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Magnetism-induced negative thermal expansion (NTE) observed in inverse perovskite antiferro-
magnets Mn3AN (A=Zn, Ga, etc) is theoretically studied by a classical spin model with competing
bond-length-dependent exchange interactions. We numerically reproduce the crystal-volume expan-
sion upon cooling triggered by a non-coplanar antiferromagnetic order and show that the expansion
occurs so as to maximize an energy gain of the nearest-neighbor antiferromagnetic interactions.
This mechanism is not specific to inverse perovskite magnets and might also be expected in mag-
nets with other crystal structures. We propose other candidate crystal structures that might exhibit
NTE through this mechanism.

PACS numbers: 76.50.+g,78.20.Ls,78.20.Bh,78.70.Gq

I. INTRODUCTION

Nontrivial spin order in frustrated magnets often
causes interesting physical phenomena, with useful device
functionalities, via coupling to the lattice degrees of free-
dom. Multiferroic phenomena or magnetoelectric effects
in rare-earth perovskite manganites RMnO3 (R=Tb, Dy,
Eu1−xYx) are a typical example of spiral spin order in-
ducing ferroelectric polarization via the inverse effect of
Dzyaloshinskii-Moriya interactions1–4. Another impor-
tant example is the magnetovolume effect where the crys-
tal volume shows an abrupt and pronounced change upon
a magnetic phase transition5,6.In general, materials con-
tract in volume as temperature decreases. However, there
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FIG. 1: (color online). (a) Schematic figure of the negative
thermal expansion where the crystal volume shows a pro-
nounced expansion upon cooling at the magnetic transition.
(b) Exchange interactions considered for the classical Heisen-
berg model in Eq. (4). (c) Γ5g-type antiferromagnetic order
in Mn3AN. (d) Two opposite contributions to the nearest-
neighbor exchange interaction J1, i.e., the antiferromagnetic
contribution JAF and the ferromagnetic contribution JFM.
(e) Easy magnetization plane for each Mn sublattice.

are some rare examples of respective volume expansion
and shrinkage upon cooling and heating [see Fig. 1(a)].
This phenomenon is termed negative thermal expansion
(NTE)7–11. Manganese nitrides Mn3AN (A=Zn, Ga etc)
with an inverse perovskite crystal structure [Fig. 1(b)]
are a typical class of materials that feature NTE of a
magnetic origin12,13.

The NTE phenomenon is technically useful for e.g., op-
tical and mechanical parts of devices sensitive to changes
in volume and length because composites of negative and
positive thermal expansion materials enable control or
suppression of changes in length and/or volume. The
research field of NTE is rapidly growing recently along
with developments of the high-precision devices. This
interesting phenomenon is considered to be associated
with coupling between a nontrivial spin order shown in
Fig. 1(c) and the crystal lattice14–17. Recently, a micro-
scopic spin model for Mn3AN antiferromagnets has been
proposed and an origin of the observed noncollinear spin
order [see Fig. 1(c)] has been clarified using the proposed
spin model18. However, the physical mechanism for this
magnetism-induced volume expansion has yet to be elu-
cidated.

In this paper, we theoretically study a microscopic
mechanism of the magnetism-induced NTE phenomenon
for the inverse-perovskite antiferromagnets Mn3AN us-
ing a classical Heisenberg model, including bond-length-
dependent spin exchange interactions. We successfully
reproduce the observed crystal-volume expansion upon
cooling triggered by a magnetic phase transition to the
so-called non-coplanar Γ5g antiferromagnetic order. As
for its physical mechanism, we clarified that this NTE
occurs so as to maximize the energy gain of the nearest-
neighbor antiferromagnetic interactions. This finding
will help clarify the observed interesting properties of
NTE19–27 and magnetovolume effects28–34 in inverse per-
ovskite antiferromagnets. Moreover, the mechanism we
reveal appears to be general and might operate in the
NTE, not only of inverse perovskite magnets, but also in
magnets with other crystal structures. Some candidate
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crystal structures that might host magnetism-induced
NTE are proposed.

II. SPIN-LATTICE MODEL

We first examine the spin-lattice coupling in Mn3AN
via the bond-length dependence of the nearest-neighbor
antiferromagnetic exchange J1 [see Fig. 1(a)]. We expect
that this exchange interaction is composed of two oppo-
site contributions. Namely, the direct Mn-Mn path gives
an antiferromagnetic contribution JAF(> 0), whereas the
indirect 90◦ Mn-N-Mn path mediated by N ions at the
center of the octahedron gives a ferromagnetic contribu-
tion JFM(< 0) according to the Kanamori-Goodenough
rule35–38. These two contributions have different bond-
length dependence, which result from distinct distance
dependencies of the orbital hybridizations.
In the atomic limit, the magnitude of the transfer inte-

grals tdd between neighboring 3d orbitals is proportional
to ℓ−5, whereas that of the transfer integrals tdp between

neighboring 3d and 2p orbitals is proportional to ℓ−7/2

with ℓ being a distance between the orbitals. These scal-
ing relations can be derived analytically from explicit for-
mula of the 3d and 2p orbitals, and thus hold universally.
On the other hand, these relations might be modified
in crystals with periodically aligned atoms because the
atomic-orbital picture is no longer valid due to the co-
valency effects where the orbitals should be described by
Wannier functions. However, the first-principles calcu-
lations have revealed that the covalency effects on the
scaling relations are negligible, and the relations survive
even in compounds39.
The distinct distance dependencies of tdd and tdp give

rise to different bond-length dependencies of the two con-
tributions JAF and JFM. The antiferromagnetic contri-
bution JAF originates from the second-order perturba-
tion with respect to the transfer integrals tdd between the
Mn3d orbitals. This leads to a relation JAF ∝ t2dd ∝ ℓ−10

with ℓ being a distance between the Mn ions. Conse-
quently, we obtain the relation,

JAF ∝ (1 + δ)−10 ∼ 1− 10δ. (1)

Here 1 + δ= (ℓ0 + ∆ℓ)/ℓ0 is an elongated or shortened
bond length, ℓ0 + ∆ℓ, normalized to the original bond
length ℓ0 with δ = ∆ℓ/ℓ0 being the normalized difference
of the bond length.
Conversely, the ferromagnetic contribution JFM orig-

inates from the fourth-order perturbation with respect
to the transfer integrals tdp between the Mn3d and N2p
orbitals, resulting in a relation JFM ∝ t4dp ∝ ℓ−14 with ℓ
being a distance between the Mn and N ions. As a result,
we obtain the relation:

JFM ∝ (1 + δ)−14 ∼ 1− 14δ. (2)

On the basis of the above argument, we obtain the
following expression of the volume-dependent nearest-

neighbor antiferromagnetic interaction J1(δ)

J1(δ) = JAF(1− 10δ)− |JFM|(1− 14δ). (3)

Substituting this expression into the previously proposed
spin model for Mn3AN in Ref.18, we obtain the following
spin-lattice model on the inverse perovskite lattice,

H =
∑

<i,µ;j,ν>

J1(δk)Si,µ · Sj,ν

+J2
∑

(i,µ;j,ν)

Si,µ · Sj,ν + J3
∑

{i,µ;j,ν}

Si,µ · Sj,ν

+A
∑

i,µ

(Si,µ · eµ)
2 +K1

∑

k

δ2k −K2

∑

k

δ3k (4)

where Si,µ denotes the normalized classical spin vector
on the µth Mn sublattice of the ith octhahedron. Here
the first term with J1(δk) denotes the nearest-neighbor
antiferromagnetic exchange interactions where k denotes
an Mn6N octahedron to which the nearest neighbor bond
connecting the two adjacent spins Si,µ and Sj,ν belongs.
The second and third terms with J2 and J3 describe
the next-nearest neighbor ferromagnetic exchange inter-
actions where the former and latter respectively corre-
spond to the bonds within an octahedron and between
octahedra. The fourth term represents the easy-plane
magnetic anisotropy with different easy planes depend-
ing on the Mn sublattice [see Fig. 1(e)]. For details of
the magnetic anisotropies, see Ref.18. The last term de-
notes the elastic energy which includes, in addition to the
harmonic term, a higher-harmonic term proportional to
δ3, which reproduces the usual volume contraction upon
cooling. We adopt JAF = 1 as the energy units and
set J2 = −0.5, J3 = −0.5, while JFM is taken to be a
variable.
The value of K1 is evaluated to be 3000 so as to repro-

duce the experimentally observed value of δ̄ at the low-
est temperatures. We used the replica exchange Monte-
Carlo method to analyze this classical spin model. The
spin vectors Si,µ and the normalized bond length 1 + δk
are updated by the heat-bath method. In the present cal-
culations, we assume isotropic expansions of the Mn6N
octahedra with respect to the principal axes of cubic co-
ordinates, because the Γ5g type antiferromagnetic order
triggering the negative thermal expansion has a cubic
symmetry. This assumption has been supported by ex-
periments which indeed observed the isotropic expansion
keeping the cubic crystal symmetry5,6. We also mention
that a theoretical analysis based on a localized spin pic-
ture was successfully applied to the NTE in invar alloys
previously40.

III. RESULTS

Figure 2(a) shows temperature dependence of the spe-
cific heat and that of the averaged difference of normal-
ized bond length δ̄ = (1/N)

∑
k δk calculated by con-

sidering a finite higher harmonic component K2 for the
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FIG. 2: (color online). (a) [(b)] Calculated spe-
cific heat Cs, averaged difference of normalized bond
length δ̄ = (1/N)

∑
k δk, and spin correlation Ŝ =

(−1/Npair)
∑

<i,µ;j,ν>〈Si,µ · Sj,ν〉 as functions of tempera-

ture in the presence [absence] of the anharmonic component
with K2 = 4800 [K2 = 0] in the lattice elastic-energy term.
The quantity δ̄ is related to the linearized crystal volume as

δ̄ ∝ [V (T )/V0]
1/3 − 1 where V0 is the original volume. Insets

show δ dependence of the lattice elastic energy per octahe-
dron, which shows an anharmonic [a harmonic] behavior for
(a) [(b)] with K2 = 0 [K2 = 4800].

lattice elastic energy. The value of K2 is taken to be 4800
so as to reproduce the observed conventional volume con-
traction with decreasing temperature above the magnetic
transition point. The sharp peak in the specific heat in-
dicates a magnetic phase transition at kBT ∼ 0.9JAF.
Noticeably the bond length or the crystal volume gradu-
ally decreases upon cooling until this magnetic transition
point, which is a conventional thermally induced contrac-
tion of the crystal volume originating from the higher
harmonic component of the elastic energy. Conversely,
the crystal volume starts increasing as the temperature
decreases right after the magnetic transition, indicating
that the NTE induced by the Γ5g-type antiferromagnetic
order is successfully reproduced in our model.
In Fig. 2(a), we also plot calculated thermal averages

of the spin correlation,

Ŝ = −
1

Npair

∑

<i,µ;j,ν>

〈Si,µ · Sj,ν〉, (5)

with Si,µ and Sj,ν being adjacent spin pairs and Npair

being the number of spin pairs summed up, which is cal-
culated in the Monte-Carlo simulations. For the Γ5g type

magnetic order at T=0, this quantity should be 0.5. We
find that the volume expansion starts and grows in con-
junction with kink and growth of the spin correlation
with decreasing temperature, indicating that the nega-
tive thermal expansion is indeed driven by the Γ5g type
antiferromagnetic order.

We also examine the case without the higher harmonic
elastic term by setting K2 = 0 and find that the ther-
mally induced volume change above the transition point
vanishes; however, the volume expansion after the mag-
netic transition is again reproduced. We find that the
magnetically induced NTE phenomenon below the mag-
netic transition temperature can be reproduced well even
without the higher harmonic elastic term. Based on this
argument, we neglect this term in the calculations for
Fig. 4 to focus on the pure effect of spin-lattice coupling.
It is also worth mentioning that the temperature pro-
file of the spin correlation Ŝ coincides with that of the
linearized volume expansion δ̄ almost perfectly, indicat-
ing that the volume variation is governed purely by the
magnetism in the absence of the higher harmonic elastic
term.

In Fig. 3(a) and (b), we show calculated temperature
dependence of the averaged difference of normalized bond
length δ̄ ≡ (1/N)

∑
k δk for several values of |JFM|/JAF.

Figure 3(a) [(b)] shows the data for |JFM|/JAF < 1
[|JFM|/JAF > 1] where the Γ5g-type antiferromagnetic
[ferromagnetic] order takes place at low temperatures.
We find that the NTE with increasing δ(> 0) upon cool-
ing is observed in the cases of |JFM|/JAF = 0.8 and 0.9
where the system is in the Γ5g-type antiferromagnetic
phase but is located in the vicinity of the phase bound-
ary (|JFM|/JAF = 1) to the ferromagnetic phase. Con-
versely, the NTE does not occur in the ferromagnetic
phase with |JFM|/JAF > 1. As shown in Fig. 3(c), more
detailed calculations revealed that the NTE occurs when
0.7 <

∼ |JFM|/JAF <
∼ JAF in the Γ5g-type phase. The

extent of the volume expansion is more pronounced for
a larger value of |JFM|/JAF within this phase. On the
contrary, when the |JFM|/JAF exceeds unity and the sys-
tem enters the ferromagnetic phase, the NTE suddenly
vanishes and the crystal volume contracts more notice-
ably for a larger value of |JFM|/JAF in the ferromagnetic
phase.

According to Fig. 3(c), we find that there are lower
and higher threshold values of |JFM|/JAF for occurrence
of the NTE at ∼ 0.7 and ∼ 1. This limited range of
|JFM|/JAF can be understood quantitatively. The fact
that the NTE is driven by the magnetic transition to the
Γ5g-type antiferromagnetic order means that the crystal-
volume expansion further decreases the magnetic en-
ergy via enhancing the antiferromagnetic coupling J1(δ).
Namely, the coupling J1 is expected to increase for a
positive δ. This situation is indeed realized when the co-
efficient of δ-linear term in Eq. (3), 14|JFM| − 10JAF, is
positive, which leads to |JFM|/JAF > 10/14 ∼ 0.714. In
addition, the condition JAF − |JFM| > 0 is required such
that a transition to the Γ5g-type phase occurs to trigger
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FIG. 3: (color online). (a) [(b)] Calculated thermal averages
of the normalized bond-length difference δ̄ as functions of tem-
perature for several values of |JFM|/JAF (≤ 0.9) [(≥ 1.1)]. A
positive (negative) value of δ̄ indicates expansion (contrac-
tion) of the crystal from its original volume. Upturns after
the magnetic transition upon cooling indicates that the NTE
is triggered by the magnetic transitions as seen in the cases
of |JFM|/JAF=0.8 and 0.9. The magnetic transition temper-
atures are indicated by inverted triangles. (c) Calculated δ̄
at kBT=0.01JAF as a function of |JFM|/JAF, which shows
that the Γ5g-type antiferromagnetic order does not necessar-
ily host the magnetism-driven NTE, but it occurs only in the
limited area of the Γ5g-type antiferromagnetic phase. The
NTE occurs in the range 0.7 <

∼ |JFM|/JAF <
∼ 1, whereas the

Γ5g-type order takes place in |JFM|/JAF < 1.

the NTE even when the system is not expanded (δ=0).
Accordingly, we obtain the following condition for occur-
rence of the NTE upon the magnetic transition to the
Γ5g-type antiferromagnetic order:

0.714 <
|JFM|

JAF
< 1. (6)
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FIG. 4: (color online). Phase diagram of the spin model in
Eq. (4) and color map of the averaged difference of normal-
ized bond length δ̄ in plane of temperature kBT/J

AF and the
ratio |JFM|/JAF, which indicates the occurrence of NTE in
the limited area of the Γ5g-type antiferromagnetic phase with
0.7 <

∼ |JFM|/JAF <
∼ 1.

Figure 4 displays a theoretical phase diagram of the
spin model in Eq. (4) and a color map of the normalized
difference of bond length δ in plane of temperature and
the ratio |JFM|/JAF, which clearly shows that the posi-
tive δ̄ appears below the transition temperatures to the
Γ5g-type antiferromagnetic phase in the limited range of
0.7 <

∼ |JFM|/JAF <
∼ 1. As already mentioned above, the

higher harmonic elastic term is neglected for the calcu-
lations to extract the pure effect of the spin-lattice cou-
pling.

Notably, our spin model produces the second-order
phase transition where the bond-length difference δ con-
tinuously increases right below the transition point upon
cooling, whereas the experimentally observed phase tran-
sition has an intrinsic strong first order nature. This ap-
parent inconsistency can be attributed to our theoretical
treatment based on a pure spin model with the presump-
tion of quenched orbital degrees of freedom. We assume
an orbital pattern determined by the crystal field from
the A ions and that from the N ions and consider the
magnetic anisotropies under this orbital pattern. How-
ever, in real materials, the orbitals thermally fluctuate at
higher temperatures and become ordered at lower tem-
peratures. Hence, the orbitals are also the order param-
eter of the present system, and mutual coupling of spins
and orbitals will result in the strong first order phase
transition. A more elaborate theoretical study incorpo-
rating the orbital degrees of freedom is left for future
study. However, the essential physics of the magnetically
induced NTE phenomenon in the inverse perovskite an-
tiferromagnets has been clarified in the present study.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have theoretically investigated the
experimentally observed crystal-volume expansion upon
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FIG. 5: (color online). Crystal structures possibly hosting
the NTE phenomenon triggered by the antiferromagnetic or-
der, in which keen competition between antiferromagnetic and
ferromagnetic contributions to the nearest-neighbor exchange
interactions is realized.

cooling in the inverse perovskite Mn3AN. Our classi-
cal spin model with the spin-lattice coupling has suc-
cessfully reproduced the NTE phenomenon triggered by
the non-coplanar Γ5g type antiferromagnetic order. We
have revealed that the volume expansion or the bond
elongation enhances the nearest-neighbor antiferromag-
netic coupling J1 in the inverse perovskite structure be-
cause the two opposing contributions constituting this
coupling have different bond-length dependencies. The
antiferromagnetic contribution JAF from the direct Mn-
Mn path, which is governed by the second-order pertur-
bation processes of direct d-d electron transfers, is weakly
suppressed. On the other hand, the ferromagnetic con-
tribution JFM from the 90◦ Mn-N-Mn path, which is
governed by the fourth-order perturbation processes of
d-p electron transfers, is suppressed significantly. Conse-
quently, the crystal volume and the bond length tend to
contract when the magnetic transition takes place so as
to increase the antiferromagnetic coupling J1 and the as-
sociated energy gain. We note that this mechanism is not
specific to the inverse perovskites but might be expected
in other crystal structures. Namely, antiferromagnets in
which the antiferromagnetic contribution from direct ex-
change paths and the ferromagnetic contribution from
indirect 90◦ paths severely compete are candidates that
host NTE by this mechanism [Fig. 5].
We believe that this prediction will be a useful guide to

search for new NTE materials because there exists no re-
liable strategy to seek magnetism-driven NTE materials
at present. However, it should be noted that the exis-
tence of this competition is not a sufficient condition but
a necessary condition for emergence of the magnetism-
driven NTE. As we argued clearly, the emergence of Γ5g

antiferromagnetic order does not necessarily induce the
NTE, but the NTE occurs when the ratio |JFM|/JAF

is within a range of 0.714 < |JFM|/JAF < 1 (see also
Fig. 4). Because the value of |JFM|/JAF varies depend-
ing on materials, it is not easy to discuss the sufficient
condition for the NTE. However, we can propose systems
that tend to have a large |JFM|/JAF, which will be help-
ful for searching and designing of new NTE materials.
In general, the direct antiferromagnetic exchange JAF is
given by

JAF =
4t2dd
U

. (7)

On the other hand, the 90◦-bond ferromagnetic exchange
JFM is given by

JFM = −
4t4dpJH

∆2U2
. (8)

Accordingly, their ratio becomes

|JFM|/JAF =
t4dpJH

t2dd∆
2U

. (9)

Here tdd and tdp represent a transfer integral between
neighboring transition-metal d orbitals and that between
the transition-metal d and ligand p orbitals, respectively.
The symbols U and JH represent strengths of the aver-
aged Coulomb interaction and the Hund’s-rule coupling
within the d orbitals, respectively, while ∆ denotes the
charge transfer energy, i.e., the energy-level difference be-
tween the d and p orbitals. In the expression of the ra-
tio |JFM|/JAF, we find that larger tdp and JH as well
as a smaller ∆ tend to give a larger |JFM|/JAF. Note
that tdp tends to be large in the eg-orbital compounds
with σ bonding between the d and p orbitals, while ∆
tends to be small for heavy transition-metal ions. Be-
sides, the Hund’s-rule coupling JH is active in partially
filled d-orbital systems. As a result, we can suggest that
transition-metal compounds having 90◦ M -L-M bonds
with M=Mn, Fe, Co tend to have a large |JFM|/JAF,
and thus are promising for emergence of the magnetism-
driven NTE.
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