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Abstract

Nickel-based superalloys are widely used in applications requiring high strength, creep and fatigue re-

sistance at elevated temperatures. Such structural properties are controlled by the glide and cross-slip of

screw dislocations in the Ni matrix and Ni3Al precipitates. The strengthening mechanisms are determined

in turn by screw dislocation core structures that are difficult to image with WB-TEM. Core structures of

two primary superalloy deformation modes, 1/2〈110〉 Ni screw and 〈110〉 Ni3Al screw super dislocation,

are predicted using density functional theory with flexible boundary conditions.

Keywords: dislocations; intermetallics; density-functional theory

1



I. INTRODUCTION

Nickel-based superalloys’ high strength, creep and fatigue resistance are derived from their

microstructure which consist of a face-centered cubic (FCC) Ni matrix containing 40% to 80%

volume fraction of L12 Ni3Al precipitates1. The structural properties of both these phases are

strongly influenced by the core structure of the active dislocation deformation modes. The cross-

slip of ordinary 1
2〈110〉 and 〈110〉 super dislocations in Ni and Ni3Al respectively affect work

hardening and high temperature strength. 1
2〈110〉–type dislocations in FCC Ni spontaneously dis-

sociate into Shockley partials bounding an intrinsic stacking fault (ISF) to lower the total energy

(c.f. Fig. 1):
1
2

[11̄0]→
1
6

[21̄1̄] + ISF +
1
6

[12̄1]. (1)

The L12 crystal structure is an ordered FCC derivative lattice in which the minority and majority

species occupy the cube corners and face centers, respectively, doubling the periodicity of the

crystal along the 〈110〉 direction. Ni3Al produces 〈110〉–type superdislocations which dissociate

into two 1
2〈110〉–type superpartials bounding an antiphase boundary (APB); while the superpartials

dissociate into Shockley partials bounding complex stacking faults (CSF):
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+ APB +
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[21̄1̄] + CSF +
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6

[12̄1]
)

(2)

An APB produces chemical disorder at the boundary, while a CSF combines the structural disorder

of an ISF with the chemical disorder of an APB (c.f. Figs. 1 and 2). Cross-slip of these super-

partials leads to an increase in strength with increasing temperature (anomalous yield strength2–4),

which is a key factor in the success of superalloys. The probability of cross-slip is controlled by

the distance between the Shockley partials5. Accurate determination of the equilibrium core struc-

tures of Ni and Ni3Al screw dislocations is crucial to modeling anomalous yield stress and creep

mechanisms in Ni-based superalloys.

Given the importance of dislocations in superalloys, both experimental and modeling efforts

have provided qualitative and quantitative information about dislocation geometry. Experimental

estimates for dislocation core structures in Ni and Ni3Al have all been based on measurements of

the splitting distance of the Shockley partials for edge or mixed dislocations6–9. This is because the

edge dislocations spread significantly wider than the screw dislocations and can therefore be more

accurately resolved in weak beam transmission electron microscopy (TEM) experiments. For
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FIG. 1. The slip vectors that create (a) an intrinsic stacking fault (ISF) in FCC Ni, and (b) an antiphase

boundary (APB) and a complex stacking fault (CSF) in L12 Ni3Al. Pink atoms represent Ni atoms and blue

atoms represent Al atoms. The different atom sizes indicate atoms on different close-packed (111) planes.

CSFAPBISF

(a)                                    (b)                                     (c)

FIG. 2. Side views of (a) an intrinsic stacking fault (ISF) in FCC Ni, (b) an antiphase boundary (APB), and

(c) a complex stacking fault (CSF) in L12 Ni3Al. Pink atoms represent Ni atoms and blue atoms represent

Al atoms. The ISF creates structural disorder across the fault plane, the APB creates only chemical disorder,

and the CSF creates both structural and chemical disorder.

Ni, with a Poisson ratio of ≈ 0.276, anisotropic elasticity theory predicts the ratio of equilibrium

splitting distances is dedge/dscrew = 7/310. The distance between the edge Shockley partials is then

used to estimate the stacking fault (complex stacking fault) energy using anisotropic elasticity

theory (AET). In turn the separation of the Shockley partials in the screw dislocations are estimated

using this energy and AET. This creates a problem when one is trying to model the properties of

a dislocation core using the experimentally measured planar fault energies. For example, the

important feature for dislocation cross-slip is the distance between the Shockley partials, and what

stress is required to form the constricted (screw) dislocation. The stacking fault energy is only

relevant if the anisotropic elastic solution precisely maps the splitting distance.

Atomistic simulations suggest that there is a systematic error between the actual core splitting

distances and those predicted by AET, but this has never been explored or verified using density
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functional theory (DFT). The screw dislocation in Ni has been relaxed using various empirical

potentials which predict a wide range of stacking fault energies and dissociation distances11–13.

The planar fault energies in Ni14,15 and Ni3Al16–18 have been computed from first principles, with

Schoeck et al.16 and Mryasov et al.17 using these energies as inputs to a Peierls-Nabarro model

to compute dissociation distances in Ni3Al, while Yu et al.18 used the planar fault energies and

isotropic elasticity theory to estimate these distances. While these computational studies have pro-

vided insights into active deformation mechanisms, they are at best approximations of the core

structures, with limited utility in predicting the effects of variations in chemistry and kinetics.

Here, we assess if the differences observed between atomistic and AET predictions for the Shock-

ley core splitting distances are replicated in first principles calculations of dislocation cores in Ni

and Ni3Al.

Modeling the electronic structure of an isolated dislocation is challenging due to the long-

range strain field. This requires a multiscale approach that couples the core — where there are

large strains — to the long range elastic field. While anisotropic continuum elasticity theory19,20

describes the far-field geometry around a dislocation well, the elastic solution diverges close to the

core and electronic structure methods (i.e. DFT) are needed to accurately determine the disloca-

tion core structure. Moreover, the long-range strain field of an isolated dislocation is incompatible

with periodic or fixed boundary conditions which are commonly used in DFT simulations. Multi-

scale approaches which couple the dislocation core to finite elements21,22, classical potentials23,24,

or flexible boundary conditions (FBC)25 have been developed to accurately capture both the core

structure as well as the long-range strain field of the dislocation by coupling the quantum me-

chanical core to a continuum. This work focuses on the FBC method25, in which atoms near the

dislocation core are relaxed by DFT while atoms outside the core are displaced according to the lat-

tice Green function (LGF), effectively embedding the dislocation within an infinite harmonic bulk.

Calculation of the LGF goes back to simple cubic lattices with nearest-neighbor interactions26,27

to arbitrary Bravais lattices28 to arbitrary crystals29 and even a planar interface30. Recently, we de-

veloped a new numerical method to compute the LGF which directly accounts for the dislocation

topology31. Here, we extend our numerical method developed in Ref.31 to compute the LGF for

more complex crystal structures including an extended fault geometry, and compute the relaxed

dislocation core structures of the 1
2 [11̄0] Ni screw dislocation and the [11̄0] Ni3Al superdislocation

with DFT.
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II. COMPUTATIONAL METHODOLOGY

A. DFT setup details

The dislocation cores in Ni and Ni3Al are calculated using density functional theory as im-

plemented in the Vienna ab initio simulation package vasp32 which is based on plane wave ba-

sis sets. The calculations used the Perdew-Burke-Ernzerhof generalized gradient approximation

exchange-correlation functional33 and projector-augmented wave potentials34 generated by Kresse

and Joubert35 with electronic configurations of [Ar]3d84s2 and [Ne]3s23p1 to model Ni and Al. For

fcc Ni, spin-polarized calculations were performed employing a plane wave cutoff energy of 400

eV which ensures energy convergence to within 1 meV/atom. In order to facilitate rapid conver-

gence of the Brillion zone integration, Methfessel-Paxton smearing36 with smearing energy width

of 0.25 eV was used with a 1× 1× 12 Monkhorst-Pack k-point mesh37. The calculations for Ni3Al

used the spin-averaged approximation, a plane wave cutoff energy of 337 eV, Methfessel-Paxton

smearing (0.10 eV) and a 1 × 1 × 11 k-point mesh.

We compute the lattice and elastic constants and planar fault energies in Ni and Ni3Al using

DFT, which we use to estimate dissociation distances from anisotropic elasticity theory for com-

parison with the values obtained from our relaxations. The computed lattice and elastic constants

for Ni: a0 = 3.5219 Å, C11 = 270.4 GPa, C12 = 157.1 GPa, C44 = 129.4 GPa, and for Ni3Al: a0 =

3.5685 Å, C11 = 226.4 GPa, C12 = 153.7 GPa, C44 = 118.9 GPa, have been previously computed

and reported in1. We compute the planar fault energies by taking the difference in total energy

per fault area between two supercells with and without the fault. For the stacking fault in Ni, we

construct the faulted supercell by shortening the periodic distance along the direction perpendicu-

lar to the fault plane from 8·[111] to (8–1/3)·[111], essentially removing a close-packed plane and

thus changing the stacking order at the fault. We compute the Ni stacking fault energy γISF using a

10×1×12 k-point mesh. For the planar faults in Ni3Al, we apply alias shear38 to construct a single

APB or CSF in 1×3×1 supercells. The shear vectors required to construct an APB and a CSF are

[11̄0]/2 and [112̄]/6, respectively. We compute γAPB and γCSF using these sheared supercells and

4 × 1 × 6 k-point meshes. The computed lattice and elastic constants and planar fault energies are

used as inputs to the equations presented in Appendix A to obtain anisotropic elasticity estimates

of the dissociation distances for each dislocation.

Figure 3 shows the DFT supercells used to relax a 1
2 [11̄0] screw dislocation in Ni and a [11̄0]
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FIG. 3. DFT supercells for the (top) FCC Ni 1
2 [11̄0] screw dislocation and (bottom) L12 Ni3Al [11̄0] screw

superdislocation. The atoms in each supercell are divided into three regions for applying flexible boundary

conditions. For Ni3Al, each atom pictured in the figure represents a column of two non-equivalent atoms

along the [11̄0] direction within the supercell. Green plus signs (+) show the initial positions of 1
2 [11̄0]

screw dislocation(s), and magenta crosses (×) indicate estimated Shockley partial distances from previous

studies11,17.

screw superdislocation in Ni3Al respectively. Supercells are constructed with fractional supercell

vectors rather than the typical integer multiples of lattice vectors in order to partially cancel the

stacking faults formed at the supercell boundaries due to the screw dislocation and to minimize

the disruption to the charge density at the boundaries39. The atoms in each supercell are divided

into three racetrack-shaped regions (Figure 3). The interior (Region 1) contains atoms closest to

the partial dislocations and planar fault(s). A single 1
2 [11̄0] screw dislocation is introduced in the

center of Region 1 (Figure 3a) using displacements from anisotropic elasticity theory. To speed

up convergence of the Ni3Al superdislocation, two 1
2 [11̄0] screw superpartials ≈ 44 Å apart17

were introduced into Region 1 (Figure 3b). The atoms in region 1 are then relaxed using DFT

Hellmann-Feynman forces and conjugate gradients. This allows the (super) partials to dissociate,

following the reactions described in Eqns. 1 and 2. The Hellmann-Feynman forces that develop

in the annular region (region 2) are relatively small (i.e. linear) and are passed through the LGF

to displace the atoms throughout the simulation cell11. Region 3 contains atoms in the supercell
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necessary to minimize the effect of the supercell boundaries on the atoms in regions 1 and 2. Using

DFT forces on atoms in regions 1 and 2, we alternate between relaxing region 1 with conjugate

gradients and displacing atoms in all three regions due to LGF displacements from forces in region

2, until forces in regions 1 and 2 are smaller than 5 meV/Å.

B. Lattice Green function computation

The LGF is computed by inversion of a large, sparse matrix of force constants that correspond

to the atomic positions in the dislocation geometry31. The force-constants — which relate the force

on an atom to the displacement of any atom in the system — are short-ranged and bulk-like even

as one approaches the core. For simple crystal structures such as FCC Ni, we have shown that the

force constants between a pair of atoms in the dislocation geometry can be well approximated by

the closest equivalent pair of atoms in the bulk31.

However, the APB in the [11̄0] Ni3Al superdislocation creates pairs of atoms of different atomic

species than are found in bulk, and the corresponding force constants are not defined. For exam-

ple, there are only Ni–Ni and Ni–Al first-nearest-neighbors in bulk, but the APB creates Al–Al

first-nearest-neighbors as well (c.f. Figure 2). Since we use the force-constants from bulk to ap-

proximate the force-constants in the dislocation geometry, we do not have force-constants for

such pairs of atoms, which we refer to as “antisite” pairs. Instead, we approximate these force-

constants by performing a constrained linear least squares fit which enforces the symmetry of the

overall force constant matrix by enforcing symmetry of the onsite terms:

Dαβ(~Ri, ~Ri) = Dβα(~Ri, ~Ri), (3)

which gives 3 constraint equations for each atom i with at least one “antisite” neighbor. By the

sum rule, we can rewrite this as

−
∑
j,i

Dαβ(~Ri, ~R j) = −
∑
j,i

Dβα(~Ri, ~R j), (4)

where atoms j , i are all the neighbors of atom i. Separating the contributions to this sum from

“antisite” neighbors jA and “bulk-like” neighbors jB and rearranging the terms, we get∑
jA

Dαβ(~Ri, ~R jA) −
∑

jA

Dβα(~Ri, ~R jA) = −
∑

jB

Dαβ(~Ri, ~R jB) +
∑

jB

Dβα(~Ri, ~R jB), (5)

where the unknown force-constants are all on the left hand side of the equation. The number

of unknowns is 9×(number of “antisite” pairs) which is typically much larger than the number
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of constraints. Therefore, we perform a linear least squares fit to the average of the known bulk

Ni3Al force-constants for each type of neighbor pair (e.g. first-nearest-neighbors, second-nearest-

neighbors, etc.) to find the most physical solution from among all the possible solutions that satisfy

the constraints. While this is a rather rough estimate, we find that as long as these force constants

are contained entirely in region 1, they have only a weak effect on the LGF for atoms in regions 2

and 331.

The dislocation force-constant matrix is numerically inverted following the method developed

previously31. The method requires setting up a large system divided into five regions: regions

1–3 which make up the DFT supercell, a buffer region, and a far-field. The far-field contains

atoms far away from the core whose displacements we approximate using the bulk elastic Green

function (EGF), while the buffer region contains the remaining atoms between region 3 and the far-

field. Strictly speaking, this assumption is valid only for perfect bulk crystals; when a dislocation

is present, the long-range behavior of the dislocation LGF is not necessarily given by the bulk

EGF40,41. However, we have found this to be a reasonably good approximation if the distance

from the center of the dislocation to the far-field atoms is large compared to the dislocation core

dimensions. For the Ni 1
2 [11̄0] screw dislocation we choose a buffer size of R = 20a0 (≈ 70 Å),

while for the Ni3Al [11̄0] screw superdislocation—since the initial dislocation geometry has an

extended size of ≈ 44 Å–we choose a larger system size of R = 40a0 (≈ 143 Å) for computing

the LGF. We verify that the errors in the LGF computation due to the far-field approximation are

on the order of 10−4Å
2
/eV or less. We compute the LGF for forces in region 2 by applying a

unit force on an atom in region 2, evaluating the resulting far-field displacements based on the

EGF, determining the forces these displacements generate in the buffer region, then solving for

the displacements corresponding to the initial force by numerically inverting the force-constant

matrix. This gives us one column of the LGF; by systematically looping through every atom in

region 2, we can compute the required portion of the LGF matrix that gives displacements in

regions 1–3 due to forces in region 2.

III. RESULTS

Figure 4 shows that the 1
2 [11̄0] screw dislocation in Ni dissociates into two Shockley partials.

Differential displacement (DD) maps42 and Nye tensor distributions43 are overlaid44 for the screw

components (top figure) and edge components (bottom figure) of the relaxed screw dislocation.
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FIG. 4. Combined differential displacement and Nye tensor distribution plots for the (top) screw and (bot-

tom) edge components of the relaxed FCC Ni 1
2 [11̄0] screw dislocation. These plots show all the atoms in

region 1 (white atoms) and a few atoms from region 2 (blue atoms). The edge displacements in the bottom

plot are scaled by a factor of 10 to be visible compared with the screw components in the top plot. We

estimate dISF = 12.0 Å.

The partial cores are well separated from Region 2, indicating good convergence. Estimated dISF

= 12.0 Å is 40% larger than the 8.6 Å separation estimated from anisotropic elasticity theory using

DFT-computed elastic constants and intrinsic stacking fault energy1 (see Appendix A).

Table I compares the Ni intrinsic stacking fault energy γISF and dissociation distance dISF to

other computational studies and experiments, where we see a consistent difference between dISF

direct from atomistic simulations versus the elastic estimate. Our computed γISF of 123.6 mJ/m2

is in good agreement with other DFT-computed values reported in literature14,15. This is the first

work to report the first principles assessment of the Ni screw dislocation core structure, although

there have been a number of studies which relaxed the dislocation using empirical potentials11–13.

While empirical potentials predict a wide range of γISF and dISF, they all produce dISF from atom-

istic relaxation that is 28–73% larger than the corresponding elastic estimate. The wide range of

empirical potential predictions highlights the need for accurate first-principles calculations. Our

computed γISF is in good agreement with values extracted from experiment; however, there are no

direct observations of the dissociated screw dislocation in Ni with which to compare our results.

Murr45 estimated γISF based on its relationship to the coherent twin-boundary energy, while Carter

et al. estimated it based on observations of dissociated edge dislocations and faulted dipoles. It
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TABLE I. Comparison of calculated and experimental intrinsic stacking fault energies γISF and dissociation

distances dISF for the 1
2 [11̄0] screw dislocation in Ni. This work (PAW-GGA + LGF) is the first to predict

a Ni screw dislocation core using DFT. We find a partial separation larger than the anisotropic elasticity

theory estimate, which is consistent with empirical potential calculations. Experimental studies extracted

γISF based on the coherent twin-boundary energy (Murr45) or observations of dissociated edge dislocations

and faulted dipoles (Carter et al.6); we compute the corresponding experimental elastic estimates for dISF

using Eq. (A1) and elastic constants from Simmons and Wang46.

γISF dISF(Å)

(mJ/m2) Atomistic P-N Elastic

DFT:

PAW-GGA + LGF 123.6 12.0 8.6

PAW-GGA14 127.2

PAW-GGA15 136.2

Empirical potential:

EAM + LGF11 58 19.5 15.2

EAM + LGF11 119 13.0 7.5

EAM12 176 7.4

Finnis-Sinclair13 40 25.0 15.25

Experiment:

Bright field TEM45 128 7.1

Weak beam TEM6 120–130 7.0–7.6

should also be noted that the stacking fault energy has some temperature dependence47, where it

is estimated to decrease by less than 10% from 0K to 300K. We compute the corresponding ex-

perimental elastic estimates for dISF listed in the table using Eq. (A1) and elastic constants from

Simmons and Wang46.

Figure 5 shows that the [11̄0] screw superdislocation in Ni3Al dissociates into two pairs of

Shockley partials, where the APB and CSF are formed between the partials as expected by Eqn. 2.

Similar to Fig. 4, the DD maps and Nye tensor distributions are overlaid for the screw components

(top figure) and edge components (bottom figure) of the relaxed screw superdislocation44. Again,

all the Shockley partials have the same screw components and alternating edge components with an
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FIG. 5. Combined differential displacement and Nye tensor distribution plots for the (top) screw and (bot-

tom) edge components of the relaxed L12 Ni3Al [11̄0] screw superdislocation. As there are two layers of

atoms within the slab, we compute the differential displacements and Nye tensor as averages through the

slab thickness. These plots show all the atoms in region 1 (white atoms) and a few atoms from region 2

(blue atoms). The edge displacements in the bottom plot are scaled by a factor of 10 to be visible compared

with the screw components in the top plot. We estimate dAPB = 36.4 Å and dCSF = 10.0 Å.

estimated partial core splitting: dAPB = 36.4 Å and dCSF = 10.0 Å, while dAPB = 32.8 Å and dCSF =

6.4 Å from anisotropic elasticity theory and DFT-computed elastic constants1 (see Appendix A).

Anisotropic elasticity underestimates both dAPB and dCSF by 3.6 Å, similar to the discrepancy

between the computed and estimated values of dISF for the Ni screw dislocation.

Table II compares the dissociation distances dAPB and dCSF computed in this work—the first

first-principles assessment of the Ni3Al screw superdislocation core structure—to other compu-

tational studies and experiments. Due to the complex extended dislocation structure, such calcu-

lations are extremely challenging and computationally expensive. FBC supercell requires 1840

atoms; without FBC, even larger supercells would be required to accurately compute the disloca-

tion structure, making the problem intractable. Our dissociation distances are in generally good

agreement with those computed by previous studies using Peierls-Nabarro model16,17 or elasticity

theory18. However, the key advantage of our approach compared to these continuum models is

we have the atomic-level details of the core geometry that can be used to predict how different

chemical species will interact with these dislocation cores. These atomic scale interactions have

been shown to be critical in understanding the effects of chemistry on plastic deformation52,53. We
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TABLE II. Comparison of calculated and experimental planar fault energies γAPB and γCSF and dissociation

distances dAPB and dCSF for the [11̄0] screw superdislocation in Ni3Al. This work (PAW-GGA + LGF) pro-

duces separations larger than estimated from anisotropic elasticity theory. While Schoeck et al.16, Mryasov

et al.17 and Yu et al.18 computed the planar fault energies with DFT, Schoeck et al. and Mryasov et al.

computed dAPB and dCSF using a Peierls-Nabarro model, while Yu et al. simply estimated these distances

from isotropic elasticity theory. We also compute dAPB and dCSF using the Mishin EAM potential48. The

experimental studies (Hemker et al.7, Karnthaler et al.8, Kruml et al.9) estimated γAPB and γCSF based on

observations of dissociated edge or mixed dislocations; we compute the corresponding screw dislocation

dissociation distances dAPB and dCSF using Eqs. (A4) and (A5) and elastic constants from Prikhodko et

al.49.

γAPB γCSF dAPB(Å) dCSF(Å)

(mJ/m2) (mJ/m2) Atomistic P-N Elastic Atomistic P-N Elastic

DFT:

PAW-GGA + LGF 171.2 202.4 36.4 32.8 10.0 6.4

LAPW-LDA16 172 223 33 6.25

LMTO-LDA17 210 225 34.3±8 36.0 8.7±1 5.3

PAW-GGA18 178.76 202.32 36.01 8.76

Empirical potential:

EAM 252 202 19 19.9 12 10.0

EAM50 142 121 60 − dCSF 41.7 60 − dAPB 18.3

EAM51 156 259 60 − dCSF 60 − dAPB

Experiment:

Weak beam TEM7 180±20 206±30 32.1 6.8

Weak beam TEM8 175±15 235±40 34.5 5.4

Weak beam TEM9 195±13 236±29 30.2 5.8

note that the planar configuration studied in this work is only one possible configuration that the

extended superdislocation can take. We have focused on this configuration because early compu-

tational studies based on elastic models and classical potentials predicted that the planar config-

uration is the most energetically stable compared to non-planar and mixed configurations50,51,54.

Other configurations may be of interest for consideration in future work, and could also be treated
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with the method described in this work, given slightly different initial conditions.

IV. DISCUSSION

In both cases explored in this work the Shockley partial splitting distance was observed to

be larger than that expected from anisotropic elasticity theory. Also, as shown in Tables I and II,

atomistic calculations reproduce this effect across a wide range of potentials. The results presented

here suggest that the conventional application of anisotropic elasticity theory produces a systematic

error that should be considered when developing models for cross-slip.

Analysis of our relaxed dislocation geometries reveal that the maximum edge displacement

achieved in each of the Shockley partials is in fact only about 2/3 of the expected edge component.

The edge components in the Shockley partials can be calculated from the atomic positions in

the relaxed dislocation cores. In the Ni 1
2 [11̄0] screw dislocation, the expected edge component is

√
6

12 a0 = 0.719Å, but the maximum edge displacement is only 0.487Å or 67.7% of the expected edge

component. Similarly, in the Ni3Al [11̄0] screw superdislocation, the expected edge component is
√

6
12 a0 = 0.728Å, but the maximum edge displacement is only 0.467Å or 64.1% of the expected edge

component. The expressions derived from AET which are used to estimate the splitting distances

assume ideal splitting in which the partials achieve the full edge components; however, our results

indicate that this assumption is not valid and is the likely reason for the systematic discrepancy

between AET estimates and results from atomistic simulations. Reevaluating the elastic estimates

using Eqs. (A1), (A4) and (A5) and the reduced edge components, we find del
ISF = 13.2 Å and del

CSF

= 10.3 Å which are in better agreement with our DFT-computed dissociation distances.

The error in estimated dissociation distances introduced by employing AET based on the ide-

alized dissociated dislocations could lead to significant errors when modeling cross-slip mecha-

nisms in Ni-superalloys. In Ni we can estimate the scale of the error introduced by employing the

anisotropic elastic mapping between our DFT-computed stacking fault energy (γDFT
ISF ) and Shockley

splitting distances obtained from relaxation with GGA-LGF (dDFT
ISF ). We can derive and effective

Escaig stress, showing the effect of using the classical anisotropic theory,

γDFT
ISF dDFT

ISF = (γDFT
ISF + σEbe)del

ISF (6)

On the left are the DFT-computed values, on the right an Escaig stress σE acting on the edge

components be of the screw Shockley partials is added to the DFT-computed stacking fault energy,
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and multiplied by the splitting distance derived using AET. Using γDFT
ISF = 123.6 mJ/mm2, dDFT

ISF =

12Å, del
ISF = 8.6Å gives an effective Escaig stress of 670 MPa. Following Kang, Yin and Cai55,

applying this Escaig stress changes the activation energy for cross-slip in Ni from 2.25 to 1.25 eV.

Thus the stress (or temperature) required to enable cross-slip is decreased by approximately 50%

using the first principles observations. A similar argument holds for the anomalous yield stress;

the corresponding equations for estimating the Escaig stress in Ni3Al are:

(γDFT
CSF − γ

DFT
APB/2)dDFT

CSF = (γDFT
CSF − γ

DFT
APB/2 + σEbe)del

CSF (7)

Using the values from Table II, the effective Escaig stress introduced using the anisotropic model

of Shockley partial spreading is ≈ 900 MPa. Thus the effects are large on the scale of the stresses

required to close the Shockley partial splitting distances to permit cross-slip.

It is important for the materials community to have reliable representation of the screw disloca-

tions in engineering alloys in order to accurately model cross-slip. Cross-slip can influence work

hardening through muliplication processes and in ordered intermetallics, such as Ni3Al, cross-slip

can produce anomalous yield stress at elevated temperatures. Recently Kang, Yin and Cai have

shown using atomistic potentials that the energy barrier for cross-slip in Ni is strongly dependent

on (Escaig) stresses that act on the edge components of the Shockley partials and affect the par-

tial core splitting distance55. Similarly, the anomalous yield stress behavior observed in Ni3Al is

controlled by the cross-slip of super dislocations from (111) to (100) glide planes. In this case the

Shockley partials that are required to constrict to form a screw (super) partial bracket a complex

stacking fault. Our results imply that by using anisotropic elasticity theory to map the splitting

distance to a planar fault energy introduces an effective Escaig stress which will bias analytical

models of cross-slip. Therefore a more accurate method of determining the core structures and

dissociation distances of these dislocations—such as has been presented in this work—is crucial

in order to accurately model cross-slip mechanisms in Ni-based superalloys.

V. CONCLUSION

Core structures of screw dislocations in Ni and Ni3Al are predicted using a DFT-based flexi-

ble boundary condition approach. Differences between predicted dissociation distances and those

estimated from Peierls-Nabarro models or elasticity theory demonstrate the limitations of these

continuum models and highlights the need for accurate atomistic calculations. The calculated

14



atomic-level details of the core geometry are required for further studies of solid solution or diffu-

sion near or along a dislocation. The computed dissociation distances can also be used to param-

eterize higher length scale models to study the anomalous yield stress and creep mechanisms in

Ni-based superalloys. The current extension of the FBC approach enables calculations for a wide

variety of extended dislocation cores and can be applied to dislocations in a range of technologi-

cally important materials including metals, ordered intermetallics, and semiconductors.
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Appendix A: Estimating dissociation distances from elasticity theory

We compute the dissociation distances for each dislocation from anisotropic elasticity theory

in order to compare against the values obtained from our relaxations. We compute the intrinsic

stacking fault distance dISF in the 1
2 [11̄0] Ni screw dislocation from anisotropic elasticity theory by

balancing the elastic interaction between the partial dislocations against the stacking fault energy

γISF. This yields the following expression for dISF:

dISF =
Ksb1sb2s + Keb1eb2e

2πγISF
(A1)

where bis and bie are the magnitudes of the screw and edge components of the Burgers vector ~bi of

partial dislocation i (for this dislocation, b1s = b2s = 1
2

√
2

2 a0 and b1e = −b2e = 1
√

12

√
2

2 a0) and Ks and

Ke are the screw and edge components of the elastic energy coefficients derived in10,

Ks = (c′44c′55)1/2 (A2)

Ke =
(c̄′11 + c′12)

3

[
2
( c′55(c̄′11 − c′12)
c′22(c̄′11 + c′12 + 2c′55)

)1/2

+( c′55(c̄′11 − c′12)
c′11(c̄′11 + c′12 + 2c′55)

)1/2] (A3)

where the c′i j are the elastic constants rotated into the [001], 1
√

2
[1̄1̄0], 1

√
2
[11̄0] coordinate system,

and c̄′11 = (c′11c′22)1/2. Following a similar approach, we compute the antiphase boundary distance
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dAPB and complex stacking fault distance dCSF in Ni3Al from anisotropic elasticity theory by bal-

ancing the elastic interactions between the partial dislocations against the relevant planar fault

energies. The force balance equations for the two leftmost partials with Burgers vectors ~b1 and ~b2

are:

Ksb1sb2s + Keb1eb2e

2πdCSF
+

Ksb1sb3s + Keb1eb3e

2π(dCSF + dAPB)
+

Ksb1sb4s + Keb1eb4e

2π(2dCSF + dAPB)
= γCSF (A4)

−
Ksb2sb1s + Keb2eb1e

2πdCSF
+

Ksb2sb3s + Keb2eb3e

2πdAPB
+

Ksb2sb4s + Keb2eb4e

2π(dCSF + dAPB)
= −γCSF + γAPB (A5)

where γAPB and γCSF are the antiphase boundary energy and complex stacking fault energy respec-

tively, b1s = b2s = b3s = b4s = 1
2

√
2

2 a0, b1e = −b2e = b3e = −b4e = 1
√

12

√
2

2 a0, and the expressions for

the elastic energy coefficients Ks and Ke are as defined previously in Eq. (A2) and Eq. (A3). By

symmetry, the forces on the other pair of Shockley partials are equal and opposite. We solve this

pair of non-linear equations numerically to obtain the elastic estimates for dAPB and dCSF.
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