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X-ray absorption spectroscopy is a premier, element-specific technique for materials characteriza-
tion. Specifically, the x-ray absorption near edge structure (XANES) encodes important information
about the local chemical environment of an absorbing atom, including coordination number, sym-
metry and oxidation state. Interpreting XANES spectra is a key step towards understanding the
structural and electronic properties of materials, and as such, extracting structural and electronic
descriptors from XANES spectra is akin to solving a challenging inverse problem. Existing methods
rely on empirical fingerprints, which are often qualitative or semi-quantitative and not transferable.
In this study, we present a machine learning-based approach, which is capable of classifying the lo-
cal coordination environments of the absorbing atom from simulated K-edge XANES spectra. The
machine learning classifiers can learn important spectral features in a broad energy range without
human bias, and once trained, can make predictions on the fly. The robustness and fidelity of the
machine learning method are demonstrated by an average 86% accuracy across the wide chemical
space of oxides in eight 3d transition metal families. We found that spectral features beyond the
pre-edge region play an important role in the local structure classification problem, especially for
the late 3d transition metal elements.

Keywords: x-ray absorption near-edge spectroscopy, machine learning, first-principles calculations, crystal
structure, chemical bonding, crystal symmetry

I. INTRODUCTION

Knowledge of material structures at the atomic scale
is essential to understanding physical phenomena and
material properties that can lead to practical applica-
tions. Specifically, key information about the local chem-
ical environment (LCE) surrounding an atom, including
symmetry, coordination number, bond length and bond
angle, forms the fundamental basis that determines the
electronic properties of materials. In order to resolve the
structure-property relationship, the characterization of
atomic structures and their dynamic changes under dif-
ferent thermodynamic conditions has become a primary
target of experimental studies. Such efforts have made
tremendous impact on many research fields, including su-
perconductivity1, ultrafast dynamics2, energy storage3,
and photocatalysis4. Recent progress in materials discov-
ery using smart automation5,6 and in situ and operando
experiments7 further highlights emerging challenges and
opportunities of materials characterization in real time.

Amongst many experimental techniques (e.g. imaging,
diffraction, and spectroscopy), the x-ray absorption near
edge structure (XANES) is a premier tool for probing
LCEs, because it is element specific, sensitive to local
structural and electronic properties, and applicable un-
der harsh experimental conditions8–10, making it a robust
structure refinement method8,11–15. Given the atomic ar-
rangement of a sample (x), its XANES spectra (y) can
be determined through quantum mechanical laws (f) via
the mapping y = f(x). Extracting the information of
the LCE (x̃) as a subset of x from spectral data can be
formulated as an inverse problem: x̃ = f−1(y). The solu-

tion of this inverse problem is highly nontrivial, because
the spectral information in experimental XANES is not
only abstract, but also averaged over the whole sample.
Consequently, much of the success in the past has been
achieved by using fingerprints established from empirical
observations.

In this study, we focus on 3d transition metal K-edge
XANES, which carries rich information about the elec-
tronic transitions from the 1s core level of the absorbing
atom to unoccupied states. Since the 1940’s, extensive
research has been carried out to correlate spectral fea-
tures of K-edge XANES spectra, especially in the pre-
edge region, to LCEs16,17. For example, Hanson et al.18

observed distinct chemical shifts in the absorption edge
of Mn K-edge XANES in Mn, MnS, MnO2 and KMnO4.
Wong et al.19 showed linear relationships between the
oxidation state of V and both pre-edge and absorption
edge positions in the K edge. Farges et al.20–22 and Jack-
son et al.23 conducted comprehensive studies of the cor-
relation between pre-edge features and the coordination
number in Ti, Fe and Ni compounds; they found that the
pre-edge peak intensity decreases with increasing coor-
dination number. For fixed coordination number, early
3d transition metal elements (Ti, V, Cr and Mn) have
stronger pre-edge peaks than late transition metal ele-
ments (Fe, Co, Ni and Cu) overall17. Furthermore, while
both pre-edge peak locations and intensities in Ti20 and
Ni species22 exhibit a significant dependence on the coor-
dination number, the pre-edge peak positions in Fe com-
pounds are independent of coordination number23.

From a theoretical standpoint, the pre-edge peak in-
tensity can be understood qualitatively from quantum
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mechanical selection rules. The dominant contribution
in K-edge XANES comes from s → p dipole transitions,
as the s → d quadrupole terms are generally orders of
magnitude smaller. The density of states corresponding
to the pre-edge regions of 3d transition metals are de-
rived primarily from their empty 3d bands, and direct
s → d transitions are dipole-forbidden, which implies a
vanishing peak intensity. However, pre-edge peak inten-
sity is enhanced when atomic, unoccupied p and d states
hybridize. According to group theory, atomic p− d mix-
ing is allowed under Td symmetry, but is forbidden under
Oh symmetry24,25. As a result, 3d transition metals with
tetrahedral geometries tend to exhibit stronger pre-edge
peak intensities than those with octahedral geometries.
To this end, empirical diagrams have been compiled to
classify four-, five- and six-coordinated Ti, Ni and Fe
based on pre-edge peak positions and intensities20–23; we
will refer to this method as the empirical fingerprint ap-
proach.

Despite the wide range of applications of the empir-
ical fingerprint approach, including classifying LCEs in
crystals, amorphous systems21,26 and catalysts27, it has
several limitations that may hinder its practical appli-
cations in the broader materials domain. First, coordi-
nation number is not the only factor that affects pre-
edge peak features. Quantitative pre-edge features are
determined by multiple factors, including coordination
number, local distortion, oxidation state, and the na-
ture of the ligands28. For example, local distortions,
e.g. displacements from the inversion center in octahe-
dral geometries, under the crystal field can lower the lo-
cal symmetry and enable atomic p− d mixing, resulting
in dramatic enhancement of pre-edge peak intensity28.
Such local distortion-induced pre-edge peak intensity en-
hancement has been reported in the V K-edges of six-
coordinated MgV2O6

29 and NaV10O28
30, and in the Ti

K-edge of six-coordinated Li4Ti5O12
31. Therefore, iso-

lating pure LCE effects and extracting robust correla-
tions between the LCE and simple spectral descriptors,
although valid for exemplary systems, may not be feasi-
ble for more structurally complex ones.

Secondly, the empirical fingerprint approach relies on
human knowledge to engineer spectral descriptors, which
may introduce bias. For example, existing spectral de-
scriptors are primarily derived from the pre-edge region
(e.g. peak positions and intensities). However, it is
known that pre-edge features are much less visible in late
transition metals than early transition metals17. There-
fore, the existing empirical fingerprint approach may not
work effectively for late transition metals due to poor
spectral contrast in the pre-edge region. One may need
to systematically explore main- and post-edge spectral
features in order to engineer and optimize new descrip-
tors, which may not necessarily be simple ones, to tackle
this problem.

Machine learning (ML) methods are a promising can-
didate to solve this inverse materials characterization
problem. Instead of relying on empirical features de-

rived from a small number of human observations, ML
methods are data-driven approaches that make predic-
tions based on large training sets, eliminating human
bias from the feature selection process. There are myriad
successful examples of the utilization of ML methods in
condensed matter physics, materials science and chem-
istry, including methods to solve many-body problems32,
predict quantum phase transitions33, generate force field
potentials34, design new catalysts35, and perform struc-
ture refinement36,37. In the context of XANES, one ex-
pects ML algorithms to learn spectral descriptors in the
full energy range of the spectrum and weight them ap-
propriately for robust LCE predictions.

In this study, we tackled the LCE classification prob-
lem using supervised ML applied to a wide energy range
of the XANES spectra (∼ 50 eV above the onset) as
input. In this way, the spectral feature space was sys-
tematically explored in order to establish the relation-
ships between XANES spectra and LCE classes, specifi-
cally the local atomic geometries. As proof-of-principle,
we applied ML algorithms to synthetic K-edge XANES
spectra obtained from high throughput ab initio calcula-
tions. This study serves as a precursor to a potentially
very powerful tool for real time structure refinement us-
ing experimental XANES, which will require in-depth un-
derstanding of the accuracy of the theory and further
improvement of the ML algorithms.

II. METHODS

The workflow of the element-specific, spectrum-based
LCE classification framework is summarized in Figure 1,
which contains three core modules: data acquisition, LCE
class labeling and training of machine learning models.
We stress that the workflow we developed can be adapted
to a wide range of elements characterized by different
spectroscopic techniques, as long as the spectral informa-
tion is element specific and sensitive to the LCE such that
there exists distinguishable spectral contrast associated
with different LCEs. Below, we describe each module in
detail.

II.A. Data Acquisition

For any given element, the first step is to extract
atomic structures representing different LCEs from ex-
isting materials structure databases. The structural
database must be large enough to build a reasonably-
sized training set for machine learning models. To
demonstrate the applicability of the LCE classification
framework, we have considered eight 3d transition metal
elements (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) and
extracted all available oxide structures that have been
structurally optimized using density functional theory
(DFT) from the Materials Project Database38–40.
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FIG. 1. Workflow of the spectrum-based local chemical en-
vironment classification framework using supervised machine
learning, which contains three modules: (I) data acquisition
supplemented by high throughput computing (HTC) calcu-
lations, (II) labeling and (III) training of machine learning
models. The machine learning architecture (set of hyperpa-
rameters) used in this work is shown in Module III. Notably,
the model consists of an optional convolutional layer (shown
in orange) followed by three hidden layers l1, l2 and l3 con-
sisting of 90, 60 and 20 neurons, respectively, ending with a
softmax output. Further details of the network are described
in Subsection II.C.

Once the structural database is established, the next
step is to generate the corresponding spectral database.
We focused on the K-edge XANES, as it is element spe-
cific and sensitive to the LCE (e.g., symmetry, charge
state, and coordination number). In principle, one may
populate the spectral database entirely with experimen-
tal spectra, but this strategy suffers from several draw-
backs. First, experimental XANES spectra represent an
average of signals (site-averaged signals) from each ab-
sorbing site (site-specific signals). In order to identify the
correlations between spectra and local structures using
ML, it is necessary to use site-specific spectra for train-
ing, as they possess much stronger spectral contrast than
the site-averaged spectra. Second, when developing LCE
classifiers using supervised ML methods, one needs to la-
bel XANES spectra with LCE descriptors, which means
that only experimental spectra of known structures can
be selected for the database. This requirement severely
limits the pool of candidates for the database to mostly

well-characterized crystal structures. As a result, quali-
fied experimental spectra represent only a small fraction
of the targeting LCEs in the local configuration space,
which are heavily weighted in known crystals and under-
represent the materials space of amorphous systems, sur-
faces, interfaces and nanoparticles. Consequently, a pure
experimental spectral database suffers from data avail-
ability and data heterogeneity issues.

On the other hand, combined with available structural
databases and well-established structure sampling meth-
ods, computational XANES have a clear advantage in
exploring the LCE space and producing site-specific spec-
tra. Furthermore, recent development in computational
XANES modeling41–51 has made it feasible to contrast
experimental spectra quantitatively, enabling accurate
local structure refinement of nanoparticles36,52, inter-
faces53, dopant sites54,55 and structural phase transfor-
mation31,37 using computational techniques. An accurate
and computationally efficient first-principles XANES
method would be an ideal choice for sampling the vast
LCE parameter space and mitigating data availability
and heterogeneity issues. Indeed, computational XANES
databases have recently emerged as a new tool for fast
structure screening through data mining56–58.

In this study, we generated the computational XANES
database with the FEFF9 code59, which is a popular and
computationally efficient method based on multiple scat-
tering theory. We utilized the existing site-specific x-ray
absorption spectroscopy FEFF library in the Materials
Project56,57 and only calculated spectra not contained
in this library. In the first data standardization step,
site-specific spectra that failed sanity checks were auto-
matically discarded, such as when the FEFF calculations
did not converge with the default input or when the
output FEFF spectra are not physical (e.g., with neg-
ative absorption coefficients). In the second step, we
removed “duplicates”, which otherwise would have in-
troduced bias if nearly identical structures were selected
for both training and testing. We used a site-symmetry
finder from the pymatgen library39 to determine which
sites in a crystal structure are symmetrically equivalent.
For every pair of spectra, one was removed from the
dataset if the average mean absolute difference between
them was less than 0.015, a number chosen based on vi-
sual inspection of a large number of similar spectra. The
process of removing duplicates also has the benefit of re-
ducing the total number of necessary FEFF calculations
to populate the XANES database. Finally, calculated
XANES spectra were spline-interpolated onto an absorb-
ing site-specific energy grid, so that the input feature vec-
tor was standardized for each spectrum. For each type
of absorbing site, the energy grid was chosen such that it
contains the maximum amount of available information
with an energy resolution of approximately 0.5 eV.

All standardized data before augmentation are hence-
forth referred to as the base dataset. Training data were
augmented by shifting the spectra by ±1 and ±2 eV.
The size of the augmented training set thus becomes five
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times the size of the base dataset. We found that data
augmentation improves the accuracy and robustness of
the machine learning model.

II.B. Local Chemical Environment Class Labeling

Feature engineering of LCEs is an active research topic
with increasing applications in a variety of areas in-
cluding, for example, neural network potential devel-
opment34,60–62. Among many possible choices, labels
based on the coordination environment (e.g. tetrahedral,
square pyramidal, and octahedral geometries), although
simple, provide key information on chemical bonding and
have been widely used in the x-ray spectroscopy commu-
nity. In this study, we utilized the continuous symmetry
measure (CSM), developed by Avnir and Pinsky63 and
hosted in the ChemEnv package64, to measure the sim-
ilarity between an input local geometry and a particu-
lar polyhedron. The smaller the CSM for a polyhedron,
the more the input geometry resembles it. We applied a
cutoff such that atoms further away than 1.2 times the
nearest neighbor distance from the absorbing site were
not considered. This cutoff was chosen as a balance be-
tween prediction accuracy and computational cost. The
CSM was applied to each absorbing site, and the polyhe-
dron with the lowest CSM value was chosen as the site
LCE label.

We restricted the LCE labels to only tetrahedral (T4),
square pyramidal (S5) and octahedral (O6) geometries,
because across the eight transition metal families these
are the most abundant LCEs, often by an order of mag-
nitude more than the rest. The class breakdown of the
dataset is presented in Table I. The total number of site-
specific spectra is on average a few thousand per atom
type, with V (3366) and Mn (3493) the most abundant
and Cu (839) the least abundant. It should be noted
that one can expand the dataset by adding new struc-
tures from other material databases, generating artificial
structures or introducing additional class labels. Further-
more, amongst all three chosen classes, O6 dominates,
making up about 64% of the entire structure database.
The impact of the inhomogeneity of the data distribution
on the predictive power of the ML model is discussed in
Section III.

II.C. Training Machine Learning Models

The core machine learning algorithm (see Figure 1)
consists of an optional 1-D convolutional layer followed
by three fully connected, feed-forward hidden layers with
90, 60 and 20 neurons, ending with a softmax output
layer of 3 neurons. The input layer of the neural net-
work is the XANES spectrum scaled to zero mean and
unit variance on a standardized grid of 100 entries, and
the output determines the target vector, which contains
the probabilities of the three LCE classes (T4, S5 and

TABLE I. The distribution of classes in the structure database
used for training the machine learning models.

Absorber T4 S5 O6 Total
Ti 271 359 1562 2192
V 948 412 2006 3366
Cr 396 121 902 1419
Mn 502 657 2334 3493
Fe 797 319 1874 2990
Co 583 227 1428 2238
Ni 246 163 1238 1647
Cu 290 183 366 839
Total 4033 2441 11710 18184

O6) computed from the softmax function. All neurons
use the rectified linear unit (ReLU) activation function
and a 30% dropout to guard against over-fitting. ML
models with and without the 1-D convolutional layer are
referred to as the convolutional neural network (CNN)
and multi-layer perceptron (MLP), respectively. The op-
tional convolutional layer contains 8 filters and a kernel
(sliding window) size of 10, stride of 1 and max-pooling
size of 2, and takes as input spectral data processed in an
identical manner to that of the MLP. CNNs inherently as-
sume correlations between nearby data points, and being
a down-sampling and pooling technique, sacrifice resolu-
tion in favor of invariance to the precise location of input
data. The algorithm determines trained parameters by
minimizing a categorical cross-entropy loss function using
the Adam optimizer65. Mini-batch sizes of 32 were used
during 50 full passes (epochs) of the training data. All
training and evaluations were performed using Keras66

with a TensorFlow67 backend.

For each absorbing site, we used statistical boostrap-
ping: 90% of the database was used for training ML
models and the remainder for testing. These subsets
were selected randomly in a stratified manner, meaning
that the proportion of each class in both the training and
testing sets was always the same. In order to generate
a statistical estimate on the accuracy of the classifier,
we sampled the testing data with replacement over 10
folds and report the averaged results in Figure 3. To
make full use of all available information, data included
once in a testing set, were not used in any future testing
sets. We found that testing results are mostly invariant to
the chosen neural network architecture assuming enough
training parameters were included. Therefore, the fixed
3-layer MLP with an optional convolutional layer (and
associated hyperparameters) was used throughout all ex-
periments.

III. RESULTS AND DISCUSSION

In the following, we present our LCE classification
study through visual inspection, principal component
analysis (PCA)68 and analysis of the machine learning
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classifiers (MLCs). We demonstrate that MLCs can ac-
curately predict LCE classes from synthetic XANES data
generated by the FEFF9 code. We further discuss the
relevance of this study based on synthetic data to the
real challenge of the LCE classification of experimentally
measured XANES spectra.

III.A. Visual Inspection of the Spectral Database

The FEFF K-edge XANES database of eight 3d tran-
sition metal elements (from Ti to Cu) is shown in Fig-
ure 2, color coded by LCE class (T4: blue; S5: green;
O6: red). There are noticeable trends in the raw spec-
tra that can be detected by visual inspection, prior to
a more in-depth analysis. Overall, early 3d transition
metals (e.g. Ti, V, Cr, and Mn) show more intense pre-
edge peaks than late 3d transition metals (e.g. Ni and
Cu), consistent with the trend from experiment17. No-
tably, T4 in Ti, V and Cr oxides exhibit sharp pre-edge
peaks at about 4970, 5470, and 5995 eV, respectively.
The pre-edge peak intensity decreases as the coordina-
tion number increases, consistent with the observations
of Farges et al.20–22 and Jackson et al.23. Such qualita-
tive agreement between theory and experiment suggests
that spectral analysis of the FEFF database is physically
insightful, especially for the LCE classification problem.

In addition to pre-edge features, across the eight el-
ements T4 exhibits the highest post-edge intensity, fol-
lowed by S5 and finally O6. However, the role of post-
edge features in LCE classification has not yet been ex-
plored in the literature, which could be an important
supplement to existing pre-edge based methods. We ex-
pect that algorithms including a wide energy range in
the XANES spectra can in principle improve the spec-
tral sensitivity to the LCE as compared to those relying
solely on pre-edge features.

III.B. Principal Component Analysis of the
Spectral Database

We further analyzed the spectral database with PCA.
Following the standard notation, Xk is defined as the full
set of spectral data for the kth absorbing species with xjk

being the jth spectrum in the dataset (a single feature
vector input) after taking zero sample mean and unit
variance. Denote w1k and w2k as the first two principal
axes in the feature space. We computed coordinates of

spectrum j in the PCA plot, zjk = zjk1 x̂+ zjk2 ŷ, as

zjkα =
xjk ·wαk

maxl |zlkα |
, α = 1, 2, (1)

where for clarity the denominator scales zjkα within
[−1, 1].

To evaluate the significance of the pre-edge features,
we truncated the principal axes by applying a cutoff nc

to the spectra, such that xjknc
correspond to the vertical

dashed lines in Figure 2. Then PCA was performed for
only the pre-edge region along the truncated principal
axes,

z̃jkα =

∑nc

n=1 x
jk
n w

αk
n

maxl |z̃lkα |
, α = 1, 2, (2)

by excluding features beyond xjknc
. The axes in the plots

generated by Eqs. 1 and 2 are scaled in the same way, so
that their clustering patterns can be compared directly.
Similar patterns are expected from the full and pre-edge
PCA plots, if the pre-edge features dominate the spectral
contrast. On the other hand, if the pre-edge features are
less significant, there will be weak correlations between
two sets of PCA patterns.

Full PCA plots are shown in the lower right insets of
Figure 2. Overall, a large degree of clustering is real-
ized, consistent with the observation of distinguishable
spectral features from visual inspection. In Ti, V, Cr,
Mn, Fe, and Co, most of the T4 points are located in
the lower right corner and O6 points in the upper left
corner. The T4 and O6 points of the Ti, V, and Cr can
be easily separated in PCA plots due to their sharp (T4)
and negligible (O6) pre-edge features. In the PCA plots
of Mn, Fe and Co, there is also a secondary cluster of
T4 points located in the upper right corner. The data
distributions in Ni and Cu are similar to the others, but
with a slightly smaller packing density. In most cases,
S5 clusters are intertwined with the other two classes,
flanked by T4 on one side and O6 on the other.

The lower center insets in Figure 2 show the PCA of
the pre-edge region. All classes appear less clustered than
the PCA patterns of the full feature space. While in
this case information contained in the feature space has
clearly been reduced, this effect is less prominent in the
early transition metal elements, which still exhibit a large
degree of clustering due to the significant spectral con-
trast in the pre-edge region. On the contrary, elements
such as Co, Ni and Cu exhibit such severe information
loss that PCA data points collapse into a linear pattern,
which is detrimental to the MLC performance, especially
in systems that already exhibit weak spectral contrast.

In summary, visual inspection and PCA suggest that
a MLC is likely able to accurately learn the trends in
XANES spectra and correlate them to their respective
classes. However, it is unclear whether MLCs can per-
form equally well for every class in all of the transition
metal species we studied.

III.C. Machine Learning Classifier Performance

The accuracy of the MLCs for each LCE class is re-
ported using the F1 score, which is the harmonic mean
of the precision P and recall R,

F1 =
2PR

P +R
, P =

t+
t+ + f+

, R =
t+

t+ + f−
, (3)
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FIG. 2. FEFF K-edge XANES database of eight 3d transition metal families. Spectra were spline-interpolated onto discretized
grids of 100 points, and scaled on the vertical axis such that the maximum value is 1 (prior to shifting the mean to 0 and scaling
to unit variance). The intensity of the colors scales inversely with the number of entries per class to aid visualization. Principal
component analysis of two regions is shown in the two insets: the full feature space (lower right), and only the pre-edge region
(lower center, discussed in Section III). The x and y-axes correspond to the first and second principal axes. The cutoff for the
pre-edge region is delineated by the vertical dashed line. Classes are color coded as follows: blue for tetrahedral (T4), green
for square pyramidal (S5) and red for octahedral (O6).

where t+, f+ and f− represent the true positives, false
positives and false negatives in a two-class (2 by 2) con-
fusion matrix.

In order to make a fair assessment of the MLC perfor-
mance, we need to address the data imbalance issue in
our training set. As seen in Table I, the number of LCEs
that conform to the O6 geometry vastly outnumbers the
others, indicating that the accuracy of each class alone
might not be the most reliable metric, as it may be biased
due to class imbalances in the training data. We address
this problem in two ways: by using the F1 score instead
of the accuracy on a class-by-class basis, and reporting
the macro F1 score as a representative metric.

In general, the F1 score is a much stricter metric than
the accuracy and is a better indicator of performance. It
accounts for both the precision P (of all predicted posi-
tives, cases that are actually positive) and recall R (out
of all the actual positives, cases that are correctly iden-
tified) and dramatically penalizes poor scores in either
category (contrary to the mean of the precision and re-
call). To demonstrate why this is important, consider
the F1 score of the relatively underrepresented S5 class.
Suppose that there are 10 S5 and 100 T4 and O6 in the
data set, and that the classifier has a 10% false nega-
tive and false positive rate. Accuracy would naturally
be 90%, but this is a poor representation of the classi-

fier, since 10 non-S5 data points were predicted as S5,
unnaturally inflating the number of predicted positives.
On the contrary, the F1 score of 62% accounts for this
by incorporating the low precision (47%) into the metric.
In addition to a breakdown by class, the macro F1 score
(F 1) is reported, which is the average of the class-wise
F1 scores computed using a one-versus-all approach. The
F 1 score treats each class on equal footing and further
penalizes classifying data in an underrepresented class
incorrectly relative to a class with many data points.

As clearly shown from the F 1 scores in Table II, MLCs
can classify the LCEs of all eight 3d transition metal
families very accurately. Uncertainties reported in the
last digit of Table II and error bars in Figure 3 correspond
to the standard deviation calculated from ten different
trained models. CNNs and MLPs perform equally well,
with very close F 1 scores of 0.86 and 0.85, respectively.
The class-wise F1 scores are plotted in Figure 3. Notably,
MLCs can reach over 90% accuracy on the T4 (CNN:
0.92; MLP: 0.92) and O6 classes (CNN: 0.96; MLP: 0.95),
which can be understood from the observation of raw
spectra. The strong pre-edge peak intensity is a signature
of the T4 configuration in, e.g., Ti, V and Cr. Conversely,
the lack of a significant pre-edge peak is a clear indicator
of an O6 configuration. In these cases, it is likely that the
pre-edge features are sufficient to distinguish O6 from T4.
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TABLE II. F 1 scores for different absorbing species, as the
averages of the class-wise F1 scores (red, green and blue bars)
presented in Figure 3, both with (CNN) and without (MLP)
the convolutional layer. Comparisons are made between mod-
els trained from the full feature space and reduced feature
space corresponding to only the pre-edge region of the spec-
tra.

Full Feature Space Pre-edge Only
Element MLP CNN pre-MLP pre-CNN
Ti 0.83(2) 0.84(2) 0.73(4) 0.78(3)
V 0.86(1) 0.86(2) 0.77(2) 0.79(3)
Cr 0.87(2) 0.87(3) 0.72(4) 0.75(4)
Mn 0.83(2) 0.85(2) 0.62(4) 0.68(3)
Fe 0.85(2) 0.86(3) 0.57(2) 0.63(3)
Co 0.85(3) 0.87(2) 0.59(3) 0.64(3)
Ni 0.87(1) 0.88(3) 0.61(5) 0.66(4)
Cu 0.86(2) 0.86(2) 0.50(4) 0.64(7)
Average 0.85(1) 0.86(1) 0.64(1) 0.70(1)

On the contrary, the spectral contrast between T4 and
O6 is very low in the pre-edge region in late transition
metal elements, especially in Ni and Cu. It is remarkable
that MLCs can achieve the same accuracy for T4 and
O6 in late transition metal elements. Such a universally
good performance underscores the ability of the MLCs to
extract spectral descriptors without human bias in the
full energy range, including the pre-, main- and post-
edge regions. Moreover, the relatively small overall error
margin is a testament to the reliability and robustness of
the classifier across many trained models.

Relative to T4 and O6, the S5 classification is less suc-
cessful, with an overall accuracy of ∼ 0.70 (CNN: 0.71;
MLP: 0.68), as shown in Figure 3. The weaker perfor-
mance of MLCs on the S5 class can be explained by
Figure 2, where data associated with the S5 class lay
between those in T4 and O6 in both the spectral and
principal component space, making them more difficult
to identify.

III.D. Importance of Features Beyond the Pre-edge

The ability of MLCs to accurately classify late transi-
tion metal oxides that lack prominent pre-edge features
suggests that features beyond the pre-edge region play
an important role in the neural network model. This hy-
pothesis is supported by the PCA results shown in the
insets of Figure 2. In the late transition metals, while the
full spectra can be effectively clustered in two-component
PCA, the same analysis of pre-edge spectra displays a
completely different linear pattern resulting from sub-
stantial information loss.

To gain further insight, we train MLCs with identical
architectures using only the pre-edge region defined by
energies below the dashed lines in Figure 2, which we
refer to as the pre-MLCs (pre-CNNs and pre-MLPs). In
principle, if F 1 scores of the pre-MLCs are close to those

trained on the full spectra, then the pre-edge features are
sufficient to classify the LCE for that absorbing element.
Conversely, a significant drop in the F 1 scores of the pre-
MLCs would be a clear indication that features beyond
the pre-edge region play a significant role in the MLCs.

As shown in Table II, the average F 1 score in pre-
MLCs drops significantly by about 20% (from 0.86 to
0.70 in CNN and from 0.85 to 0.64 in MLP), as compared
to MLCs trained on the full spectral space. The class-
wise F1 scores of pre-MLCs which are consistently lower
than that of regular MLCs are shown in Figure 3 as the
gray bars. We quantify this accuracy degradation by

∆ = F1(MLC)− F1(pre-MLC)

and summarize the results averaged over early (Ti, V, Cr,
and Mn) and late transition metal elements (Fe, Co, Ni
and Cu) in Table III. First, ∆ in late transition metals is
more than doubled compared to early transition metals.
Second, among the three classes, ∆ of O6 is the smallest
(< 0.10). It increases significantly for T4 in late transi-
tion metals to 0.16 in the pre-CNN (0.21 in the pre-MLP)
and finally reaches the largest values for S5, at 0.22 (0.30)
in early transition metals and 0.44 (0.57) in late transi-
tion metals. The results in Figure 3 and Tables II-III
highlight the critical importance of features beyond the
pre-edge region in accurately classifying LCEs, especially
for late transition metals. The effects are the largest in
the S5 class, which is rather characterless in the pre-edge
region, showing neither very strong (like T4) nor very
weak (like O6) pre-edge intensities.

TABLE III. The class-wise difference between the F1 score
evaluated over the entire feature space and over only the pre-
edge region (∆). Results are averaged over the early (Ti, V,
Cr and Mn) and late (Fe, Co, Ni and Cu) transition metal
elements.

pre-MLP pre-CNN
T4 S5 O6 T4 S5 O6

Early 0.09(3) 0.30(5) 0.03(1) 0.07(3) 0.22(5) 0.03(1)
Late 0.21(4) 0.57(5) 0.10(1) 0.16(3) 0.44(7) 0.08(1)

We note that unlike the case of regular MLCs,
the pre-edge CNN averaged over all absorbing species
(F 1 = 0.70) outperforms the corresponding pre-edge
MLP (F 1 = 0.64) substantially. In the most extreme
situation of S5, the pre-CNN (F1 = 0.48) is 23% more
accurate than the pre-MLP (F1 = 0.39) in early transi-
tion metals, and it is more than doubled in late tran-
sition metals with F1 = 0.28 (0.12) for the pre-CNN
(pre-MLP). The substantially better performance of the
pre-CNN is likely caused by the use of the convolutional
filter, which makes the CNN able to learn subtle pre-edge
features from augmented data more effectively than the
MLP.
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FIG. 3. Class-wise F1 scores calculated using different machine learning models (CNN/MLP) for T4 (blue/cyan), S5 (green/light
green) and O6 (red/pink) local coordination environments in eight 3d transition metal elements. While the full height of each
bar represents the results trained on the full feature space, gray bars overlaid on top with lower F1 values represent the results
for the models trained only on the pre-edge region. For example, for the Co S5 CNN, the F1 score reported for training on
the full spectral space is about 0.7, but decreases sharply to about 0.2 when trained on the pre-edge region only. Error bars
correspond to standard deviation; the ones with wider caps correspond to the full feature space.

III.E. Discussion

The MLCs described so far were trained on compu-
tational FEFF XANES spectra. Developing MLCs that
can classify the LCE of a broad range of material families
using experimental XANES spectra is a more challeng-
ing task that is beyond the scope of the current work.
Nonetheless, in this section we discuss several key issues
that need to be addressed in order to achieve this goal,
including validation of the theory, edge alignment of the
simulated spectra, and the variations in the spectral in-
tensity.

In order to appy MLCs trained on synthetic data to
experimental spectra, it is very important to validate the
theory such that the computational spectra can faith-
fully reproduce experimental spectral features. To this
end, we compare FEFF spectra with experimental spec-
tra on a small number of oxides: K6Ti2O7, rutile (TiO2),
MnCr2O4, MnCO3, CoAlO4 and Co(AsO4)2 in Figure 4.
This list is not meant to be exhaustive. Within this
small sample, while the overall shape and major peaks
are well reproduced by FEFF, there are noticeable differ-
ences in the spectral details, including the peak positions
and relative intensities of different peaks. Furthermore,
the degree of agreement is system-dependent. As shown
in Figure 4, the optimal Pearson correlation coefficients
(PCCs) between FEFF and experiment range from 0.92

to 0.98.
Despite the relatively high PCC scores, MLCs trained

on spectra at the FEFF level of theory as such cannot
reliably classify experimental spectra. It is necessary to
generate the computational XANES database with more
accurate methods and conduct a systematic benchmark
of theory against experiment. However, the computa-
tional expense of these calculations grows quickly with
the complexity of the methods, which could in practice
limit the level of theory used to generate the training set.
A good compromise would involve developing robust ML
algorithms for a physically sound but numerically imper-
fect training set. It may also be possible to augment the
computational spectral database with a subset of exper-
imental data and apply ML techniques that can handle
a hybrid database, such as transfer learning.

Another open question in computational XANES is
the edge alignment of computational spectra with experi-
mental spectra, because current first-principles electronic
structure methods have difficulty predicting accurate ab-
solute onset energies. This issue stems from the use of
pseudopotentials and/or approximations to the electron
self-energy and core-hole final state effects. Therefore,
XANES calculations are often analyzed with the relative
energy scale or after they are manually aligned with ref-
erence experimental spectra. However, the energy shift
in the spectral alignment with respect to reference exper-
imental spectra could be system-dependent, which war-
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FIG. 4. Comparison between representative experimental
(solid) and FEFF (dashed) XANES spectra. FEFF calcula-
tions are shifted on the energy axis to maximize such that the
Pearson correlation coefficient (PCC) in order to find the best
match between experimental and theoretical XANES. The ex-
perimental spectra of K6Ti2O7 and rutile were extracted from
Farges et al.21, and the experimental spectra of both pairs of
Mn and Co oxides from Manceau et al.69.

rants further study.

In order to investigate the impact of the edge align-
ment on the performance of MLCs, we shift the test set
by up to ±3 eV to study the transferability of MLCs
against the shifted data. We note that a shift of 3 eV
in energy is quite significant, as the energy range of the
pre-edge region is about 10 to 15 eV. As shown in Fig-
ure 5, the MLCs are very robust against the energy shift,
as the F 1(∆E) curves are almost flat. The CNN slightly
outperforms MLP with F 1(CNN)> 0.8 in most of the
range of ∆E for all eight elements. The robustness of
the MLCs results from the data augmentation we ap-
plied in the training set with energy shifts of ±1 and ±2
eV as described in the Section II. If we apply the same
test on MLCs developed from the base training set with-
out data augmentation, the accuracy deteriorates quickly
after |∆E| > 1 eV, as shown in Figure 5.

Additionally, we have seen that the spectral intensity
of theoretical XANES spectra may not match perfectly
with experiments. On top that, the intensity of exper-
imental XANES spectra is subject to several uncertain-
ties from sample preparation and various instrumental
factors, such as type and mosaic spread of the monochro-
mator crystals, source sizes, slit heights and beam insta-
bilities21 and the resolution of the apparatus70. There-
fore, experimental spectra of the same materials that are
measured using different samples or collected at different

FIG. 5. F 1 score as a function of the amount of energy shift
(∆E) applied to the test set. The two graphs on the left
illustrate the results of MLCs trained on augmented data (as
presented thus far: ±1 and 2 eV, generating 5 times the base
amount of training data), while those on the right illustrate
MLCs trained without augmenting the training set.

FIG. 6. F 1 score as a function of the standard deviation (σ)
used to generate Gaussian random noise, introduced into ev-
ery point E in the spectra µ(E). The two graphs on the left
illustrate the results of MLCs trained on a training set aug-
mented with Gaussian random noise of σ = 0.03 (also gener-
ating 5 times the base amount of training data), and those on
the right illustrate MLCs trained without data augmentation.
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beamline settings may have slightly different intensity
profiles. To investigate the impact of the uncertainties in
the spectral intensity on the MLCs, we introduced Gaus-
sian random noise with standard deviation σ to the spec-
tral intensity centered around µ(E) for every E on the
energy grid. To isolate the effects of the Gaussian random
noise, we test the MLCs trained without augmentation
accounting for the energy shift. As shown in Figure 6, the
overall F 1 score decays quickly with the increasing σ in
both the CNN and MLP, with V trained using the CNN
suffering the most. After we augmented the training set
with spectra containing the Gaussian random noise with
σ = 0.03, the F 1 score decays much more slowly with
increasing σ.

From the analysis above, one can clearly see that MLCs
perform dramatically better when the training set is aug-
mented, which is a sensible result. It is interesting to note
that the CNN underperforms relative to the MLP with-
out data augmentation, specifically for early transition
metals that exhibit strong pre-edge peaks. For exam-
ple, the F 1 score of the unaugmented CNN for Ti and
V drops to ∼ 0.45 and 0.25, respectively, at σ = 0.1.
This trend is not entirely counterintuitive for two rea-
sons. First, the CNN as described in Subsection II.C is
not completely shift-invariant, and without proper data
augmentation it may not learn how to account for small
perturbations. Second, as shown in Table III, the CNN
relies more on the pre-edge region than the MLP. Since
shifting the location of the pre-edge peak strongly affects
the pre-edge spectral features, a sizable drop in perfor-
mance is to be expected. A similar argument may be
made for the effects of Gaussian random noise, which can
artificially distort both the shape and location of peaks.

IV. CONCLUSION

We propose a new computational framework to per-
form element-specific classification of local chemical en-
vironments from XANES spectra. In addition to the con-
struction of structure and spectral databases and struc-
tural labels, a central element of this framework is un-
raveling the correlation between spectral features and lo-
cal chemical environments systematically using machine
learning classifiers. As proof-of-principle, we applied our
method to the computational XANES database of eight
3d transition metal elements generated by the FEFF code
and achieved a high average macro F1 score of 0.86.
Our method can reliably capture not only the promi-
nent pre-edge features, but also the less characteristic
spectral features beyond the pre-edge region. We showed
that features beyond the pre-edge region turn out to be
very important to the accuracy of the classification, es-
pecially for late transition metal elements. The ability
to extract key structural information in the full spectral
range makes our machine learning-based method more
robust and transferable than empirical fingerprint meth-
ods based solely on the pre-edge region. As an important

starting point, our work will motivate future research on
the problem of classification of local chemical environ-
ments on experimental measured spectra.
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