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Abstract 
 
Heterogeneous nanosystems offer a robust potential for manipulating various functional material 
properties, beyond those possible of their individual constituent materials. We demonstrate the 
formation of a new class of materials with a homogeneous lattice but spatially heterogeneous 
electrical functionality; specifically, we develop epitaxial modulation-doped thin films in which 
the spatial separation of electronic charge densities is achieved without perturbing the parent 
crystal’s compositional or structural homogeneity.  Unlike the previous realizations of 
modulation doping in crystals, our materials demonstrate periodic layering of spatially 
segregated, varying electronically donor-doped regions in a single compositionally and 
structurally homogenous single crystalline lattice.  We demonstrate the formation of 
“Modulation-Doped Epitaxial Crystals” (MoDECs) using alternating layers of doped cadmium 
oxide, and the ability to spatially confine regions of variable carrier concentration via low 
potential energy barriers in a spatially homogeneous, epitaxial crystal with a chemically and 
structurally homogenous lattice (i.e., no chemical or structural lattice interfaces).  The low 
potential energy that confines electrons within the doped layers coupled with the crystalline 
nature of the MoDECs and lack of lattice interfaces presents an unprecedented platform to study 
the electron thermal boundary resistances at low energy electronic barriers. We find that the 
electron interfacial density does not impede thermal conductivity, despite evidence that the 
doped layers retain their carrier concentrations.  Thus, the negligible thermal boundary 
resistances at the electronic interfaces result in the thermal conductivities of the MoDECs being 
related to only a series resistance sum of the thermal resistances of each of the individual layers, 
with no thermal resistances from the electronic boundaries that maintain charge separation.  This 
is in stark contrast with other nanoscale multilayer materials, where thermal boundary resistances 
at the internal material interfaces reduce the thermal conductivity of the multilayer compared to 
that of the parent materials. The ability to modulation dope epitaxially grown films with no 
structural heterogeneity in the lattice will further enable unique platforms for mid-IR photonics, 
such as hyperbolic metamaterials, optical filters with spatially-discrete optical absorption, or 
energy harvesting based on charge injection across modulation-doped interfaces.   
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Superlattices and other periodic material multilayers are arguably the some of the most studied 

nanostructures in terms of their functional properties.  This unique class of nanomaterials has 

attracted considerable attention over the past few decades since they provide the ability to 

manipulate material properties at the length scales of the fundamental carriers of energies.  For 

example, the periodic patterning of alternating non-metals and/or metals, with periodicities on 

the order of nanometers to micrometers, has led to impeccable control over photon, electron 

and/or phonon transport that has resulted in promising solutions for thermoelectric devices,1,2 

quantum cascade and vertical cavity surface emitting laser diodes,3-6 amplified photodetectors,7-

11 and radiation resistant coatings.12,13 

 

Along these lines, the electronic and thermal transport properties of superlattices have been of 

fundamental interest to study unique properties of electrons and phonons.  For example, 

researchers have used metal-metal superlattices to validate the Wiedemann-Franz Law at 

interfaces,14 and demonstrate the exceptionally large electron-electron thermal boundary 

conductance across metal/metal interfaces.12,13 In non-metal/non-metal superlattices, a wealth of 

studies have demonstrated the strong reduction in thermal conductivity that can occur due to 

phonon-boundary scattering,15-20 while more recent works have experimentally demonstrated a 

combination of ballistic and coherent phononic transport that can occur in these periodic 

structures,5,20 along with the existence of a minimum in the thermal conductivity as a function of 

period thickness.21 These unique phonon processes, the observation of which is enabled by the 

nanoscale design of the superlattices, provide evidence of mini-band formation and shed insight 

into the wave-particle duality of phonons.22 
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A more multi-functional form of compositionally layered semiconductor systems requires 

judicious doping of the semiconductor layers in constructing tailored photonic interactions or 

electronic transport.  In particular, modulation doping of individual material layers in these 

superlattices, which leads to spatial separation of free carriers,23,24 has demonstrated the potential 

for improved functionality, such as an increased thermoelectric response using modulation-

doped superlattices.25 Moving beyond compositionally heterogeneous layered structures, 

modulation doping has been realized in 3D solid solutions by varying cation compositions (e.g., 

(BixSn1-xSe)1+δTiSe2)26 or by creating two-phase composites with doped and undoped 

nanoregions (e.g., BiCuSeO and Bi0.75Ba0.25CuSeO, or SiGe and Si).27-29 In the former of these 

cases, the anisotropy, orientation, and natural layering of the crystalline unit cell enabled 

modulation doping, where in the latter case, lattice interfaces between the two phases in the 

three-dimensional matrix facilitated carrier segregation.  In the case of modulation-doped 

BiCuSeO/Bi0.75Ba0.25CuSeO composites,27 the sample is actually a two-phase composite with the 

modulation doping enabled by carrier delocalization across the grain boundaries (i.e., crystalline 

disorder) separating the BiCuSeO matrix and the Bi0.75Ba0.25CuSeO inclusions. In fact, all 

previous modulation-doped materials required interfaces and boundaries in the crystalline lattice 

(e.g., interfaces in superlattices, anisotropy in layered compounds, and phase boundaries in 

nanocomposites) to ensure that the free carrier regions are both spatially and chemically 

separated from the donor regions or regions with lower carrier concentrations.  Modulation 

doping in a high-quality single crystal with a structurally and chemically homogeneous lattice 

with only spatially varying charge has never been realized, to the best of our knowledge. 
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Here, we report on the charge and heat transport processes in a new class of epitaxial 

modulation-doped thin films in which the spatial separation of electronic charge densities is 

achieved without perturbing the parent crystal’s compositional or structural homogeneity.  

Unlike the previous realizations of modulation doping in crystals, our materials demonstrate 

periodic layering of spatially segregated, varying electronically donor-doped regions in a single 

compositionally and structurally homogenous single crystalline lattice; in other words, while 

these modulation-doped single lattice films contain discrete and sharp electronic boundaries, 

they do not contain any morphological or chemical boundaries or interfaces in the lattice.  Thus, 

we refer to these modulation-doped nanomaterials as “Modulation-Doped Epitaxial Crystals” 

(MoDECs).   

 

We demonstrate the formation of MoDECs using superlattices comprised of alternating layers of 

yttrium-doped and intrinsic (unintentionally/oxygen vacancy-doped) cadmium oxide (Y:CdO 

and i-CdO, respectively).  The small electronic potential that confines electrons within the doped 

layers, coupled with the epitaxial and crystalline nature of the MoDECs and lack of lattice 

interfaces, presents an unprecedented platform to study charge transport and the electron thermal 

boundary resistances across electronic interfaces. It is well known that structural boundaries in 

an otherwise crystalline lattice or interfaces between chemically dissimilar crystals can give rise 

to phonon scattering events and phonon thermal boundary resistances that reduce the thermal 

conductivity of the composite material.15,30-36 In our MoDECs, with an order of magnitude 

electronic contrast between each layer, but less than 1% chemical contrast, these phonon-phonon 

interfacial resistances are nominally absent, offering unimpeded phonon thermal conductivity in 

these single crystalline systems.  We note that doping CdO leads to an increase in electronic 
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thermal conductivity and a corresponding decrease in the phonon contribution to thermal 

conductivity.37 The thermal conductivity of intrinsic CdO is dominated by phonon transport with 

only a minor contribution from electrons.37 While increasing the dopant concentration in CdO to 

improve the electronic-based functionality will reduce the phonon contribution to thermal 

conductivity, this phononic contribution can still play a non-negligible role in heat conduction, 

depending on the atomic densities of the dopant atoms.37 Thus, phonon conduction that is 

unimpeded by interfaces can offer improved temperature regulation and thermal management in 

devices based on MoDECs. 

 

However, given the presence an electronic superlattice with periodically varying carrier 

concentration and electronic mobility, a question arises: do these electronic interfaces impede 

electronic and/or thermal transport, and what are the primary heat transport processes that dictate 

the thermal conductivity of MoDECs? Given that both the i-CdO and Y:CdO constituents have 

fairly high electronic conductivity, the thermal conductivities of i-CdO/Y:CdO MoDECs are 

expected to contain significant electronic contributions.37 Here, we aim to determine if the 

electric potential that confines electrons within the Y:CdO layers presents additional electronic 

or thermal resistances to the overall material. We not only find that i-CdO and Y:CdO layers are 

perfectly electronically coupled, but also that modulation doping enhances electronic mobility 

within one or both constituents by up to 15%. Our analysis further suggests that the thermal 

boundary resistances across the low potential energy electronic interfaces are negligible, and the 

thermal conductivity of MoDECs are controllable based on the electronic thermal conductivities 

of the doped layers comprising the sample.  The thermal conductivities of the MoDECs samples 

range from ~8 – 12 W m-1 K-1, depending on volume fraction of the yttrium doped cadmium 
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oxide in the MoDECs.  These thermal conductivities can be described from a series resistance 

model of the diffusive thermal resistances of the parent materials comprising the individual 

layers of the MoDECs, with negligible influence of the thermal boundary resistances at the 

electronic i-CdO/Y:CdO interfaces.   

 

To the best of our knowledge, nanoscale multilayer films made up of parent materials that have 

notably different transport properties yet composite thermal conductivities that exhibit negligible 

influences from the thermal boundary resistances at the internal interfaces have never been 

previously realized.16 Indeed, even in the case of metal/metal multilayers, where thermal 

boundary resistances at the metal/metal interfaces are some of the lowest values ever measured 

for solid/solid interfaces (~ 0.07 – 0.25 m2 K GW-1), the thermal conductivities of the 

metal/metal composites are substantially reduced compared to the thermal conductivities of the 

parent materials comprising the multilayers.12-14 This marks a unique thermophysical property of 

the MoDECs that is enabled by the lack of lattice interfaces, yet electronic potential barriers that 

can maintain spatial charge segregation via an interface with negligible impact on thermal 

transport (i.e., negligible thermal boundary resistances).   

 

We recently demonstrated that doped-CdO thin films exhibit strong, tunable, and low-loss 

plasmonic absorption in the mid-IR thanks to their exceptionally high electronic motilities,38,39 

offering unique opportunities for mid-IR plasmonic and photonic devices. Modulation-doped 

CdO systems will further enable unique platforms for mid-IR photonics, such as hyperbolic 

metamaterials,40,41 optical filters with spatially-discrete optical absorption,42,43 or energy 

harvesting based on charge injection across modulation-doped interfaces.28   
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We grew i-CdO/Y:CdO superlattices on r-plane (012) sapphire at 455 °C via reactive high 

impulse power magnetron sputtering (HiPIMS) of a 2-inch pure metallic Cd (99.9999%) target in 

a mixed Ar/O2 atmosphere (20/14.4 sccm, 10 mTorr). Doping was achieved by applying RF 

(13.56 MHz) power to a 2” metallic yttrium target affixed to a magnetron sputtering source to 

achieve a target nominal yttrium dopant concentration of n = 2.1x1020 cm-3 in the CdO. To grow 

MoDECs, we first deposited a heteroepitaxial i-CdO or Y:CdO layer with thickness controlled 

by deposition rate as calibrated by x-ray reflectivity (XRR). The subsequent alternating 

doped/intrinsic superlattice layers were grown homoepitaxially, with thickness controlled by 

calibrated sputtering rates, and doping controlled by a shutter on the yttrium source. Following 

deposition, the samples were annealed at 700°C under 1 atm O2 for 30 minutes to maximize 

oxygen uptake. X-ray diffraction (XRD) symmetric 2θ-ω scans and rocking curves (Fig. 1a-b) 

confirm that the MoDECs are indeed epitaxial/crystalline, with crystalline quality directly 

comparable to i-CdO and Y:CdO monolayer reference samples. Annular dark-field scanning 

transmission electron microscopy (ADF STEM) of a modulation-doped sample, grown on c-

plane (0001) sapphire, finds no evidence for structural changes induced by dopant layering in 

sputtered CdO films.  In the low magnification ADF STEM image Fig. 1c, a vertically-oriented 

white bar of length 20 nm is centered on the position where doping transitions from i:CdO to 

Y:CdO, though this leads to no identifiable changes in image. A higher magnification 

micrograph acquired in the region marked with the black overlay shows no discernable changes 

in the atomic-scale structuring of the CdO lattice across the interface.  This is consistent with our 

previous work,44 where we show that the addition of Y-doping in CdO films has minimal effect 

on both the in- and out-of-plane lattice parameters of CdO.  Furthermore, from our XRD data in 
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Fig. 1, we determine a lattice parameter in our samples of 4.694 Å, within 0.05% of the bulk 

lattice constant of CdO,45 and within our experimental uncertainty.  Additionally, the 

overlapping rocking curves of the various MoDECs and reference CdO films in Fig. 1b suggest 

that the MoDECs are crystallographically indistinguishable from the homogeneous reference 

films.  This suggests that the Y-doping and varying modulation periods of the doped layers have 

negligible impact on the lattice of the films, and that our samples are strain relaxed. 

 

Here, we study MoDECs with 2, 3, 5, 9, or 18 alternating layers, which corresponds to interface 

densities of 0.0056 nm-1, 0.011 nm-1, 0.022 nm-1, 0.044 nm-1, and 0.094 nm-1, respectively. The 

total thickness of each MoDECs is nominally 180 nm, with the thickness of the constituent layers 

controlled so that total volume of i-CdO and Y:CdO is constant across each MoDECs sample set. 

We grew three different sample sets, with i-CdO to Y:CdO thickness ratios of 1:3, 1:1, and 3:1, 

hereafter referred to as (CdO)0.25/(Y:CdO)0.75, (CdO)0.5/(Y:CdO)0.5, and (CdO)0.75/(Y:CdO)0.25. 

Table 1 contains further description of each MoDECs, including the nominal thickness of each 

layer. We additionally grew two 180 nm-thick single layer thin films of i-CdO (n = 1.9x1019 cm-

3; µ = 355 cm2/V·s) and Y:CdO (n = 2.1x1020 cm-3; µ = 423 cm2/V·s) as reference samples, 

where n is the carrier density and μ is the mobility. Prior to measuring the thermal conductivity 

of each sample, we deposited 80 nm of Al on the film surface using electron beam evaporation. 

The overall thicknesses of each sample and the Al transducer were measured using XRR.  

 

We quantified the electronic properties of each sample via Hall Effect measurements. Figure 2a 

shows that all of the MoDECs samples are conductive, with well-delineated conductivities that 

are similar to the conductivity of single layers grown with the equivalent average carrier 
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concentration of the MoDEC, i.e., the (CdO)0.25/(Y:CdO)0.75 samples have a nominal average n = 

0.25(1.9x1019 cm-3) + 0.75(2.1x1020 cm-3) = 1.5x1020 cm-3. Notably, the electronic conductivity 

of each MoDECs is clearly enhanced relative to single layer films, especially in the 3- to 9-layer 

superlattices. Hall effect measurements reveal that this conductivity enhancement arises 

primarily from an increased overall electronic mobility in multilayer samples, while the carrier 

concentration follows the law of averages. Based on a multilayer model for Hall effect 

measurements (Supplemental Material),46 this effect is a clear signature of strong electronic 

coupling between the i-CdO and Y:CdO layers, with negligible resistance at the electronic 

interface.47,48 Furthermore, our multilayer electronic model shows that the increased mobility 

measured over the full MoDECs stacks can only be explained by either a simultaneous mobility 

enhancement of up to 17% across both of the i-CdO/Y:CdO constituents, or a mobility 

enhancement of up to 68% within one constituent. Considering that the mobility enhancement is 

greatest in the (CdO)0.75/(Y:CdO)0.25 samples, we speculate that through modulation doping, 

Y:CdO layers donate electrons to the i-CdO layers in the vicinity of the electronic interface to 

neutralize ionized point defects; our model predicts an effective 68% mobility increase within 

the i-CdO layers from 355 cm2/V·s to 596 cm2/V·s in the most extreme case. While microscopic 

evidence for this hypothesis is beyond the scope of this report, a similar effect, with a four-fold 

mobility increase, has already been observed at SnTe/CdO interfaces.47 Finally, finite-element 

simulations (COMSOL Multiphysics®, Fig. 2b) of Poisson’s equation in i-CdO/Y:CdO 

MoDECs confirm that electronic charge is localized within individual layers in our MoDECs 

films. Because of the large and degenerate electron concentrations throughout the MoDECs 

thickness, and because the electron concentration of the Y:CdO layers is more than an order of 

magnitude larger than in the i-CdO layers, the depletion/accumulation regions in the superlattices 
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is exceptionally short, on the order of 1 – 5 nm. Thus, over the thickness of the MoDECs, the 

carrier concentration is expected to have a strongly localized box-like profile. The 18-layered 

MoDECs are an important exception, as the layers become thin enough that the 

depletion/accumulation lengths are comparable to the layer thickness (Supplemental Material).46 

Importantly, IR-reflectivity measurements of our MoDECs, along with Drude model-based fits 

using the transfer matrix method, allowed us to experimentally confirm charge separation and 

rule out dopant/carrier intermixing by diffusion (Supplemental Material).46 

 

We measured the thermal conductivities of each MoDEC using Time Domain Thermoreflectance 

(TDTR).12,32,49-51 Details of our TDTR measurements and analysis are found in the Supplemental 

Material.46 The thermal conductivities of the CdO-based MoDECs and calibration films are 

shown in Fig. 2c. We note that all thermal conductivities reported in this work represent the 

thermal conductivity in the cross-plane direction, perpendicular to the interfaces.  

 

We measure the cross-plane thermal conductivity of the intrinsic and doped CdO control films as 

8.2 and 12.1 W m-1 K-1, respectively.  Using the Wiedemann-Franz law applied to our in-plane 

electrical conductivity measurements (Fig. 2a), we then estimate the in-plane electron thermal 

conductivity of the i-CdO and Y:CdO films as 0.8 and 10.4 W m-1 K-1, respectively. Thus, this 

suggests that the thermal transport in the intrinsic layers are primarily dominated by phonon 

conduction, where electrons contribute to the majority of thermal conductivity in the doped 

layers (i.e., >80% of the total thermal conductivity is from electrons in the doped layers).  This is 

consistent with our previous findings on Dy-doped CdO.37 Given the cubic symmetry of CdO 

and ability to separate the influence of film/substrate interfaces from the intrinsic cross-plane 
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thermal conductivity of these CdO films, comparing the in-plane-derived electron thermal 

conductivity to the TDTR-measured total thermal conductivity is acceptable for estimating the 

relative electron and phonon contributions to thermal conductivity.   

 

The general trend among all MoDEC samples is that the thermal conductivity changes with 

increasing interface density relative to the i-CdO and Y:CdO controls up to about 0.02 

interfaces/nm, at which point the thermal conductivity is relatively constant.  However, the way 

in which the thermal conductivity changes with interface density depends on the relative 

thicknesses of the doped and undoped layers.  For example, increasing interfacial density reduces 

the thermal conductivity of the (CdO)0.25/(Y:CdO)0.75 samples relative to the Y:CdO control. 

Conversely, the thermal conductivity is higher in the (CdO)0.75/(Y:CdO)0.25 and 

(CdO)0.50/(Y:CdO)0.50 samples relative to the intrinsic CdO control. Above an interface density 

of 0.02 interfaces/nm, the thermal conductivities of the (CdO)0.75/(Y:CdO)0.25 and 

(CdO)0.50/(Y:CdO)0.50 are relatively similar and lower than that of the (CdO)0.25/(Y:CdO)0.75.  

 

In previous works studying the thermal conductivity of multilayers and superlattices, the thermal 

conductivities of these systems are always lower than those of the individual materials that 

comprise the structures.  For example, in Cu/Nb and Pt/Ir multilayers, the thermal conductivities 

are less than that of Cu and Nb, or Pt and Ir, respectively.13,14 This is due to the electron thermal 

boundary resistances at the metal/metal interfaces that drive down the total thermal conductivity 

of the multilayers films.13,52,53 The same holds true with metal/nonmetal54-56 and non-metal/non-

metal5,16,19,21,57 superlattices, where in these cases the phonon thermal boundary resistances 

typically play the dominant resistor role. In the case of our MoDECs, we see a different trend: 
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simply increasing the volume fraction of the higher thermal conductivity material that comprises 

the MoDEC leads to an increase in thermal conductivity.  This implies that any potential 

interfacial resistances in the electronic or phononic sub-systems in the MoDECs are negligible 

(i.e., electron-electron, electron-phonon, phonon-phonon).   

 

To test this hypothesis, we measured the thermal conductivity of a series of films with equivalent 

carrier densities as the average carrier concentrations in the MoDEC films, as they should have 

an equivalent contribution from the carriers, without any potential barriers from the electronic 

interfaces.  Figure 3 shows the thermal conductivity of the Y:CdO films as a function of average 

carrier density in the CdO.  In line with our previous experiments, the thermal conductivity of the 

CdO increases with carrier density due to an increase in the electronic contribution to thermal 

conductivity.37,38 Also shown in Fig. 3 are the thermal conductivities of the MoDECs samples 

from Fig. 2 plotted as a function of average carrier density across the entire sample thickness.  

We determine the carrier densities of the MoDECs by performing a weighted average of the 

carrier concentrations of the yttrium doped and intrinsic regions based on the volume fraction of 

each layer.  The thermal conductivities of these MoDECs are calculated by averaging the thermal 

conductivity data in Fig. 2 over all samples with an interface density greater than or equal to 0.02 

interfaces/nm, where the error bars represent the standard deviation among these data. 

 

The similarities between the MoDEC samples and the single-layer samples with equivalent 

carrier densities suggest that the electronic interfaces that exist between the Y-doped and 

intrinsic CdO layers do not pose any appreciable resistance to heat transport.  Furthermore, as 

previously mentioned, since there are no lattice interfaces or changes in crystallinity in the 
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MoDEC samples, a phonon thermal boundary resistance does not exist in these samples.  Thus, 

our experimental data suggest that the thermal conductivities of these MoDECs are driven by 

parallel phononic and electronic contributions, with the electronic portion dictated by the 

summation of the electronic contributions in both the intrinsic and yttrium-doped layers. 

 

To support this conclusion, we model the thermal conductivity of the MoDECs using a series 

thermal resistance approach, where ߢெ௢஽ௌ௜௅ி ൌ ௗ೟೚೟ೌ೗ோ೟೚೟ೌ೗ ൌ ሺܴ௒:஼ௗை ൅ ܴ௜ି஼ௗை ൅ ܴ௜௡௧ ሻିଵ    ሺ1) 

where dtotal is the total thickness of the MoDEC and Rtotal is its thermal resistance of the MoDEC 

sample, RY:CdO is the thermal resistance of the yttrium-doped CdO layer, Ri-CdO is the thermal 

resistance of the intrinsic CdO layer, and Rint is the thermal boundary resistance at the Y:CdO/i-

CdO interface; this model is graphically depicted in Fig. 3a.  From our previous discussion, we 

assume Rint = 0, thus Eq. (1) becomes 

ெ௢஽ௌ௜௅ிߢ ൌ ሺܴ௒:஼ௗை ൅ ܴ௜ି஼ௗை ሻିଵ ൌ ቀௗೊ:಴೏ೀ఑ೊ:಴೏ೀ ൅ ௗ೔ష಴೏ೀ఑೔ష಴೏ೀ ቁିଵ     ሺ2) 

where d is the total thickness of the Y:CdO or i-CdO layers in the sample.  Calculations of Eq. 

(2) are shown in Fig. 3 (solid blue line), where we assume κY:CdO = 12.0 ± 1.7 W m-1 K-1 and κi-

CdO = 8.3 ± 0.9 W m-1 K-1 from the calibrations shown in Fig. 2; the dashed lines are the 

calculations of Eq. (2) when accounting for the uncertainty in κY:CdO and κi-CdO.  The agreement 

between our model calculations and experimental data on the MoDEC support our hypothesis 

that Rint = 0.  Thus, in our MoDEC, the series contribution to the thermal conductivity of the 

electrons from each layer behave as isolated resistors, and the sum of all the resistors dictate the 

overall resistance of the structure, with negligible resistance from the potential barrier at the 

Y:CdO/i-CdO interface.  Stated differently, a rule of mixtures adequately describes the overall 
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thermal resistance of the MoDEC, similar to the heat transport processes in more traditionally 

studied superlattices.   

 

Based on our discussion above, we can estimate a maximum resistance associated with the 

electronic potential barrier at the Y:CdO/i-CdO interface.  In the highest interface density 

samples, the average thicknesses of the Y:CdO and i-CdO layers are 10 nm.  This corresponds to 

thermal resistances of each layer of RY:CdO = 10x10-9/κY:CdO = 0.8 m2 K GW-1 and Ri-CdO = 10x10-

9/κi-CdO = 1.2 m2 K GW-1, yielding a MoDEC resistance of 2.0 m2 K GW-1.  To yield a non-

negligible change in total resistance of the MoDEC, which we assume as a ~18% change based 

on the uncertainties reported in our calculations of Eq. (2) and shown in Fig. 3b, the thermal 

resistances at the Y:CdO/i-CdO interfaces must be greater than Rint > 0.4 m2 K GW-1 (rounding 

up based on precision).  Thus, we estimate that the maximum possible thermal resistance at these 

Y:CdO/i-CdO interfaces is 0.4 m2 K GW-1.  Stated differently, the lowest possible electron 

thermal boundary conductance across the electronic potential barrier formed at the Y:CdO/i-CdO 

interface is 2.5 GW m-2 K-1, a relatively high thermal boundary conductance that is typical for 

interfaces between two regions of different electronic carrier concentration, and consistent with 

prior works studying the thermal boundary conductance across metal/metal interfaces.12-14 

 

In summary, we have demonstrated the formation of a new class of epitaxial modulation-doped 

thin films in which the spatial separation of electronic charge densities is achieved without 

perturbing the parent crystal’s compositional or structural homogeneity.  Unlike the previous 

realizations of modulation doping in crystals, our materials demonstrate periodic layering of 

spatially segregated, varying electronically donor-doped regions in a single compositionally and 
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structurally homogenous single crystalline lattice.  We form these “Modulation-Doped Epitaxial 

Crystals” (MoDECs) using alternating layers of doped/intrinsic cadmium oxide, and from this, 

our work demonstrates the ability to spatially confine regions of variable carrier concentration 

via low potential energy barriers in a spatially homogeneous, single crystal with a chemically 

and structurally homogenous lattice (i.e., no chemical or structural lattice interfaces).  The low 

potential energy that confines electrons within the doped layers coupled with the single crystal 

nature of the MoDECs and lack of lattice interfaces presents an unprecedented platform to study 

the electron thermal boundary resistances at low energy electronic barriers.  We measure the 

cross plane thermal conductivity of an array of MoDECs with different electronic interfaces 

densities and assess the various heat transport mechanisms, including the role of the electronic 

interfaces separating the variably-doped regions.  We find that any potential thermal boundary 

resistances in the electronic or phononic sub-systems in the MoDECs are negligible, the series 

contribution to thermal conductivity of the electrons from each layer behave as isolated resistors, 

and the sum of all the resistors dictate the overall thermal resistance of the structure with 

negligible resistance from the potential barrier at the Y:CdO/i-CdO interface.  This is in stark 

contrast with other nanoscale multilayer materials, where thermal boundary resistances at the 

internal material interfaces reduce the thermal conductivity of the multilayer compared to that of 

the parent materials.  This marks a unique thermophysical property of the MoDECs that is 

enabled by the lack of lattice interfaces, yet electronic potential barriers that can maintain spatial 

charge segregation via an interface with negligible impact on thermal transport (i.e., negligible 

thermal boundary resistances).  Based on the resistances of the individual layers in the MoDECs, 

we estimated the maximum possible thermal boundary resistance as 0.4 m2 K GW-1 (or a 

minimum possible thermal boundary conductance 2.5 GW m-2 K-1), ensuring that the thermal 
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resistance across the electronic potential barrier remains relatively negligible as compared to the 

thermal resistances of the layers in the MoDECs.  This low value of electron-electron thermal 

boundary resistance is consistent with those measured across metal/metal interfaces. The ability 

to modulation dope these MoDECS systems and systematically tune their thermal resistances 

will further enable unique platforms for mid-IR photonics, such as hyperbolic metamaterials, 

optical filters with spatially-discrete optical absorption, or energy harvesting based on charge 

injection across modulation-doped interfaces.  
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Figure 1. a) 2ߠ െ ߱ scan of the (002) peak of the CdO MoDEC on sapphire. b) Rocking curves 
of the (002) CdO peaks for both single species films and layered MoDECs. There is little to 
negligible difference in crystallinity between the MoDECs and the CdO films, indicating the 
MoDECs are single crystalline. c) TEM of 3 layer MoDECs, which shows no lattice distortion at 
the doped layers, further confirming the highly crystalline quality of these materials. ADF STEM 
images of an i:CdO/Y:CdO heterostructure interface grown on c-sapphire with no evidence of 
structural changes induced by doping. The high magnification images were recorded the region 
of the black rectangular overlay. Doping initiates in the vicinity of the center of the 20 nm long 
vertically oriented white bar.  Taken together, the XRD and TEM characterization suggest that 
the MoDECs are crystallographically indistinguishable from the homogeneous reference films 
and the Y-doping and varying modulation periods of the doped layers have negligible impact on 
the lattice of the films. 
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Figure 2. a) Conductivity vs. interfacial density of MoDECs, as measured by Hall measurements. 
Conductivity scales with overall concentration of carriers. b) Finite-element simulations of 
Poisson’s equation for a five layer CdO MoDEC, showing carriers are well confined to the more 
highly doped layers. c) Thermal conductivity of all three MoDEC sample series. The thermal 
conductivities of all MoDECs lie in-between the thermal conductivities of the single species 
control films.  
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Figure 3. a) Thermal resistance model for a MoDEC. The total thermal resistance of a MoDEC 
sample (Rtotal) is the sum of the resistances of each layer, and the thermal boundary resistances at 
the interfaces. b) The blue line is the calculated thermal conductivity of a MoDEC with a 
concentration of Y:CdO going from 0-100% calculated via. Eq. 2 (where the dotted lines 
represent the uncertainty of this calculation), assuming Rint = 0. The black squares are the 
average thermal conductivities of the three different MoDEC series. The red circles are the 
thermal resistance of single species CdO films with a comparable carrier concentration as the 
corresponding MoDEC. The agreement confirms that the electronic interfaces offer negligible 
thermal resistance.  
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Table 1: Nominal thicknesses of each layer in the MoDEC superlattice samples. 
 (CdO)0.25/(Y:CdO)0.75 (CdO)0.5/(Y:CdO)0.5 (CdO)0.75/(Y:CdO)0.25 

2 layers 
Al2O3 // 
135 nm Y:CdO // 
45 nm i-CdO 

Al2O3 // 
90 nm Y:CdO // 
90 nm i-CdO 

Al2O3 // 
45 nm Y:CdO // 
135 nm i-CdO 

3 layers 

Al2O3 // 
22.5 nm i-CdO // 
135 nm Y:CdO // 
22.5 nm i-CdO 

Al2O3 // 
45 nm i-CdO // 
90 nm Y:CdO // 
45 nm i-CdO 

Al2O3 // 
67.5 nm i-CdO // 
45 nm Y:CdO // 
67.5 nm i-CdO 

5 layers 

Al2O3 // 
[15 nm i-CdO // 
67.5 nm Y:CdO] x2 // 
15 nm i-CdO 

Al2O3 // 
[30 nm i-CdO // 
45 nm Y:CdO] x2 // 
30 nm i-CdO 

Al2O3 // 
[45 nm i-CdO // 
22.5 nm Y:CdO] x2 // 
45 nm i-CdO 

9 layers 

Al2O3 // 
[9 nm i-CdO // 
33.75 nm Y:CdO] x4 // 
9 nm i-CdO 

Al2O3 // 
[18 nm i-CdO // 
22.5 nm Y:CdO] x4 // 
18 nm i-CdO 

Al2O3 // 
[27 nm i-CdO // 
11.25 nm Y:CdO] x4 // 
27 nm i-CdO 

18 layers 
Al2O3 // 
[15 nm Y:CdO // 
5 nm i-CdO] x 9 

Al2O3 // 
[10 nm Y:CdO // 
10 nm i-CdO] x 9 

Al2O3 // 
[5 nm Y:CdO // 
15 nm i-CdO] x 9 

 
 


