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Abstract – The antiferromagnetic semiconductor MnTe has recently attracted attention for 
spintronics and high-performance thermoelectric applications. However, little is known about its 
vibrational and thermal transport properties, and how these might relate to the electronic and 
magnetic structure, particularly as related to 3d Mn orbital correlations.   Here, we calculate a 
physically-justified Coulomb correlation parameter within the DFT+U framework.  We couple 
this framework with the Heisenberg Hamiltonian and first principles Boltzmann transport to 
understand the magnetic, vibrational and phonon thermal transport properties of MnTe.  We 
also perform inelastic neutron and nuclear inelastic x-ray scattering measurements of the total 
and partial phonon density of states, respectively. Very good agreement is obtained with the 
measured and calculated phonon density of states, and with available measurements for the band 
gap, local magnetic moments, the Néel temperature, magnon dispersion, thermal conductivity, 
and phonon dispersion. This study demonstrates that the vibrational and magnetic degrees of 
freedom are not strongly coupled in MnTe, and provides a more comprehensive picture of this 
technologically-promising material. 
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I.  INTRODUCTION 

Hexagonal MnTe (NiAs-type, α-phase, hereafter referred to as α-MnTe) is an 

antiferromagnetic (AFM) transition metal semiconductor (Néel temperature (TN) of 307-310 

K [1,2]) that has recently attracted attention for its applications in spintronic devices [3,4]. 

Magnetoresistance measurements have demonstrated that α-MnTe devices possess multiple 

non-volatile AFM memory states that are stable even in high magnetic fields [5]. In addition, 

combining thin film α-MnTe with a topological insulator has allowed the observation of 

exchange-biased topological charges arising from coupling with interfacial spins [6]. These 

antiferromagnetic spintronic systems have unique material behaviors and provide benefits – such 

as non-volatility, THz spin-dynamics, no fringing stray fields, and stability against magnetic 

fields – for information technologies (memory logic devices) with the potential to perform 

beyond Moore’s law.  However, an accurate theoretical description of the properties of α-MnTe 

remains a challenge because of the localized and correlated nature of the transition metal d 

orbitals for which conventional density functional theory (DFT) – either local spin-density 

approximation (LDA) or the generalized gradient approximation (GGA) – is unable to capture 

their strong on-site Coulomb repulsion (U). 

α-MnTe has also manifested itself as a promising high-performance thermoelectric material, 

of particular importance for waste heat harvesting and solid-state refrigeration. As the only 

semiconductor (band gap of 1.27 eV [1,7,8]) in the binary manganese compounds [9], α-MnTe 

displays an enhanced and practical figure of merit (ZT) via sulfur doping:  ZT=0.65 at 773 

K [10]. Moreover, alloying GeTe with MnTe yields an ultralow thermal conductivity (ߢ) that 

enhances ZT, attaining a value of 1.61 at 823K [11]. While the bulk of previous research, 

particularly theoretical, has focused on electronic structure [12] and magnetic properties 

(exchange interactions [13], Néel temperature (TN) [13], and magnetocrystalline anisotropy [14]), 

little attention has been paid to lattice dynamical properties and thermal transport. Phonons can 

play a critical role in determining the functionality and limitations of magnetic semiconductors 

as they are the primary heat carriers, which is an important factor governing ZT. Phonons can 
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also couple to the electronic and magnetic degrees of freedom. In fact, one mechanism for a 

thermally driven spin current in the antiferromagnetic insulator Cr2O3 is phonon drag via 

phonon-magnon coupling [15]. Thus, developing a better understanding of phonons and thermal 

transport derived from accurate and physically meaningful electronic and magnetic structures 

may provide a means for improving magnetic semiconductor technologies.  

In this manuscript, we systematically examine the electronic, magnetic, vibrational and 

thermal transport properties of α-MnTe via a combination of synthesis, inelastic neutron and 

nuclear inelastic x-ray scattering characterization, and ab initio electronic structure and lattice 

dynamical calculations. Computational details are summarized in Section II.  Electronic and 

magnetic properties of α-MnTe are revisited and discussed in Sections III and IV, respectively. 

Vibrational properties and thermal transport are discussed and compared with measurements in 

Section V, followed by concluding remarks in Section VI.  

In particular, this work derives physically justified Coulomb repulsion U, magnetic structure 

and exchange parameters from DFT and the quantum spin-5/2 Heisenberg model. This DFT+U 

method provides reasonable agreement with measurements of phonon and magnon dispersions, 

the Néel temperature and thermal conductivity of α-MnTe.  Comparison of our measurements 

and calculations demonstrate that phonons do not strongly couple to the magnetic degrees of 

freedom of this system.  This weak coupling may be beneficial for magnon-based spintronic 

devices as it prevents phonons from degrading magnon relaxation times and mean free paths.  

However, having stronger phonon-magnon coupling might improve thermoelectric performance 

(presumably resulting in shorter phonon and magnon relaxation times, and thus lower thermal 

conductivity) and improve thermally assisted spin currents via phonon drag, such as in Cr2O3 

[15].  

II.  METHODS: THEORY AND EXPERIMENT 
Electronic structure – DFT calculations were performed using the projector augmented wave 

method (PAW) [16] implemented within the Vienna ab initio simulation package (VASP) [17,18]. 

The PAW pseudopotentials correspond to valence electron configurations 3d64s1 for Mn and 
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5s25p4 for Te. We used the primitive cell shown in Figure 1 for all calculations except for the 

those involving complicated magnetic configurations, where a 2×2×2 supercell built from the 

four atom hexagonal unit cell was employed. For all calculations, measured lattice parameters 

were used:  a=4.15 Å and c=6.71 Å [19,20]. The exchange-correlation functional was treated 

within the GGA [21] with energy cutoff for the plane-wave expansion set to 520 eV. Γ-centered 

Monkhorst-Pack k-point grids [22] were used for the Brillouin zone integrations. The electronic 

structure of the primitive cell was calculated using a tetrahedral method on a 6×6×4 k-point mesh. 

The AFM ground state (spins parallel in-plane, but anti-parallel between adjacent planes (see 

Figure 1) was employed for most calculations. 

The Coulomb correlations within the 3d shells of the transition metal Mn ions were described 

using the spherically averaged GGA+U method [23]. This requires a single adjustable effective 

Coulomb correlation parameter: Ueff =U−J, where J is the on-site exchange parameter (typically 

~1eV) as input to the Hamiltonian. To give Ueff a physical basis, we employed a linear response 

method [24] for which a small perturbation of the potential (δV) on a single Mn site within the 

primitive cell is applied, and the resulting bare charge response (δn0, without optimizing the 

charge density) and screened response (δn, with the charge density fully relaxed) are calculated. 

The effective Coulomb correlation is obtained from ௘ܷ௙௙ ൌ ఋ௏ఋ௡బ െ ఋ௏ఋ௡ and is found to be 4.8eV 

for the 3d orbitals of α-MnTe. 

     Magnon spectra – Eigenvalues of the spin wave excitations based on the Heisenberg 

Hamiltonian (S=5/2) were obtained from the diagonalization of the following (non-Hermitian) 4 ൈ 4 ࣦሺࢗሻ matrix in the basis of creation and annihilation operators on two Mn sublattices 

,ଵࢗܽ) ,ଶࢗܽ ଵறࢗିܽ , ଶறࢗିܽ ) [25,26]:  
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ࣦሺࢗሻ ൌ ۈۉ
ࢗܣۇ 0 0 െ0ࢗܤ ࢗܣ െࢗܤ 00 ࢗܤ െࢗܣ ࢗܤ0 0 0 െࢗܣ ۋی

ۊ
                                           (1) 

with ࢗܣ ൌ ∑ ଵଶ ௡ሺ1ܬ௡ݖܵ െ Γ௡ሺࢗሻሻ െ௡אிெ ∑ ଵଶ ஺ிெא௡௡ܬ௡ݖܵ  and ࢗܤ ൌ െ ∑ ଵଶ ஺ிெאሻ௡ࢗ௡Γ௡ሺܬ௡ݖܵ , 

where ݖ௡  is the coordination number of the nth nearest neighbor shell (see Table 1) and Γ௡ ሺࢗሻ ൌ ଵ௭೙  ∑ ݁௜ࢊ·ࢗ೙ೕࢊ೙ೕ   is the magnetic form factor with ࢊ௡௝  the vector between the 

interacting atoms – central atom and the jth atom within the nth neighboring shell.  

Phonons and lattice thermal conductivity (κ) – Harmonic (phonons) and third-order 

anharmonic (three-phonon interactions) [27,28] interatomic force constants (IFCs) were 

calculated using the conventional supercell method based on a 4×4×3 supercell of α-MnTe in 

both AFM and ferromagnetic (FM) collinear states. An interaction cutoff radius for the 

anharmonic IFCs of 5.5 Å was employed, while harmonic IFCs were determined for all 

interactions within the supercell.  This cutoff radius is typical compared to previous calculations 

of converged thermal conductivity values for bulk semiconductors [29,30]. Translational 

invariance was enforced for both harmonic and anharmonic IFCs [29]. The lattice thermal 

conductivity is given by [27,28]:  ߢఈ ൌ ∑ ௝ࢗ௝ఈଶࢗݒ௝ࢗܥ  ௝ఈ                                               (2)ࢗ߬

where ࢗܥ௝ is the volumetric mode specific heat for a phonon with wavevector ࢗ and branch index 

j, ࢗݒ௝ఈ is the phonon speed in Cartesian direction α, and ߬ࢗ௝ఈ is the phonon transport lifetime 

when a temperature gradient is applied in the αth direction.  ߬ࢗ௝ఈ is determined by full solution of 

the Peierls-Boltzmann transport equation [27,28,31–33] with scattering probabilities for 

three-phonon [27,28,31–33] and phonon-isotope [34] (mass variations due to natural isotope 

abundances) interactions determined from quantum perturbation theory, with no adjustable 

empirical parameters. Due to the hexagonal structure, the thermal conductivity of α-MnTe has two 

non-trivial components: along the hexagonal planes ߢ௜௡ and perpendicular to the planes along the 
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c-axis ߢ௢௨௧. 

     MnTe synthesis – A sample with the nominal compositions of Mn0.97Li0.03Te was 

synthesized for neutron scattering by ball milling the raw elements (Mn powder, 99.99%, Li 

chunks, 99.9%, Te chunks, 99.999%) within an argon-filled stainless steel jar using a 

high-energy ball milling machine (SPEX 8000D). The materials were milled for 8h and then hot 

pressed at 1173 K for 20 min by spark plasma sintering (SPS) under an axial pressure of 40 MPa 

with a heating rate of 50 K/min. The sample is disk-shaped, 12.7 mm in diameter, ~25.4 mm in 

thickness, and with a density not less than 97% of the theoretical value. The Li dopants were 

added to stabilize the phase against decomposition. Separately for the Te-125 nuclear inelastic 

scattering, ~100 mg of a polycrystalline MnTe ingot was synthesized by induction melting a 

mixture of high purity elements Mn (99.9%) -with a small Mn excess to prevent formation of Te 

bearing impurities- and 95% isotopically enriched Te-125 in a glassy carbon crucible enclosed in 

an evacuated quartz tube. Addition of lithium is not practical for this small scale synthesis. Melting 

was performed several times to ensure good homogeneity. The sample was sent to the 

synchrotron radiation facility in a sealed ampoule and measured within two days of synthesis in 

order to avoid possible decomposition. Neutron and x-ray diffraction are shown in the 

Supplemental Material for the Mn0.97Li0.03Te and Mn125Te sample, respectively. 

     Inelastic scattering – Inelastic neutron scattering data was recorded at the ARCS 

spectrometer of the Spallation Neutron Source with incident neutron energies of 60 meV at a 

temperature of 250 K, below the magnetic transition, on a pressed polycrystalline sample of 25 g 

sample of Li0.03MnTe. The Li contribution to the generalized phonon density of states (GDOS) 

was neglected as it is expected to contribute only about 5% to the vibrational states, and mostly 

as impurity modes at energies above the phonon cutoff due to the light Li mass. The data was 

analyzed in the incoherent scattering approximation by summing up data collected between 6 

and 8.5 Å-1. The lower scattering vector range, between 2.5 and 3 Å-1, was used to remove any 

residual magnon contribution. The obtained inelastic scattering function S(E), see Supplemental 

Material, was then further reduced to a GDOS by subtracting the multiphonon contribution. This 
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was carried out with a modified version of the DOS software [35] by utilizing an average recoil 

energy of 1.8 meV which provided the best self-consistent GDOS. 

     The partial Te specific DOS was obtained by recording the Te-125 nuclear inelastic 

scattering signal on the Mn125Te sample with 95% isotopic Te enrichment. Note that this method 

is sensitive only to Te vibrations and is insensitive to non-Te based impurities. The data was 

recorded at 25 K utilizing the backscattering monochromator of the beamline ID22N, ESRF [36]. 

Multiphonon correction and DOS extraction from the scattering function S(E), see Supplemental 

Material, was also carried out by the DOS software [35]. In order to estimate the Mn element 

specific DOS, the Te element specific DOS was subtracted from the GDOS obtained by inelastic 

neutron scattering using the weighted cross-sections of 48% for the Te scattering and 52% for the 

Mn scattering. A norm-conserving scaling of 3% hardening was applied to the GDOS before 

subtraction in order to account for small softening occurring between 25 and 250 K. Note that 

the x-ray diffraction data (see Supplemental Material) indicates that the MnTe powder exhibits a 

mild platelet habit with about 10% excess preferential orientation of the powder in the c-axis. As 

a consequence, the obtained Te partial DOS is likely deviated somewhat from a perfect powder 

average.  The calculated MnTe DOS (partial and total) projected along different directions are 

given in the Supplemental Material. 

III.  ELECTRONIC STRUCTURE 
To reasonably describe the vibrational and magnetic properties of α-MnTe, an accurate 

description of the electronic structure is necessary.  Conventional DFT predicts α-MnTe is a 

metal rather than a semiconductor [12]. To account for this in previous work, GGA+U has been 

employed to include Coulomb repulsion [13,14], but with U as a semi-empirical parameter. 

Given that many material properties (e.g., band gap, local moments, exchange interactions, 

phonon frequencies) are sensitive to U [13], it is desirable to establish a reliable and physically 

meaningful Coulomb correlation.  Thus, we employed a linear response method – difference of 

the bare charge and screened charge responses as a function of the on-site potential shift as 

described above – to compute the Coulomb correlation Ueff. The bare response contributes 8 eV 
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to Ueff, while electronic relaxation gives a competing contribution of -3.2 eV giving Ueff =4.8 eV 

(see Supplemental Material). This calculated value is greater than those employed in Ref. [13] 

and Ref. [14] (4 eV and 3.1 eV, respectively) used to reproduce the measured TN of α-MnTe 

based on quantum mean field theory (MF). Our calculated value is closer to that given in 

Ref. [37], Ueff=U-J=5.3 eV, for which Ueff was evaluated using the Slater’s transition state 

method. The large Ueff calculated here is reasonable given that there are five 3d electrons 

(half-filled) on one Mn2+ cation. We note that the LDA gives a similar value: Ueff = 4.9 eV.   

The calculated electronic band structure and density of states (DOS) are shown in Figure 2. 

Firstly, an indirect band gap – 0.8 eV from A to K points – is observed, which is smaller than that 

obtained from measurements (~1.3 eV) [1,7,8] and similar to a previous theoretical result (~0.8 

eV) [38]. Our LDA calculations give similar band structure features, though a reduced band gap 

(0.6 eV) compared with GGA. Both the valence band maximum – A point – and the conduction 

band minimum – K point – are Te 5p states. The underestimated gap is likely caused by 

underestimation of the binding energies of the p orbitals, a well-known DFT deficiency when 

describing insulators and semiconductors [39].  

IV.  MAGNETIC PROPERTIES 
The Mn 3d shell is half-filled with a relatively large exchange splitting (7 eV).  As seen in 

Figure 2(b), the on-site exchange between the filled and unfilled 3d orbitals is mediated by Te 

5p states (lying between), epitomizing the superexchange mechanism.  Employing Ueff = 4.8 eV, 

the calculated local moment on Mn sites in the ground state is about 4.55 μB, consistent with 

previous work: 4.76 μB [22], 4.66μB [21], 4.27μB [14], 4.52μB[11]. The total energies of 28 

different spin configurations including the long-ranged FM state, different types of AFM states, 

and other random collinear spin arrangements were calculated from DFT and were fitted to the 

conventional Heisenberg Hamiltonian:  ܪ ൌ െ ଵଶ ∑ ௜ࢋ௡ܬ ·  ௡೟೓ ௦௛௘௟௟                                          (3)א௝௜,௝ࢋ

with exchange interactions (Jn) included up to fourth nearest neighbors (n = 4).  Consistent with 

experiments and previous theoretical work [13], the AFM state illustrated in Figure 1 is the most 
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energetically favorable. Figure 1 depicts the exchange paths J1 to J4: J1 is the nearest exchange 

coupling between inter-sublattices in different planes, while J2 is the second nearest coupling 

between intra-sublattices in the same plane. The fitted exchange parameters are listed in Table 1. 

All the exchange parameters are antiferromagnetic. J1 and J3 inter-sublattice exchanges are 

dominant and thus determine the AFM ground state, while J2 (surprisingly weak) and J4 

represent frustrated exchange interactions.  The dominant J1 and J3 terms ensure AFM coupling 

between Mn pairs on adjacent planes.  This then enforces ferromagnetic coupling between 

second nearest Mn neighbors on the same plane. The fidelity of the fitting is verified by the 

‘take-one-out’ cross-validation score (CV, meV). The CV score ~8.6 meV/cell is small compared 

with the range of magnetic energies (ΔE~1090 meV/cell) of the 28 spin configurations sampled, 

indicating a reliable fitting quality and a well-represented Heisenberg model to fourth nearest 

exchange interaction. If J4 is not included in the fitting, a larger CV (13.6 meV/cell) is obtained 

and J2 is slightly enhanced, while J1 and J3 are relatively unchanged. As demonstrated in Table 1, 

our fitted exchange parameters are in generally good agreement with measurements [9]. Theory 

slightly underestimates J1 and J3, and experiment gives a stronger, ferromagnetic J2, albeit 

smaller than the other exchange parameters.  

Previously, magnetism in α-MnTe was understood as the exchange of Mn 3d orbitals 

mediated by filled Te 5p bands: superexchange mechanism [9].  However, here we find the 

direct hopping of 3d electrons (direct exchange mechanism) also contributes to the total AFM 

exchange, particularly for the nearest coupling J1. For a half-filled d shell, the direct exchange 

also favors AFM spin alignment that gives an energy gain (~-t2/U, where t is the hopping integral) 

from the hopping of the d orbitals. The nearest Mn-Mn bond length is only 3.56 Å, thus, direct 

electron hopping (orbital hybridization) is likely. This is supported by calculations of the charge 

density of the t2g orbitals, showing orbital overlap between nearest Mn pairs [13]. In addition, the 

demonstrated sensitivity of J1 to U accompanied by reduced orbital overlapping [13], indicates 

an appreciable contribution from direct exchange. This also suggests that a tensile epitaxial strain 

on MnTe thin film, accompanied by reducing the nearest Mn-Mn bond length after relaxation, 
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will give stronger antiferromagnetic J1 and thus a higher Néel temperature, which is good for its 

practical applications. We also verified the J1 sensitivity: reducing Ueff by 1 eV increases the 

magnitude of J1 by 24%.  Furthermore, Mn-Te-Mn bond angles for the nearest Mn pairs are 

only 71° (relatively close to 90°), and according to the Goodenough-Kanamori-Anderson rule 

(GKA) [40,41], the antiferromagnetic superexchange is expected to be weak due to small orbital 

overlap.  Moreover, the extremely weak J2 (J2/J1 = 0.8%) is understood by the fact that the 

corresponding Mn-Te-Mn bond angle is about 90.4°, greatly suppressing the antiferromagnetic 

superexchange. The pronounced J3 can be understood based on the Mn-Te-Mn angle and GKA.  

Based on the calculated exchange parameters listed in Table 1, the Néel temperature is 

evaluated using the quantum S=5/2 pair-cluster (PC) approximation [42]. Our calculated 

ேܶ௉஼ ൌ ܭ 306  is in excellent agreement with the measured ேܶ௘௫௣௧ ൌ 307 െ ܭ 310   [1,2], 

indicating that the essential details of the electronic and magnetic structure of α-MnTe are well 

captured by the GGA+U approximation. We note that a previous quantum S=5/2 mean field 

approximation [42] gave an overestimated ேܶெி ൌ ܭ 354  due to the neglect of pair-wise 

correlations.  

Magnetic susceptibility measurements [36] of α-MnTe give a Curie-Weiss temperature Θ஼ௐ ൌ compared with ேܶெி ,ܭ 583 ൌ ௦ܬ ଴, whereܬܽ~௦and Θ஼ௐܬܽ~We can write ேܶெி .ܭ 354 ൌ ∑ ௜ࢋ · ௡೟೓ ௦௛௘௟௟א௡௝ܬ௝ࢋ  is the stagger sum of the exchange parameters, ܬ଴ ൌ ∑ ௡௡ܬ  is the plain 

sum, and a is a common factor. Deviation of ேܶெி/Θ஼ௐ (and thereby Js/|J0|) from 1 indicates the 

importance of intra-sublattice exchange coupling (J2 and J4). A relatively small ேܶெி/Θ஼ௐ value 

of 0.61 for α-MnTe suggests a notable contribution from the intra-sublattice exchange, with the 

ratio of the total inter-sublattice and the total intra-sublattice exchange is 4, while the same ratio 

from DFT-fitted Jn is 22. This suggests that the DFT calculations underestimate the 

intra-sublattice exchange.  

     Figure 3(a) gives the calculated spin wave (magnon) dispersion for the AFM state of 

α-MnTe compared with measured dispersion data at T=11 K [32] and a single data point at 
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T=300 K [42].  Also given are the calculated and measured [42] phonon dispersions. All 

calculated values are derived from the measured lattice parameters of α-MnTe at T=300 K using 

Ueff=4.8 eV. The sensitivity of the spin wave dispersion to the lattice parameters and varying Ueff 

are shown in the Supplemental Materials. Figure 3(b) gives the simulated inelastic spectra 

(ܵሺࢗ, ߱ሻ) of AFM α-MnTe in zero magnetic field.  An analytical expression of the spin wave 

dispersion from the Heisenberg Hamiltonian described above (߱௤ଶ ൌ ௤ଶܣ െ  ௤ଶ) gives doublyܤ

degenerate magnon branches in the absence of magnetic anisotropy. If the easy-plane anisotropy, ∑ ௜௭ሻଶ௜ࢋሺܭ , is introduced to Eq. 3, the expression for the spin wave dispersion is modified by 

replacing ܤ௤  with ܤ௤ േ  ଶ, where K represents the easy-plane anisotropy which is takenܵ/ܭ

from experiment [9]. Kinks and anomalies associated with strong coupling of phonons and 

magnons, particularly where their energy scales coincide, are not observed in the measured nor 

in the calculated dispersions. The absence of such behavior suggests that the vibrational and 

magnetic degrees of freedom are not strongly coupled.  Furthermore, calculated vibrational 

properties (phonon dispersion and conductivity) for MnTe derived separately for AFM and FM 

magnetic states are nearly identical (see Section V), also suggesting weak coupling.   

V.  PHONON PROPERTIES 
     Phonon dispersion and DOS – The calculated and measured phonon dispersions in Figure 

3(a) are in good agreement for AFM α-MnTe.  We note that the calculated dispersions (phonon 

and magnon) are not temperature dependent but are calculated using the experimental T=300 K 

lattice structure, while the measured phonon dispersion was performed at T=300 K.  α-MnTe 

has a second order magnetic phase transition from the AFM state ( ேܶ௘௫௣௧~307-310 K [1,2] 

measured; ேܶ௉஼=306 K calculated here), above which it is in a paramagnetic state.  The lattice 
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dynamical and phonon transport properties of this paramagnetic state are expected to be bounded 

by those in the AFM and FM states since the renormalized IFCs are bounded by these [43].  

Thus, we also calculated the phonon dispersion of α-MnTe in the FM state for comparison.  The 

acoustic modes for the AFM and FM states are nearly indistinguishable, while the optic modes 

are generally shifted to higher frequencies by a couple of percent.  The calculated and measured 

phonon DOS for AFM α-MnTe from this work are shown in Figure 4, with total and Mn- and 

Te-projected vibrations shown separately. Calculated DOS data are determined by Brillouin zone 

integration with a dense mesh of k-points and Lorentzian smearing with 1 meV width.  The total 

GDOS is normalized to give a neutron weighted area of unity under the curve.  General features 

and magnitudes of the calculated and measured DOS are in very good agreement, particularly for 

the Te projected DOS. Some calculated spectral weight is missing at mid-frequency for the Mn 

vibrations.  This discrepancy may be attributed to a combination of not explicitly considering 

thermally-dependent vibrational properties in the calculations (e.g., lattice expansion, 

anharmonic phonon renormalization)  and of the small preferential orientation in the measured 

Te partial DOS discussed above.  We note that the Mn partial DOS is inferred from direct 

measurements of the GDOS and partial Te DOS on two different samples at different 

temperatures.   

     Phonon thermal conductivity – Figure 5 gives the calculated phonon thermal conductivity 

 for α-MnTe as a function of temperature.  Again, above ேܶ௘௫௣௧=307-310 K (௢௨௧ߢ ௜௡ andߢ)

α-MnTe is in a paramagnetic state.  Thus, below TN the calculated AFM ߢ curve (black) gives 

the more accurate representation of ߢ of α-MnTe.  We also present ߢ with harmonic and 

anharmoinc IFCs calculated in the FM configuration (red), however, very little difference is 

observed in ߢ௜௡ and ߢ௢௨௧ over the temperature range considered.  Again, calculated ߢ values 

of the paramagnetic state above room temperature is expected to be bounded by the FM and 

AFM curves.  Thermal transport in α-MnTe is significantly anisotropic with ߢ௢௨௧/ߢ௜௡=1.8 at 

room temperature, partly due to larger sound speed in the cross-plane direction 1530 m/s over 

that in the plane 1290 m/s, partly due to larger optic mode contributions to ߢ in the cross-plane 
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direction.  The calculations for the in-plane ߢ are just above the available measured data. 

Considering the relatively simple structure of α-MnTe, the room temperature ߢ௜௡=2.23 W/m-K 

is quite low, comparable to the prominent thermoelectric material PbTe, 2.37 W/m-K  [44].   

     Given the reasonable agreement with this measured ߢ data we draw two conclusions:  (1) 

the spin disorder induced by thermal spin fluctuations in the paramagnetic state does not provide 

significant scattering resistance to the phonons.  This is consistent with the lattice vibrations not 

interacting strongly with the magnetic structure. (2) Magnon thermal transport is not relevant in 

this temperature range since the collective (long range) spin exciations are only valid below a 

temperature ~0.1-0.2 TN. Above TN, long range spin correlations do not exist and thermal spin 

fluctuations are not anticipated to significantly mediate heat transport. In contrast, the (diffusive) 

paramagnon-assisted thermal transport, in the presence of magnetic short range order, may be 

nontrivial above TN and therefore worthy of investigation. However, this is beyond the scope of 

the current study. 

VI.  SUMMARY AND CONCLUSIONS 
     In summary, we have critically examined the electronic, magnetic, vibrational and thermal 

transport properties of the antiferromagnetic semiconductor α-MnTe via joint computational and 

experimental efforts.  In particular, we employed GGA+U density functional theory (DFT) 

calculations for electronic structure, a spin 5/2 Heisenberg Hamiltonian and various magnetic 

configurations to describe magnetic properties, and a Boltzmann transport equation methodology 

to describe phonon transport.  Furthermore, we synthesized α-MnTe and employed inelastic 

neutron scattering to determine the phonon density of states (DOS) for comparison with DFT 

calculations.  A physically meaningful Coulomb correlation parameter was determined from 

linear response, and subsequent DFT calculations with different magnetic configurations were 

employed to determine magnetic exchange parameters, the Néel temperature, magnon and 

phonon dispersions, vibrational DOS and lattice thermal conductivity.  Overall, reasonable 

agreement of these with measured values is attained, and a more comprehensive physical picture 



14 
 

of the combined properties of α-MnTe is developed. The results presented here suggest that 

direct coupling of vibrational and magnetic degrees of freedom in this material is weak. 
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Figures  

 

 

 

 

Figure 1: Crystal structure of hexagonal α-MnTe. Blue spheres are Mn atoms, while orange 
spheres are Te atoms. Black arrows label the orientations of the Mn local moments (AFM phase 
here). The exchange coupling constants (Jn) up to the fourth nearest neighbor shell are sketched. 
Structural illustration is done using VESTA. [45]   
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Figure 2: (a) Calculated band structure in high symmetry directions of AFM α-MnTe. Each band 
is doubly degenerate. (b) Spin-resolved total (black curves) and partial (Mn-3d, blue curves) 
density of states. The electronic structures are calculated within GGA+U using Ueff = 4.8 eV. 
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Figure 3: (a) Calculated magnon (blue curves) and phonon (red curves) dispersions of α-MnTe 
in the AFM state using T=300 K measured lattice parameters.  Measured data are also shown 
for magnons at T=11 K (blue circles) [32], an M-point magnon at T=300 K (blue triangle), and 
phonons at T=300 K (black circles) [42]. Phonon dispersion for the FM state is given by black 
curves. (b) Calculated inelastic spectra (ࡿሺࢗ, ࣓ሻ, arbitrary units) of AFM α-MnTe in zero 
magnetic field with S=5/2 and J0 to J4 from Table 1. 
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Figure 4: Measured (symbols) and calculated (curves) total (black) and partial phonon density of 
states (DOS) of α-MnTe in the AFM state for Mn vibrations (red) and Te vibrations (blue). The 
total GDOS is neutron weighted and normalized to unity; red and blue tics on the right axis 
indicate scaling for the normalized-to-unity partial DOS for Mn and Te respectively. A 3% 
scaling, see text, was applied to the total GDOS data. 
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Figure 5: Calculated lattice thermal conductivity (curves) of α-MnTe compared with measured 
data (orange circles  [46]  and blue circles  [10]) in the paramagnetic state.  Black curves 
correspond to α-MnTe in the AFM state, while red curves correspond to the FM state.  Solid 
curves give the in-plane conductivity ( ࢔࢏ࣄ ), while dashed curves give the cross-plane 
conductivity (࢚࢛࢕ࣄ).  
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 J1 J2 J3 J4 TN (PC) TN (MF) 

U=4.8 eV -19.2 -0.17 -2.5 -1.0 306 354 

Expt [9] -23.1 0.72 -3.1 N/A 396 475 

zn 2 6 12 2 N/A N/A 

rn 3.36 4.15 5.34 6.72 N/A N/A 

 

Table 1: Exchange parameters (Jn, meV, where n denotes the nth neighbor shell of an Mn atom) 
fitted using the total energies of 28 different magnetic configurations at Ueff = 4.8 eV. zn is the 
corresponding coordination and rn denotes the bond length (Å). The last two columns give the 
Néel temperature (TN, K) of AFM α-MnTe from the exchange parameters using the quantum 
pair-cluster (PC) approximation and the quantum mean field (MF) approximation. The measured 
TN is 307-310K [1,2].  
 


