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ABSTRACT 
 
Far-from-equilibrium evolution of metallic nanocluster shapes is highly sensitive to the 
atomistic-level details of surface diffusion for diverse local surface configurations. A 
stochastic model was developed incorporating realistic values for the multiple diffusion 
barriers (contrasting previous unrealistic generic prescriptions) based upon insights 
from homoepitaxial film growth. Kinetic Monte Carlo simulation then elucidates the 
conversion of Ag nanocubes to Wulff polyhedra mediated by nucleation of new {100} 
facets, the pinch-off of sufficiently elongated Ag nanorods, and key aspects of sintering 
for orientationally-aligned Ag and Au nanoclusters. The time scale for sintering of Au 
nanoclusters observed in high-resolution transmission electron microscopy studies was 
also recovered. 
 
I. INTRODUCTION 
 

Solution-phase synthesis strategies for formation of three-dimensional (3D) 
crystalline metallic nanoclusters (NCs) have achieved remarkable control of NC 
structure [1,2] enabling fine tuning of properties for applications, e.g., plasmonics or 
catalysis. Note that in such applications, often NCs are removed from the solution-
phase environment. However, NC’s are intrinsically metastable, and thus are vulnerable 
to post-synthesis reshaping towards their equilibrium Wulff shapes. Also, ensembles of 
NCs can coarsen, e.g., via coalescence or sintering of mobile clusters [3,4]. On the 
nanometer scale, it is anticipated that the dominant mass transport mechanism 
facilitating reshaping and sintering is surface diffusion (also sometimes described as 
periphery diffusion) [5,6]. Assessment of the associated equilibration kinetics is 
important to determine robustness of the functionality of NCs. In-situ High-Resolution 
Transmission Electron Microscopy (HRTEM) studies [7-11] are providing increasingly 
high-fidelity imaging of such reshaping phenomena. However, there remains a need for 
realistic and predictive atomistic-level modeling for a more complete understanding of 
some intrinsically nanoscale features of behavior.  

Classic deterministic continuum treatments of reshaping, typically with isotropic 
surface energy and diffusivity [5,12-14] predict that the relaxation time, τeq, for reshaping 
and sintering of macroscopic particles mediated by surface diffusion scales like τeq ~ 
N4/3 for NCs of N atoms. Subsequent theoretical and experimental analyses revealed 
complex phenomena such as void formation near the neck region for sintering particles 
[6], and also pinch-off for elongated shapes [10,15-17] both reminiscent of the Rayleigh-
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Plateau instability. A Langevin version of these formulations might be applied to smaller 
scale objects where fluctuations are more important [18]. However, it is recognized that 
such continuum treatments generally fail to adequately describe evolution on the 
nanoscale, noting that NCs are often strongly faceted [19-21]. This failure also applies 
for 2D epitaxial metallic NCs when linear sizes are below the persistence length of 
straight steps, or below other characteristic lengths determined by the details of the 
periphery diffusion kinetics [22-24]. 

Stochastic lattice-gas models analyzed by Kinetic Monte Carlo (KMC) simulation 
can track the evolution of crystalline NCs over relevant time-scales [19,21,25,26]. Such 
models can in principle incorporate the complex dependence of the activation barriers 
for hopping of surface atoms on the vast array of possible local atomic environments 
(e.g., hopping across facets, along straight step edges and around kinks, and between 
terraces and facets). However, such analyses have previously utilized generic 
prescriptions of these barriers, typically IVA bond-counting where the barrier is 
determined entirely by the coordination in the initial state before hopping [7,19,21]. IVA 
does satisfy detailed-balance guaranteeing evolution to the correct equilibrium structure, 
contrasting some treatments [26]. However, it fails dramatically to capture key features 
of surface diffusion in fcc metal systems. See Appendix A and Ref. [27]. This severe 
failure includes: incorrectly predicting the relative values of barriers for terrace diffusion 
on different facets, and of the barriers for step edge versus terrace diffusion [28]; and 
also neglecting the presence of additional 1D, 2D, and 3D Ehrlich-Schwoebel (ES) 
barriers for rounding of kinks, descent of monoatomic steps, and transport between 
facets [28-30]. These detailed features of surface diffusion are important for reliable 
treatment of NC reshaping. This failure of IVA is also evident when comparing results 
from KMC simulations for the evolution of 2D epitaxial NC shapes based on IVA models 
with those from realistic modeling, or with Scanning Tunneling Microscopy experiments 
[27].   

Furthermore, IVA hopping barriers include an arbitrary constant. This constant is 
often adjusted to fit the experimental timescale for NC evolution [7] but IVA then 
produces unphysical barriers. Alternatively, the constant can be adjusted to fit some 
specific barrier, but then IVA fails to match time scales and appropriate values of other 
barriers. 

In Sec.II, we present our strategy to craft a general formalism which reliably 
describes barriers for diverse surface hopping processes. We will exploit extensive 
insights from experimental and theoretical analyses of homoepitaxial fcc metal film 
growth and relaxation for multiple low-index substrate orientations [28,29] particularly for 
Ag [31-35]. This approach eliminates all of the deficiencies of IVA, and allows prediction 
of actual relaxation time scales. The latter is key for assessing robustness of metastable 
NC structures. In Sec.III, the model is applied to analyze reshaping of Ag NCs. First, we 
consider evolution of Ag nanocubes [1,36] to equilibrium Wulff shapes, which involves 
the erosion of {111} corner facets and nucleation of new {100} side layers. Second, the 
pinch-off of elongated Ag nanorods or nanowires is assessed. In Sec.IV, the model is 
applied for sintering of Ag NC pairs following orientated attachment [37,38] identifying 
for aligned {100} facets distinct early-stage neck filling and late-stage nucleation-
mediated reshaping regimes. In addition, the model is shown to capture the evolution 
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and timescale observed in experimental HRTEM studies for sintering of ~4 nm Au NCs. 
A summary of our analysis is presented in Sec. V.  
 
II. MODEL FORMULATION 
 

We consider crystalline fcc NCs with atoms interacting via an effective nearest-
neighbor (NN) attractive interaction of strength φ > 0. The distance between NN atoms 
will be denoted by ‘a’ which also corresponds to the surface lattice constant so, e.g., a = 
0.289 nm for Ag. The effectiveness of this description is supported by recent analysis in 
which the energy of NCs was decomposed as a sum of energies per atom, En, where 
the En depend on the coordination, n, of the atom. This study demonstrated a near-
linear variation of En with coordination n [39] consistent with a NN interaction model. We 
note that appropriate values of the effective interaction strength, φ, are typically far 
below those extracted from the bulk cohesive energy, Ec. For example, for Ag we will 
set φ = 0.225 eV versus Ec/6 = 0.492 eV (where the latter reflects the feature that each 
bulk atom in a fcc metal can be regarded as having 12 shared bonds with neighbors). It 
should be noted, however, that our choice of φ reasonably recovers surface energies for 
low-index facets for various metals. See Appendix B. In this model, the equilibrium Wulff 
shape of NCs is a truncated octahedron bounded by {111} and {100} facets. The length 
of edges joining {111} facets to {100} facets (a100), and to other {111} facets (a111), are 
equal in the macroscopic regime [40] On the nanoscale, these shapes are most closely 
achieved for certain magic numbers of atoms [41]. Choices with a111 = a100 and with a111 
= a100 +1 (in units of surface lattice constant, a) correspond to local energy minima [40]. 
The number of atoms, NW(a100, a111), in the NC satisfies NW(3,3) = 201, NW(3,4) = 314, 
NW(4,4) = 586, etc. 

Hop rates of surface atoms are selected to have an Arrhenius form, h =                
ν exp[-Eact/(kBT)], for NC temperature T where ν is a common attempt frequency, and 
Eact is the activation barrier. For hopping from an initial (i) site to a final (f) unoccupied 
neighboring fcc lattice site, Ei and Ef, denote to the total interaction energy for the atom 
at these sites. Thus, Ei,f = -ni,f φ for atom coordination numbers ni,f ranging from 1 to 11 
for atoms with ≥1 vacant NN fcc site. ETS denotes the total interaction energy at a 
transition state (TS) for hopping between these sites. Then, activation barrier, Eact(i→f), 
is given by Eact(i→f) = ETS - Ei, where “symmetric” ETS is the same for forward (i→f) and 
reverse (f→i) transitions, thereby ensuring detailed-balance. The standard IVA bond-
counting choice selects constant ETS = CIVA, whereas an alternative Metropolis choice 
selects ETS = CMET

 + max(Ef, Ei). However, we emphasize that both choices very poorly 
represent diffusion on fcc surfaces. See Ref. [27,28] and Appendix A. Thus, instead, our 
choice is a refined version of a symmetric Bronsted-Evans-Polyani (BEP) form [42,43]  

 
ETS = Cα + ½(Ei + Ef), so that Eact = Cα + ½(Ef – Ei),     (1) 
 
where instead of the standard selection of a single Cα, we will assign multiple Cα for 
judiciously selected classes, α, of hops. To satisfy detailed-balance, forward and 
reverse hops are always assigned to the same class, α, and thus have the same Cα. 
Since NN initial and final sites have 4 shared NN sites, and each have another 7 NN 
sites, the occupancy of 18 sites impacts Eact [44]. See Fig. 1a.  
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We consider four basic classes of hopping: terrace diffusion on {100} facets or on 
{111} facets labeled by α =100TD or α =111TD, respectively (Fig. 1b,c); and edge 
diffusion along a {100}-microfaceted A-step or a {111}-microfaceted B-step on a {111} 
facet labeled by α =111A or α =111B, respectively (Fig. 1d,e). It is appropriate to note 
that edge diffusion along a close-packed step on a {100} facet is locally equivalent to 
edge diffusion along an A-step on a {111}-facet, so these are assigned the same barrier 
in our modeling. Independent and separate determination of these barriers indicates 
that this assignment is reasonable [27,28]. Similarly, in-channel terrace diffusion on a 
{110} facet is locally equivalent to diffusion along a B-step on a {111}-facet, so barriers 
are set equal in our modeling, which again is reasonable based upon independent 
analysis [28].  

 

 
 
FIG. 1. (a) 18 sites impacting black atom hopping [44]. 4 sites NN to both initial (i) and final (f) 
sites labeled 1-4. 7 additional sites NN to i (f) are 1i-7i (1f-7f).  Some sites are not visible 
(4i,6i,6f).   (b-e) Four classes of intralayer terrace and edge diffusion.  
 

Each above basic hopping classes is divided into two subclasses. The first 
subclass is intralayer diffusion where both the initial and the final state are fully 
supported at a hollow site created by atoms in the lower supporting layer. Here, Cα 
adopt “base values” Cα = cα. We set 

 
c100TD = 0.425 eV, c111TD = 0.100 eV, c111A = 0.275 eV, c111B = 0.300 eV for Ag,    (2) 
 
effectively capturing actual terrace and edge diffusion barriers for low-index Ag surfaces 
(in marked contrast to the IVA prescription) [28,31-35]. One significant point is that 
some hopping processes involve a transition between an edge atom at the step edge 
(with one or more lateral neighbors) and one on the terrace (with no lateral neighbors). 
In this case, both forward and reverse processes are assigned to the terrace diffusion 
class. 

The second subclass corresponds to interlayer diffusion. First, we consider cases 
where a fully supported atom hops out over a step edge to a site which is not fully 
supported. In such cases, the rate for such a hop can be impacted by ES barriers, δES. 
Here, we set 
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Cα = cα - m�/2 (+ δES), for m missing supporting atoms.    (3) 
 
The term - m�/2 in Cα compensates for the feature that ½(Ef - Ei) = + m�/2 for a perfect 
step with a single atom on the upper terrace, resulting in Eact = cα (+ δES) for that case. 
Whether or not δES is included depends upon the details of the step edge configuration. 
For interlayer diffusion on a Ag{100} facet, δES is included for m = 2 (descending a 
close-packed step), but not for m = 1 (descending at a kink). Why? A finite ES barrier 
exists for hopping down a close-packed step, but not at a kink where exchange is facile 
[28]. Thus, for an atom initially with no lateral NN, one has Eact = c100TD (c100TD + δES) for 
m = 1 (m = 2). For interlayer transport from an Ag {111} facet, δES is included if m = 1, 
but not for m = 2. Why? Descent is facile from a B-step or kink at an A-step (m = 2), but 
not from an A-step or kink at a B-step (m = 1) [34]. In both cases, we set δES = 0.10 eV 
reasonably matching the best estimates of ES barriers for Ag [28,32,34]. Finally, we 
note again that to satisfy detailed-balance, for the reverse process of an atom hopping 
back to a fully supported site, one assigns the same Cα as for the forward process of 
hopping out over the step edge. 

We emphasize that our formulation for realistic kinetics is general, although one 
needs revise the selection of values for Cα, φ, and δES for different metals. Appropriate 
values for Pt follow from Ref. [29], and for Au are presented in Sec.IV. However, the 
appropriate prescription for inclusion of an ES barrier can be system dependent, e.g., 
the details for Pt based on detailed analysis of interlayer transport for that system [29] 
differ from those for Ag. In the following sections, we perform extensive KMC 
simulations of this model to precisely characterize NC reshaping and sintering. 
 
III. RESHAPING OF Ag NANOCLUSTERS 
 

A. Relaxation of Ag Nanocubes to Wulff shapes 
 

Nanocubes can have distinctive plasmonic properties given their shape, and also 
distinctive catalytic properties given that the exposure of {100} facets is maximized. 
Consequently, there is interest in stability against in nanocube reshaping, as is reflected 
by recent HRTEM studies and associated analysis [45]. It was suggested that the 
barrier to shift an atom from the edge of a nanocube to the terrace was key in 
controlling reshaping [45]. Our analysis indicates that a more complex nucleation 
process controls overall shape relaxation. Complete nanocubes with {100} facets have 
unstable low-coordinated edges and corner and edge atoms. Thus, to mimic 
synthesized near-perfect nanocubes [1,36], we start with truncated Ag nanocubes 
where all atoms have at least six NN. See Fig. 2a for time t = 0. Below, we assess the 
temperature-dependence and size-dependence of relaxation to the Wulff shape. In Fig. 
2b(c), we monitor the “width” ݄ଵ (݄ଵଵଵ) between the outermost {100} facets ({111} 
facets) on opposite sides (corners) of the nanocube. These quantities are naturally 
rescaled by interlayer spacing (a/√2 for {100} facets and layers, and a/√(3/2) for {111} 
facets and layers) to monitor the evolution of the number of {100} and {111} layers. This 
definition identifies every plane with at least one atom as a layer. The evolution from a 
truncated nanocube to a Wulff shape involves formation of new {100} layers on the 
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sides of the initial nanocube, and erosion or dissociation of {111} facets at the corners. 
Results for larger size N = 1584 atoms show distinct stages in these formation and 
dissociation processes. Apart from the final equilibrium plateau, there is a weak plateau 
for  and  changing by two layers. This corresponds to the nucleation of one new 
layer on each {100} facet, and complete dissociation and removal of a {111} facet from 
each corner. Note that nucleating a layer on just one side, or removing a layer from just 
one corner, but not the other, is evidently a rare transient state. 
 

 
 
FIG. 2. Ag nanocube reshaping: (a) Configuration snapshots (N = 1584, T = 1100 K);  
T-dependence of time evolution of rescaled (b) , (c) , and of the scaled total 
energy (c,d), for N = 586, 1584 averaged over 400 trials. 
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To assess the T-dependence of the evolution, we introduce characteristic times, 

τrelax = τ100 and τ111, reflecting significant evolution of ݄ଵ and ݄ଵଵଵ, respectively, from 
their initial values (specifically, a change by two layers, as indicated in Fig.2b,c). From 
these characteristic times, we assess effective Arrhenius energies, Eeff. For τrelax = τ111 
which characterizes dissociation of a {111} corner facet and transfer of its atoms to a 
{100} facet, Arrhenius analysis of KMC results for τ111 yields Eeff ≈ 0.7 eV. Considering 
the NC starting as a perfect truncated nanocube, a corner atom on the {111} facet 
transfers to the {100} facet via what can be regarded as a kink site on a close-packed 
step edge for the {100} facet. The barrier for the first step Eact = 0.525 eV is relatively 
low. However, in the second step to reach the final adsorption site on the {100} facet 
which is ΔE = +2φ above the initial site energy, the atom must surmount a barrier of 
energy cTD100 above the final state energy. Thus, the overall atom transfer barrier is Eeff 
= c100TD + ΔE = 0.875 eV comparable to the simulation result. Note that for higher T, 
entropic factors associated with thermal excitation are significant, and not incorporated 
in our analysis. 

Atoms freed from {111} facets diffuse onto {100} facets and nucleate new {100} 
layers, a process characterized by τrelax = τ100 for which Arrhenius analysis of KMC 
results yields a distinct and higher Eeff ≈ 1.1 eV. Here, we naturally analyze the 
formation of relatively stable square tetramer of atoms on {100} facets. Consider first the 
transfer of 3 of the 12 atoms on the initial complete {111} corner facet to a single {100} 
facet to form a trimer. This involves breaking a total of 8 lateral bonds on the {111} 
facet, but forming 2 lateral bonds in the trimer, and increasing coordination to supporting 
atoms on the {100} facet for a total energy change of ΔE123 = +3φ. Let E4 denote the 
barrier for transfer of a fourth atom from the {111} facet to the {100} facet to stabilize the 
trimer. This process is controlled by last step to reach a {100} adsorption site yielding a 
barrier E4 = 0.75 eV. This implies an effective nucleation barrier of Eeff = E4 + ΔE123 = 
1.42 eV. However, if the trimer is at the {100} facet edge so that the atom from the {111} 
facet can hop directly into a site with two lateral bonds forming the square tetramer, 
then E4 is reduced to 0.525 eV, and Eeff = 1.20 eV reasonably consistent with simulation 
results.  

We also track the total NC energy, E (Fig.2d,e), and define a reshaping time τrelax 
= ߬ாMୟ୶ corresponding to the peak energy. Both peak and late stage E are larger for 
higher T due to entropic effects. Arrhenius analysis for ߬ாMୟ୶ yields Eeff ≈ 0.72 eV 
coinciding with that for τ111. Thus, the energy maximum corresponds to the early-stage 
disruption of {111} facets, E decreasing only after new {100} layers nucleate and grow.  

It should be emphasized that the above results for the evolution of h111, h100, and 
E are obtained from extensive KMC simulation averaging over several hundred trials. 
This is necessary to minimize the effect of substantial fluctuations at the nanoscale, and 
to thus obtain precise results for characteristic times and Arrhenius energies. We also 
note that almost perfect Arrhenius behavior of characteristic times is observed over the 
probed temperature range [27]. The identified Arrhenius behavior allows prediction of 
relaxation time scales for lower T. The nucleation process with the higher Eeff ≈ 1.1 eV 
will be rate controlling implying that, e.g., τrelax ≈ τ100 ≈ 10-3.6, 10-0.8, and 103.8 sec. at 
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500K, 400K, and 300K, respectively, choosing ν = 1012.5 s-1. These estimates are 
actually lower bounds as Eeff should increase somewhat for lower T (cf. above). 
 Finally, we roughly assess size scaling of τrelax based on just two NC sizes N = 
586, 1584. Analysis of τrelax ~ Nβ corresponding to the late stages of the process yields β 
increasing for decreasing T from β ≈ 1.3 at 1000 K to β ≈ 1.7 at 800 K. Deviations for 
lower T below the classic continuum value of β = 4/3 indicate the presence of a 
nucleation-mediated process with finite effective barrier [19,21]. This observation is 
consistent with our assessment that the evolution of h100, and specifically that the 
Arrhenius energy extracted from τ100, is controlled by the nucleation of new {100} layers. 
 
B. Pinch-off of Ag nanorods 
 

Within the framework of continuum modeling, shape evolution of objects 
mediated by surface or periphery diffusion, which is of relevance here, can differ 
qualitatively from curvature-driven evolution [46]. In addition, it can differ from evolution 
mediated by inhibited attachment-detachment (also described as evaporation-
condensation) which is also controlled by local curvature. For 2D systems, Grayson’s 
theorem [47] shows that pinch-off is not possible for curvature-driven evolution, and it 
has been argued that the same is true for the evaporation-condensation mechanism 
[48]. However, pinch-off can occur for evolution mediated by periphery diffusion in 2D 
systems, as has been observed in experiment and modeling for metallic surface 
systems [48]. For 3D systems, Grayson’s theorem does not prohibit pinch-off for 
curvature-driven evolution, and no doubt pinch-off can also occur for evaporation-
condensation. However, one anticipates that the propensity for pinch-off in 3D is 
substantially greater for evolution mediated by surface diffusion versus curvature. 
Indeed, analysis of the evolution of near-cylindrical rods via continuum theory for 
isotropic surface energy and diffusivity indicates an instability with wavelength λ ≈ 4.45 
× rod diameter [11]. Such behavior is reminiscent of the Rayleigh-Plateau for fluid 
steams or jets. This result implies that elongated structures with sufficiently large aspect 
ratio, R, will also pinch-off, and provides a prediction of the critical aspect ratio of about 
Rc = 4.5. Certainly, behavior on the nanoscale will differ quantitatively from the above 
continuum predictions. However, it is reasonable to expect that qualitative features such 
as pinch-off will be preserved. 
 NC synthesis can produce elongated nanorods for various metals, so it is natural 
to explore if post-synthesis evolution leads to pinch-off, and to determine the associated 
Rc. Indeed, experiments involving metallic nanowires [16], theory [14], and atomistic 
simulation (but based on evaporation-condensation and not satisfying detailed-balance) 
[17], indicate the existence of a pinch-off instability for large R. However, it is 
appropriate to recognize that key feature in evolution of nanorods is the presence of 
strong fluctuations. As a result, evolution for a range of initial aspect ratios, R, has a 
significant probability for either pinch-off and or alternatively of achieving a single 
compact Wulff shape. For this reason, we introduce the concept of a pinch-off 
probability, P(R), which will increase monotonically with initial aspect ratio R. We can 
determine P(R) by running multiple independent simulations of nanorod evolution, and 
assessing the fraction of times that pinch-off occurs. 
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We consider this issue by applying our model to analyze specifically the evolution 
of readily-synthesized octagonal Ag nanorods which have alternating {100} and {110} 
side facets, and {100} end facets [1]. An example of simulated evolution for R = 7.16 
which leads to pinch-off is shown in Fig. 3. Multiple simulations for nanorods with this 
and many other R values (while retaining a fixed nanorod width) lead to the results for 
P(R) versus R shown in Fig. 4. Naturally defining a critical aspect ratio, Rc, via P(Rc) = 
½ leads to the estimate of Rc = 6.9 somewhat above the classical continuum value. 

 

 
 
FIG. 3. Pinch-off of octagonal Ag nanorod with N = 2202 at T = 700 K. 
 

 
 
FIG. 4. Simulated pinch-off probability of Ag nanorods at 700 K as a function of initial aspect 
ratio. 
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As an aside, we have also considered pinch-off for elongated Ag nanobars with a 

square cross-section and all faces corresponding to {100} facets. In this case, the 
critical aspect ratio is Rc ≈ 8-9 for the selected cross-section side length of about 1.7 
nm. 
 
IV. SINTERING OF ORIENTED PAIRS OF Ag AND Au NANOCLUSTERS  
 

Sintering of pairs of roughly equal-sized NCs with equilibrated Wulff shapes can 
follow oriented attachment [37,38] which could involve alignment of either {100} facet 
planes or {111} facet planes, and where in addition there is azimuthal alignment so the 
combined attached NC pair have a single-crystal fcc structure. This latter feature is 
necessary in order to apply our modeling formalism. Before applying our atomistic-level 
model to analyze evolution during the sintering process following such attachment, it is 
instructive to show simple geometric schematics which illustrate the anticipated shape 
evolution, which we note is distinct for aligned {100} versus {111} facets. Fig. 5 
illustrates the initial configuration just after oriented attachment, the facets which are 
present upon filling in the neck region to first create an overall convex shape, as well as 
the ultimate Wulff shape.  On the nanoscale, which we consider, fluctuations will inhibit 
the formation of such simple geometric shapes with well-defined facets. However, we 
shall find that some of the qualitative features shown in Fig. 5 are still evident. 
 

 
 
FIG. 5. Schematic of geometric evolution during sintering of NCs with: (a) aligned {100} facets; 
(b) aligned {111} facets.  
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A. Sintering of equal-sized Ag Wulff nanoclusters  
 

We first consider sintering for equal-sized Ag Wulff NCs initially joined by 
oriented attachment with aligned {100} facets. Simulated evolution at T = 600 K is 
shown in Fig. 6a for sintering of a pair of NCs each with a100 = a111 = 4 and NW(4,4) = 
586, so that the total size equals N = 2NW = 1172 atoms. Initial rapid evolution involves 
transfer of atoms from the ends of the NC pair to the concave neck region where they 
are readily captured at existing step edges. See Fig. 6a(i). When the neck is filled in, 
one obtains a convex elongated structure as shown in Fig. 6a(ii), the sides of which 
ideally correspond to alternating {100} and {110} facets as illustrated in Fig.5a. Late-
stage equilibration involves transfer of atoms from the ends of the convex elongated 
shape, nucleating new {100} layers on the {100} side facets, and eliminating {110} side 
facets. See Fig. 6a(iii). 

 

 
 
FIG. 6. (a) Sintering Ag Wulff NC pair with aligned {100} facets and with NW = 586 and N = 2NW 
= 1172 at 600 K. (b) Evolution of the scaled neck area for N = 1172 and various T averaging 
over 400 trials (35 trials at 550 K). Green data points: single trial at 600 K.  
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Traditional continuum treatments of surface-diffusion-mediated sintering of 

spherical particles focused growth on radius of the neck r ~ tα predicting that [6,12] α = 
1/7. This exponent reflects the initial singular cusp-like nature of the neck region in this 
classic continuum problem, and thus it should not apply for our system. Nonetheless, 
we analyze neck growth considering the average number of atoms, A, in each of the 
two {100} planes at the center of the NC pair orthogonal to their long axis. Thus, A 
measures the neck area, and A1/2 is reflects the “radius” r. We estimate the limiting 
value, A∞, of A as t →∞, from the Wulff-like equilibrium cluster. Fig. 6b shows the 
evolution of A/A∞ for N = 1172 and various T. The first stage leading to formation of a 
convex-shaped NC is facile with no evidence of classic scaling, and ends when A/A∞ 
reaches around 0.6. A sharp transition from this first stage to the late stage of evolution 
(which we show to be nucleation-mediated) is only evident below 750 K (see Fig. 6b). 

Despite the lack of classic scaling A1/2 ~ tα with α = 1/7 for short t, we extract an 
effective exponent, αfill, based upon the slope of the log-log plot in Fig. 6b at the 
inflection point corresponding to the neck filling regime (just below the elbow for lower 
T). For N = 1172, we obtain values from αfill ≈ 0.43 at 600 K to αfill ≈ 0.24 at 900 K. An 
effective αnuc ≈ 0.06 is extracted for the late-stage regime at 600 K similar to the 
analysis in Ref. [21], although we discount its significance. From the trajectory of a 
single simulation at 600 K (green data), it is evident that the increase in A involves 
distinct steps in the late-stage regime corresponding to nucleation of new layers (thus 
justifying our description of this regime as nucleation-mediated). 

For a more complete analysis, we introduce characteristic times, τfill determined 
when A/A∞ = 0.45 (reflecting the neck-filling stage), and τnuc determined when A/A∞ = 
0.85 (reflecting the final nucleation-mediated stage). Arrhenius analysis for τfill yields Eeff 
≈ 0.75 eV. In a simplistic analysis, a corner atom of the {100} facet transfers to the {111} 
facet. The barrier for just the first step is Eact = 0.75 eV. However, in the second step to 
reach the final adsorption site on the {111} facet which is ΔE = +3φ above the initial site 
energy, the atom must surmount a barrier of energy cTD111 +δES above the final state 
energy. Thus, the effective barrier for atom transfer is Eeff = c111TD +δES +ΔE = 0.875 eV 
comparable to the simulation result, given our neglect of entropic effects. Arrhenius 
analysis for τnuc yields Eeff ranging from 0.85 eV for N = 402 to 1.10 eV for N = 1172, 
and our simulation results indicate slightly higher values for N = 1172 at lower T. The 
value for N = 1172 is similar to the barrier nucleation of {100} facets for nanocube 
equilibration and that analysis also applies here.  

Finally, we have also analyzed size scaling, τfill ~ Nβ, for the neck filling regime 
where β roughly matches classic continuum value of β = 4/3 for all T. For the late-stage 
regime, the exponent, β, instead defined by τnuc ~ Nβ increases upon decreasing T from 
around the classic value of β = 4/3 for very high T to β ≈ 1.54 at 900 K to β ≈ 2.8 at 600 
K. This is behavior analogous to that for nucleation-mediated nanocube reshaping. 

We emphasize that the results for evolution of neck area, A, shown in Fig. 6 are 
typically obtained from several hundred simulations trials. This reduces statistical 
uncertainty and allows precise extraction of characteristic times, which we find exhibit 
near-perfect Arrhenius behavior for the range of T which is considered. This allows 
reliable determination of the associated Arrhenius energy. 
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We have also considered sintering of equal-sized Ag NCs initially joined with 
aligned {111} facets retaining N = 1172. In this case, no transition to late-stage 
nucleation-mediated evolution occurs even for lower T. This feature is expected as no 
low index {100} side planes are formed, and no nucleation upon such facets is required 
[21,27]. Sintering is faster by a factor of 2-3 at 600 K than for aligned {100} facets, Eeff ≈ 
0.70-0.71 eV is somewhat below that for the filling stage for aligned {100} facets, and β 
≈ 4/3 for all T consistent with the feature that that evolution is not nucleation-mediated 
[27]. Finally, we remark that our analysis for both aligned {100} and {111} facets should 
be compared with the comprehensive IVA modeling in Ref. [21], which considers larger 
NCs than those treated here. 

 
B. Sintering of Au nanoclusters: Comparison with HRTEM observations 
 

A key aim of modeling studies should be direct comparison with experiment, both 
for validation of the modeling, and also to elucidate experimental observations. In-situ 
liquid-cell HRTEM studies are providing increasingly detailed data enabling such 
comparison, although caution in interpretation is required, e.g., given possible e-beam 
effects. One such previous study presented HRTEM imaging of the sintering of “large” 
10 nm Au nanoparticles and utilized IVA modeling to elucidate observed behavior [7]. 
As noted in Sec.I, IVA includes a free parameter which was adjusted in this analysis to 
match the experimental times scale of evolution. In contrast, one key goal of our 
modeling with realistic surface diffusion kinetics is to reliably predict this time scale. Our 
focus is also on substantially smaller NCs than those considered above. Fortunately, 
recent HRTEM imaging has provided appropriate data on shape evolution for such 
smaller NCs [8,9]. We apply our model to analyze sintering of ~4 nm Au NCs slightly 
laterally displaced as monitored in recent HRTEM studies by Kuk et al. [9]. In general, 
when Au NCs merge, they are not aligned, but a single-crystal structure is subsequently 
achieved by grain boundary migration or by NC rotation. However, in one data set from 
Ref. [9] partly reproduced in Fig. 7a, the NCs are almost perfectly aligned upon 
merging, so we model subsequent evolution in this case. 

However, for this modeling, it is necessary to first prescribe appropriate Au model 
parameters. We select c100TD = 0.60 eV, c111TD = 0.125 eV, c111A = 0.35 eV, and c111B = 
0.40 eV for Au. This choice is based on Density Functional Theory (DFT) analysis of 
terrace diffusion barriers [49], and general trends relating terrace and edge diffusion 
barriers [28]. We select δES = 0.12 eV based on studies of Au surface dynamics [50] and 
semi-empirical energetics [51]. An effective φ = 0.22 eV is consistently selected based 
on either DFT analysis of NC energetics [39] or on DFT analysis of Au surface energies 
[52].  

For the HRTEM data shown in Fig. 7a, the ~4 nm Au NCs appear to be slightly 
laterally displaced or misaligned upon attachment. We mimic this situation in our 
simulations, where we also choose a total size of N = 4812 roughly matching 
experiment. We have shown that the offset somewhat increases the initial rate of neck 
growth, not surprisingly since this makes the neck region a stronger sink for capturing 
atoms diffusion from the ends on the NC pair. Even though we utilize KMC simulation 
rather than molecular dynamics, it is still computationally demanding to directly simulate 
evolution for this larger system at the experimental T = 300 K over the time scale 
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needed to follow the overall sintering process (which is 100’s sec at 300 K). However, 
simulation is much more efficient at higher T. For purposes of illustration, results for 
shape evolution at 600 K are shown in Fig. 7b. To connect with experiment, our strategy 
is to perform simulation for a range of higher T to determine the relaxation time, τfill 
(using A/A∞ = 0.6) versus T. See Fig. 8. From these results, we extract an effective 
Arrhenius energy, Eeff ≈ 0.77 eV, for τfill. These results are then extrapolated to estimate 
τfill ~ 130 s at 300 K where we choose a conventional attempt frequency of ν = 1013 s-1. 
This prediction for the time to achieve a convex shape is consistent with experiment [9]. 
 

 
 
FIG. 7. Sintering of ~4 nm Au NCs: (a) HRTEM at 300 K [9]. Initial (final) image is 2 s (128 s) 
after impingement. Copyright Royal Soc. Chem. (2013). (b) Simulated evolution for N = 4812 at 
600 K. 
 

 
 
FIG. 8. Arrhenius behavior of the characteristic time, τfill, for neck-filling for the sintering of ~ 4 
nm Au NCs with aligned but laterally offset {111} facets for N = 4812. 
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V. SUMMARY 
 
 In summary, we have developed a predictive atomistic-level stochastic model for 
far-from-equilibrium shape evolution of fcc metal NC shapes mediated by surface 
diffusion. Significantly, our modeling incorporates a realistic prescription of surface 
diffusion kinetics. This requires accurate description of diffusion barriers for a diversity 
of local environments. This work contrasts previous more generic stochastic atomistic 
modeling with unphysical prescription of barriers and thus kinetics, and also classic 
continuum modeling which exhibits fundamental shortcomings in describing behavior on 
the nanoscale. Our model is applied to reliably describe reshaping and sintering of 
facetted Ag NCs. Significantly, for the effective Arrhenius energies controlling the T-
dependence of relaxation times, we are able to provide an atomistic-level interpretation 
and analysis. For example, for the characteristic time for reshaping on Ag nanocubes, 
we associate the Arrhenius energy with the effective barrier to nucleation relatively 
stable square tetramers on {100} facets. In addition, in contrast to generic modeling, our 
approach allows prediction of the absolute time scale form reshaping which is key in 
assessing the robustness of NCs synthesized with targeted non-equilibrium shapes. 
This capability is demonstrated by prediction of the time for sintering of ~4 nm Au NCs 
as observed in HRTEM studies. 
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APPENDIX A: IVA VERSUS REALISTIC SURFACE DIFFUSION BARRIERS 
 

As noted in Sec. I, accurate description of surface diffusion kinetics, including 
both terrace and step edge diffusion, is necessary for realistic and predictive modeling 
of 3D nanocluster (NC) evolution. Furthermore, the formulation must simultaneously 
provide an accurate description of behavior on both {100} and {111} facets, noting that 
these are most prominent on fcc NCs. Our formulation used for simulation of surface-
diffusion mediated 3D NC evolution is crafted to incorporate the flexibility to include 
desired values for both terrace diffusion and edge diffusion barriers via appropriate 
selection of c100TD, c111TD, c111A, and c111B. These values may be obtained from 
appropriate assessment of experimental data or directly from ab-initio DFT analysis. In 
contrast, previous IVA based modeling does not include this flexibility. In fact, we clarify 
here that IVA imposes extremely unrealistic values for barriers for these key diffusion 
processes.  
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The IVA atom hop rates have the form h =ν exp[-Eact/(kBT)], with Eact = CIVA +     
ni φ, with initial coordination number ni, includes the free parameter CIVA. For modeling 
of processes on a specific low-index extended surfaces, CIVA is typically chosen to 
ensure that IVA recovers the terrace diffusion barrier for that low-index surface [28,53]. 
However, a different choice is required for each different low-index surface, so it is not 
possible to correctly describe simultaneously terrace diffusion on different facets of 3D 
nanoclusters.  

Consider the case of Ag selecting a NN interaction strength φ = 0.225 eV. First, 
consider modeling targeting Ag diffusion on Ag{100} surfaces. If one wants to recover a 
reasonable terrace diffusion barrier of, say, Ed(100) = 0.425 eV [28,31], then since 
Ed(100) = CIVA + 4φ, one must select CIVA = -0.475 eV. Consequently, this formulation of 
IVA imposes a diffusion barrier on {111} facets of Ed(111) = CIVA + 3φ = 0.20 eV which is 
double the true barrier of Ed(111) = 0.1 eV [28,54]. 

Even ignoring this serious failure of IVA to simultaneously describe terrace 
diffusion on different facets, there are additional major shortcomings in the description 
of key edge diffusion barriers. For example, there is a dramatic failure to describe step 
edge diffusion on Ag{100} surfaces even choosing CIVA to recover terrace diffusion on a 
Ag{100} facet. Specifically, the IVA edge diffusion barrier along close packed steps 
satisfies Ee(100) = CIVA + 5φ = 0.650 eV (i.e., 53% higher than the terrace diffusion 
barrier) with the above choice of CIVA = -0.475 eV. However, a reasonable estimate of 
the actual barrier is given by Ee = 0.275 eV (i.e., 35% lower than the terrace diffusion 
barrier) [22,28,35]. Thus, these edge diffusion hopping rates predicted by this version of 
IVA are typically orders of magnitude lower than actual rates. 

Second, for modeling targeting Ag diffusion on Ag{111} surfaces. Since Ed(111) = 
CIVA + 3φ, one must now choose CIVA = -0.575 eV to recover a reasonable value of 
Ed(111) = 0.10 eV [28,54].  It follows that this IVA prescription enforces Ed(100) = CIVA + 
4φ = 0.325 eV substantially below the more realistic value of Ed(100) = 0.425 eV noted 
above. Even if we just consider diffusion on Ag{111} surface within this IVA formulation, 
there are still significant shortcomings in the description of step edge diffusion. One has 
that Ee(111) = CIVA + 5φ = 0.550 eV which is the same for A- and B-type steps, and is 
well above the realistic and distinct estimates of Ee(111)|A = 0.275 eV and Ee(111)|B = 
0.300 eV for the two different types of step edges [33]. 

The severe consequences of this failure of IVA kinetics (and the success of our 
treatment) is illustrated by the results of KMC simulations for the formation during 
deposition of 2D epitaxial Ag nanoclusters on low-index {100} and {111} Ag surfaces. 
Given the artificially high step edge diffusion barriers in the IVA prescription, this 
formulation predicts fractal island structure whereas the actual structure is compact as 
confirmed by STM experiments or realistic modeling. See Ref. [27].  

Another clear and serious shortcoming of the IVA formulation regarding 
reshaping of 3D nanoclusters is that the formulation does not and cannot include any 
Ehrlich-Schwoebel (ES) barriers. However, these additional barriers are important in 
controlling the rate of mass flow between layers and facets [28]. 
 
 
 
 



17 
 

APPENDIX B. THERMODYNAMICS OF FCC METAL NANOCLUSTERS  
 

Our prescription of the energetics of various NC configurations via a lattice-gas 
model with NN pairwise interactions of effective strength, φ, is applied to evaluate 
differences, Ef - Ei, between energies of initial and final configurations. As noted in 
Sec.II, support for the effectiveness of this simple prescription comes from a recent DFT 
analysis of the energetics of fcc NCs [39]. The key idea in this paper is that the total 
energy of the NC can be decomposed into a sum of energies for the individual atoms, 
En, where these energies depend solely on the coordination, n, of the atom. These 
coordination-dependent single atom energies are determined in a systematic fashion 
from DFT calculations considering mainly atoms at surfaces with different local 
configurations and coordination numbers. The key result for various metals is that En 
varies nearly linearly with n, i.e., En ≈ A - Bn (with B > 0), over the considered 
coordination range, n ≥ 3.  

Given this behavior, reliable determination of Ef – Ei can be achieved by a model 
with NN pairwise interactions if one chooses φ = 2B. (Here we note that an atom with 
coordination n is regarded as having n shared bonds of strength φ with NN atoms, so 
the energy of half of each of these bonds is associated with the atom.) Such an analysis 
indicates that the effective φ ≈ 0.20, 0.28, 0.38, 0.40, and 0.64 eV for Ag, Cu, Ni, Pt, and 
Ir, respectively. For Au, En versus n deviates more from linearity with higher (lower) 
values of the effective φ for smaller (larger) n, and we select φ = 0.22 eV.  

We argue that these values predominantly reflects the NC surface rather than 
bulk thermodynamics. This feature is supported by the observation that similar values 
for the effective φ can be extracted from DFT results for {111} and {100} surface 
energies using γ111 = √3φ/a2 and γ100 = 2φ/a2 for the NN interaction model. Here, ‘a’ 
denotes the surface lattice constant. From results of DFT analysis for γ111 using the PBE 
functional [52] one obtains φ = 0.23, 0.31, 0.43, 0.41, and 0.61 eV for Ag, Cu, Ni, Pt, 
and Ir, respectively. For Au, one obtains φ = 0.22 eV. Quite similar values are obtained 
using DFT values for γ100, e.g., yielding φ = 0.21 eV for Ag, and φ = 0.23 eV for Au. 

As already indicated in Sec.II, if Ec denotes the bulk cohesive energy, then the 
above values for effective φ are far from the choice φ(bulk) = Ec/6 which would recover 
the bulk thermodynamics. Specifically, one has that φ(bulk) = 0.49, 0.58, 0.74, 0.97, and 
1.16 eV for Ag, Cu, Ni, Pt, and Ir, respectively, and φ(bulk) = 0.64 eV for Au. 
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