, i.e., Eq. (16),195

under the model is maximized with respect to the hyperparameters13. In this fashion, all196

the hyperparameters in the model, i.e., ℓSEK, σSEK, and σnoise, are estimated.197

The actual GPR procedure is performed using the Gaussian Processes for Machine Learn-198

ing (GPML) Toolbox18. To reduce the computational cost, we use the KISS-GP (Kernel199

Interpolation for Scalable Structured Gaussian Processes) method19, in which evaluation of200

the covariance function is replaced with interpolation from a well-defined grid. The cal-201

culation on the grid can exploit its underlying Kronecker-Toeplitz structure to boost the202

calculation speed, which renders the entire method practically feasible. The current imple-203

mentation of the KISS-GP method requires us to use two separate correlation length scales,204

i.e., one for ǫ1 and the other for ǫ2. To recover one single length scale, the mean of these205

two lengths is calculated as ℓSEK after application of the ML-II approximation, which is the206

method that we use in this study.207

C. Uncertainty Quantification of Thermoelectric Properties208

One of the main advantages of the proposed GPR procedure is that it provides information209

on uncertainty. For example, the variance from Eq. (15) can be used as an indicator of the210

confidence interval for the estimated values of the el-ph coupling matrix elements at the test211

points. However, our main interest is not to quantify the uncertainty in the el-ph coupling212
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matrix elements but to quantify the uncertainty in the thermoelectric properties of the213

material itself, i.e., S and σ. For this purpose, we propose a simple Monte Carlo approach.214

Statistically, f∗ follows a multivariate Gaussian distribution, whose mean and covariance are215

given by Eqs. (14-15). Thus, we can randomly realize f∗ using the multivariate Gaussian216

statistic. Since f∗ represents the estimated values of the el-ph coupling matrix elements,217

the semiclassical Boltzmann transport equation can be solved for each realization of f∗ to218

create a sample of S and σ. By repeating this realization, one can create a large-sized set219

of realized samples, which will be further diagnosed to obtain the statistics of S and σ.220

To reduce the computational cost further, we employ the following approximation:221

g2ν(ǫ1, ǫ2) ≈ g2ν

(

ǫ1 + ǫ2
2

,
ǫ1 + ǫ2

2

)

. (17)

This is a valid approximation, since we only need g2ν(ǫ, ǫ ± ω̄ν) for evaluating Eq. (5). The222

values of ω̄ν are typically smaller than 0.1 eV, while the values of ℓSEK are about 1 eV. Since223

ω̄ν ≪ ℓSEK,224

g2ν(ǫ, ǫ± ω̄ν) ≈ g2ν

(

ǫ±
ω̄ν

2
, ǫ±

ω̄ν

2

)

, (18)

because g2ν will not vary much within the smoothing length scale of the Gaussian process,225

i.e., ℓSEK. The approximation allows us to use test points on the diagonal line (ǫ1 = ǫ2) only,226

which can be later extrapolated onto the two-dimensional energy space, using Eq. (17).227

The overall procedure of uncertainty quantification within the electron-phonon averaged228

via Gaussian process regression (EPA-GPR) method can be summarized as follows.229

1. Generate the training data set, i.e., gSEmnν(k,q) on a coarse q mesh, from the DFPT230

calculations. For this purpose, we use the QUANTUM ESPRESSO package20.231

2. Perform the GPR procedure using the training data set. Fix the hyperparameters, i.e.,232

ℓSEK, σSEK, and σnoise by applying the ML-II approximation. All the operations in the233

GPR procedure are performed using the KISS-GP method in the GPML Toolbox18.234

3. Construct f̄∗ and cov(f∗) for the test points on the diagonal line (ǫ1 = ǫ2) using235

Eqs. (14-15).236

4. Randomly create NR realized samples on the diagonal test points, using mvnrnd, which237

is a MATLAB function for random realization of the multivariate Gaussian statistic21.238
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Extrapolate onto the two-dimensional energy space using Eq. (17). If an unrealistic239

negative value of g2ν does occur, we put zero instead.240

5. For each realized sample, construct the input files for a run of BoltzTraP6. BoltzTraP241

is a standard program for solving the semiclassical Boltzmann equation for inorganic242

semiconductors. The version used in this work is slightly modified from the original243

BoltzTraP program to incorporate an energy-dependent relaxation time.244

6. Run BoltzTraP for NR sample cases using the input files. Each BoltzTraP run is245

independent from the others. A large number of runs can be carried out in a parallel246

fashion within a relatively short time if enough computing power is available.247

7. Statistically analyze the results of the BoltzTraP runs to quantify the uncertainty in248

S and σ.249

III. NUMERICAL RESULTS250

In this section, electronic transport properties for a TE material from the family of HH251

compounds, the p-type HfCoSb22–24, are estimated to demonstrate the procedure explained252

in Section II. The HH compound has a MgAgAs structure type, whose space group is253

F 4̄3m25,26. After structural relaxation, the lattice parameter of the conventional cubic unit254

cell of the HfCoSb compound has a value around 6.0471 Å. The carrier concentration is255

fixed first at the value obtained from a Hall measurement at room temperature: p = 0.06256

per formula unit (1.1× 1021 cm−3) for Hf0.5Zr0.5CoSb0.8Sn0.2
22.257

The electron energy relaxation times and the electronic transport coefficients are calcu-258

lated with the original EPA, EPA-MLS, and EPA-GPR methods. DFT and DFPT calcu-259

lations are performed using the generalized gradient approximation in the PBE form27 for260

exchange-correlation functional, ultrasoft pseudopotentials28,29 for core-valence interaction261

and a plane wave basis set with 80 and 700 Ry kinetic energy cutoffs for wavefunctions and262

charge density. A uniform 8×8×8 Γ-centered k-point grid is used for self-consistent cal-263

culation of charge density, and 48×48×48 grids are used for band structure and transport264

calculations.265

For the EPA method, a uniform 8×8×8 Γ-centered q-point grid is used for sampling266

∣

∣gSEmnν(k,q)
∣

∣

2
by direct el-ph calculations, which was the resolution used in a previous screen-267

12



ing study11. For the EPA-MLS method, the same 8×8×8 Γ-centered q-point grid and a268

uniform 2×2×2 Γ-centered q-point grid are employed. For the EPA-GPR method, only the269

uniform 2×2×2 Γ-centered q-point grid is employed. Averaging in the EPA calculation is270

performed over the bins with δBin = 0.2 eV—the smallest bin size at which all cells in the271

energy grid are filled with k-points. For the EPA-MLS method, σGauss = 0.2 eV. The hyper-272

parameters in the EPA-GPR method are all identified within the ML-II approximation as273

described in Section II. To quantify the uncertainty in the EPA-GPR method, one thousand274

realized samples of g2ν were generated and statistically analyzed.275

First, the identified hyperparamters are presented in Table I. The values of ℓSEK identi-276

fied from the process are slightly less than 1 eV. Hence, the approximation of Eq. (17) can277

be considered valid. σSEK and σnoise exhibit nontrivial sizes, suggesting that the averaging278

process of Eq. (3) involves significant uncertainty. The Seebeck coefficient and the elec-279

trical conductivity, computed from the original EPA, EPA-MLS, and EPA-GPR methods,280

are shown in Figure 1. We also plot the experimental data at similar conditions22–24. As281

mentioned earlier, the Hall measurement in22 reported that the carrier concentration was282

1.1× 1021 cm−3 for Hf0.5Zr0.5CoSb0.8Sn0.2, which corresponds to p = 0.06 per formula unit.283

The doping concentration of the main dopant, i.e., Sn, for the nanostructured sample of284

Hf0.8Zr0.2CoSb0.8Sn0.2 in23,24 was essentially the same to that for Hf0.5Zr0.5CoSb0.8Sn0.2 in
22,285

and hence it is expected that the nanostructured sample would have a similar carrier concen-286

tration, allowing us to compare our numerical results against those experimental data. It is287

clear that the EPA-GPR method shows good agreement to the other types of EPA method.288

In particular, the Seebeck coefficient is affected very little by the choice of a particular type289

of EPA method. On the other hand, the electrical conductivity shows slightly greater sensi-290

tivity to the choice. Also, our predicted values clearly exhibit reasonable correspondence to291

the experimental observations. Although the correspondence is not perfect, our predicted292

values maintain a level of accuracy that can be used in fast-screening applications.293

Statistical properties of three different thermoelectric properties, i.e., the Seebeck coeffi-294

cient (S), the electrical conductivity (σ), and the power factor (PF= S2σ), at two different295

temperatures (300K and 700K) are summarized in Table II. The reference value (aref) ob-296

tained from f̄∗ of Eq. (14), the mean (ā) and standard deviation (Sa) of the realized samples,297

and the ratio between the mean and the standard deviation (Sa/ā) are presented. There ex-298

ists discrepancy between the sample mean and the reference value. The discrepancy may be299
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ν ℓSEK (eV) σSEK (eV2) σnoise (eV2)

1 0.815 1.47× 10−4 2.11× 10−4

2 0.655 1.07× 10−4 1.11× 10−4

3 0.668 3.08× 10−4 3.00× 10−4

4 0.469 2.39× 10−4 2.22× 10−4

5 0.470 2.38× 10−4 2.22× 10−4

6 0.578 3.76× 10−4 4.80× 10−4

7 0.599 2.20× 10−4 2.06× 10−4

8 0.594 2.18× 10−4 2.06× 10−4

9 0.813 1.52× 10−4 2.73× 10−4

TABLE I. The hyperparameters, i.e., ℓSEK, σSEK, and σnoise, for the valence bands of HfCoSb,

identified within the ML-II approximation. ν is the index of the corresponding phonon branch.

attributed to two factors. One obvious reason that can be considered is the limited sample300

size, although this is not the most decisive factor in this case. Rather, the central reason301

for the discrepancy is that the statistical distributions of these thermoelectric properties are302

not normal, which will be discussed in more detail later. As shown in Figure 1, the Seebeck303

coefficients exhibit relatively little dependency on the changes in g2ν values. Similarly, the304

Seebeck coefficients show small standard deviations in Table II, which are only 3-8% of the305

corresponding mean values. On the other hand, the electrical conductivity and the power306

factor exhibit much larger standard deviations, amounting to about 20% of the correspond-307

ing mean values. This is probably a natural behavior, since the electrical conductivity is308

directly proportional to the relaxation time, which is directly affected by the uncertainty in309

g2ν . The power factor is again proportional to the electrical conductivity, and hence experi-310

ences a similar level of uncertainty. Overall, the result clearly indicates that we can place311

more confidence in our predicted values of the Seebeck coefficient than in those of the other312

properties.313

Figure 2 shows the histograms of the thermoelectric properties at two different temper-314

atures (300K and 700K). We additionally present the histograms of the resistivity (1/σ),315

which is the inverse of the electrical conductivity. As previously mentioned, the statistical316

distributions of the Seebeck coefficient, the electrical conductivity, and the power factor are317
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FIG. 1. (Color online.) The Seebeck coefficient S and the electrical conductivity σ for p-type

HfCoSb as a function of temperature T calculated with the EPA method and the EPA-MLS method.

Consult the legend for the condition represented by each curve. Calculations are performed at

the carrier concentration p = 0.06 per formula unit. The open circles and the crosses show the

experimental data for the ingot sample of p-type Hf0.5Zr0.5CoSb0.8Sn0.2
22 and the experimental

data for the nanostructured sample of p-type Hf0.8Zr0.2CoSb0.8Sn0.2
23,24, respectively.

not normal, as clearly seen in Figures 2 (a), (b), and (d). We have also quantitatively tested318

the normality of these distributions by applying the Jarque-Bera test30 to each set of realized319

samples. The Jarque-Bera test checks the null hypothesis that each data set comes from320

a normal distribution with an unknown mean and variance. The p-value of the test is the321

probability of observing a test statistic as extreme as, or more extreme than, the observed322

sample under the null hypothesis. The p-values of our test for the Seebeck coeffcient, the323

electrical conductivity, and the power factor at two different temperatures had values much324

less than 1%, clearly rejecting the null hypothesis for these thermoelectric properties. On the325

other hand, we visually recognize that the resistivity in Figure 2 (c) exhibits distributions326

very close to normal. Indeed, the p-value of the Jarque-Bera test for the resistivity is 28.2%327

at 300K and 15.8% at 700K. The resistivity is the inverse of the electrical conductivity and328
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a S (µV/K) σ (1/(mΩ cm)) PF= S2σ (mW/(m K2))

T 300K 700K 300K 700K 300K 700K

aref 161.7 272.3 2.112 0.4916 5.520 3.646

ā 162.4 272.5 2.115 0.4898 5.537 3.625

Sa 12.95 10.45 0.4289 6.910× 10−2 1.092 0.4612

Sa/ā 7.977× 10−2 3.835× 10−2 0.2028 0.1411 0.1973 0.1272

TABLE II. Statistical properties of the Gaussian process g2ν and its realized samples at two dif-

ferent temperatures (300K and 700K). The statistical properties of three different thermoelectric

properties, i.e., the Seebeck coefficient (S), the electrical conductivity (σ), and the power factor

(PF= S2σ), are provided. For each thermoelectric property (a), the reference value (aref) obtained

from f̄∗ of Eq. (14), the mean (ā) and standard deviation (Sa) of the realized samples, and the ratio

between the mean and the standard deviation (Sa/ā) are presented. All the values except those of

Sa/ā, which are dimensionless, are reported in the unit corresponding to each quantity.

hence can be considered to be roughly proportional to the scattering rate, i.e., τ−1, which is329

in turn proportional to the value of g2ν. Since g2ν follows a multivariate Gaussian statistic in330

our numerical model, it is more natural for the resistivity to follow a normal statistic, which331

is indeed the case in our numerical test.332

One of the most important statistical properties that are relevant to the fast-screening333

procedure of thermoelectric materials is the confidence interval of the estimation. The334

sample statistics can be utilized to provide such information. In Figure 3, the 5%, 50%,335

and 95% percentiles for the thermoelectric properties of interest are provided, along with336

the reference curve directly computed from f̄∗ of Eq. (14). The colored range between the337

5% and 95% percentiles indicates a confidence interval of 90%. As discussed already, the338

confidence intervals of the electrical conductivity and the power factor are relatively large.339

For example, at 300K, the 95% percentile value, i.e., 7.469 mW/(m K2) and the 5% percentile340

value, i.e., 4.113 mW/(m K2), of the power factor deviate by 35% and 25%, respectively,341

from the reference value, i.e, 5.520 mW/(m K2). Clearly, the range is still acceptable for342

fast-screening applications, but one must remain cautious not to place blind faith on the343

values from computational estimations.344

So far, we have considered the uncertainty in the electronic transport properties of the345
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(a) (b)

(c) (d)

FIG. 2. (Color online.) The histograms of thermoelectric properties at two different temperatures

(300K and 700K): (a) the Seebeck coefficient (S); (b) the electrical conductivity (σ); (c) the

resistivity (1/σ); and (d) the power factor (PF). The blue-faced bars and the semi-transparent

bars represent data at 300K and at 700K, respectively.

material at a fixed carrier concentration, i.e., p = 0.06 per formula unit, but the electronic346

transport coefficients of materials depend strongly on the carrier concentration11. One of347

the most important objectives of computational prediction is to suggest an optimal carrier348

concentration for a given composition. The values of g2ν bear certain uncertainty, and hence349

the predicted optimal carrier concentration will also involve uncertainty. In a previous350

study11, it was reported that the values of the optimal carrier concentration maximizing ZT351

were only about 10% different in average from the values of carrier concentration maximizing352

PF. Therefore, the PF values from several realized samples at 700K are plotted versus the353
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(a) (b)

(c) (d)

FIG. 3. (Color online.) The 5%, 50%, and 95% percentile curves of thermoelectric properties

plotted versus T , presented along with the reference curve directly computed from f̄∗ of Eq. (14):

(a) the Seebeck coefficient (S); (b) the electrical conductivity (σ); (c) the resistivity (1/σ); and

(d) the power factor (PF). The thick solid curves represent the 50% percentiles, while the thin

solid curves represent the 5% and 95% percentiles. The dashed curves represent the corresponding

reference curves. The colored range between the 5% and 95% percentiles represents the confidence

interval of 90%.

hole concentration p in Figure 4 (a). The result shows that there exist large variations in the354

maximum values of PF and the optimal values of p associated, among the chosen samples.355

Such uncertainty in the values of the optimal carrier concentration and that in the associated356

PF values should be carefully quantified, and our method can be utilized for serving such357

a purpose. In Figure 4 (b), a scatter plot showing the maximum value of PF (PFmax) and358
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FIG. 4. (Color online.) Variations in the maximum power factor (PFmax) and the optimal value

of hole concentration (poptimal) at 700K: (a) PF versus p for 10 realized samples (solid black) and

the reference (dashed magenta) from f̄∗ of Eq. (14); and (b) a scatter plot showing poptimal and

the associated maximum PF (PFmax) for each realized sample (black dots) and for the reference

(a magenta cross). In both plots, data from too small hole concentrations (p < 0.03) have been

excluded, since the character of the material changes from a p-type to an n-type there.

associated optimal p value (poptimal) of each realized samples. A fairly large variation is359

observed, but there is an underlying trend. The samples are scattered around the reference360

point, where poptimal = 0.136 per formula unit, with an area with high density in the range361

of 0.1 < poptimal < 0.2. The value of PFmax at this new reference point is 4.595 mW/(m K2),362

which is higher than that reported for p = 0.06 (Table II).363

In Figure 5 (a), we present the histograms of the optimal value of hole concentration364

(poptimal) at 300K and 700K. At 300K, the most probable value of poptimal turns out to be365

around 0.06, which was the value employed for our study mentioned above, i.e., Tables I-II366

and Figures 1-3. On the other hand, the most probable value of poptimal at 700K occurs367

in between 0.135 and 0.145, which is larger than 0.06. Increase in temperature activates368

carriers in a wider energy range, and a too low p value may result in a conflict between369

two different charge carriers, i.e., electrons and holes, resulting in a very low value or even370

a sign reversal of the Seebeck coefficient at high temperature. Thus, it is natural to find371

that the most probable poptimal value at 700K is larger than that at 300K. The range of372

the most probable poptimal at 700K, observed from the histogram, includes poptimal of the373
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(a) (b)

FIG. 5. (Color online.) The histograms of the optimal value of hole concentration (poptimal) and

the PF values associated: (a) poptimal at 300K and 700K; and (b) PF at 700K with p = 0.14 per

formula unit. The blue-faced bars and the semi-transparent bars represent data at 300K and at

700K, respectively, if there are histograms for both temperatures.

reference point, which is 0.136, observed in Figure 4 (b). A large number of realized samples374

exhibit maximum values in PF within the range of 0.1 < poptimal < 0.2, which confirms our375

observation made from Figure 4 (b).376

In Figure 5 (b), we additionally present the histogram of the PF values with p = 0.14 per377

formula unit, which is the value lying at the center of the range exhibiting the most probable378

poptimal value (0.135 < p < 0.145), at 700K. This plot shows the distribution of possible PF379

values, which are expected to be achieved if the carrier concentration is optimized at the380

computationally predicted p value during the synthesis process. The expected PF values381

are lying mostly in between 3 mW/(m K2) and 6 mW/(m K2), exhibiting a significant382

variation. Such information on the potential uncertainty in the predicted values can be383

useful for assessing the feasibility of a candidate material.384

IV. CONCLUSIONS385

We presented the EPA-GPR method where the el-ph coupling matrix is represented as a386

function of two energies, which is in turn modeled as a Gaussian process. Unlike the other387

EPA-related methods, the EPA-GPR method is a truly parameter-free estimation method,388
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since all the hyperparameters in the model can be unambiguously determined within the389

ML-II approximation. On top of that, the use of a Gaussian process allows us to quantify390

the uncertainty in the estimated thermoelectric properties.391

To demonstrate the effectiveness of the EPA-GPR method, we applied it to a p-type half-392

Heusler compound, i.e., HfCoSb. Our numerical results clearly exhibit the advantages of the393

method. In particular, we note that the estimated power factor can vary up to about 35%394

at room temperature within a confidence level of 90%, which is acceptable for fast-screening395

applications but still requires a certain level of caution in fast-screening applications. Overall,396

the information on the potential uncertainty in computational prediction can be valuable in397

future decision-making processes of the research and development of new TE materials.398
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