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I. INTRODUCTION

The inter-atomic potential energy surface (PES) plays
a central role in the molecular modeling of materials.
Obtaining an accurate and efficient representation of the
PES is a central issue in molecular simulation. In this
context, one faces the dilemma that ab initio methods
are accurate but highly inefficient, while empirical force
fields (FFs) are efficient, but there is a limited guarantee
for their accuracy. Thus, there is a great demand for an
efficient and uniformly accurate PES model that can be
used to compute a broad range of atomistic properties
for most material compounds of practical interest.

Developing empirical FFs has been challenging due to
the high dimensionality and many-body character of the
PES. Usually, empirical FFs parameterize the PES by
assuming an analytical functional form in terms of rela-
tively simple functions based on physical/chemical intu-
ition, and by fitting the model parameters against a bun-
dle of experimental properties and/or microscopic quan-
tities from ab initio calculations. Some popular examples
are the Lennard-Jones potential1, the Stillinger-Weber
potential2, the embedded-atom method (EAM) poten-

tial3, the CHARMM4/AMBER5 FFs, the reactive FFs6,
etc. Representability and transferability are two main
issues faced by empirical FFs. By representability, we
mean the ability of the assumed functional form to re-
produce accurately the target properties. By transfer-
ability, we mean the ability of a PES model to describe
properties that do not belong to the set of fitting tar-
gets. Due to the physical/chemical knowledge encoded
in the functional form, we expect the empirical FFs to be
qualitatively transferable to a moderate range of thermo-
dynamic conditions beyond those adopted for the fitting.
However, as a consequence of assuming relatively sim-
ple functional forms, empirical FFs usually face a severe
representability problem. Moreover, a substantial human
effort in tuning the model parameters is often required to
achieve the best balance in fitting the target properties.
Recent progress with machine learning (ML) methods

is changing the outlook7–19. ML models, being capable of
learning complex and highly nonlinear functional depen-
dence, are excellent in their representability. It is now
possible, using modern ML approaches, to parametrize
the PES using data from ab initio calculations to ob-
tain models that have ab initio accuracy and are, at the
same time, competitive regarding efficiency against em-
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pirical FFs. In spite of the remarkable success of these
ML methods, there is no guarantee for the quality of ML
models when they are used to predict the properties of
a configuration that is far from the training dataset20.
In addition, since the training data is usually generated
with expensive first-principle calculations, one would like
to obtain good ML models without having to rely on very
large ab initio datasets. These questions arise not only
for PES modeling, but in many other contexts when ML
methods are applied to problems involving physical mod-
els.
To address this issue, we get inspiration from active

learning21,22, an area of supervised learning whose aim is
to learn general purpose models with a minimal number
of training data. A training data point involves an input
and an output. For example, in an image recognition
task whose goal is to judge whether a cat is in an image
or not, the input is an array of digits that represents the
image, and the output is a boolean proposition. Usu-
ally the output is called a label and the term labeling
is used to denote the creation of a label. In the con-
text of active learning, one typically faces a situation in
which unlabeled data are abundant, but labeling is ex-
pensive. Therefore, an interactive algorithm is required
to efficiently explore unlabeled data, collect feedbacks on-
the-fly, and actively query the teacher for labels on data
points with negative feedbacks. Along this line of think-
ing, at an abstract level, one can formulate an active
learning procedure for PES modeling that involves three
steps: exploration, labeling, and training.

1. Exploration requires an efficient sampler and an in-
formative indicator. The sampler uses the current
PES model to quickly explore the configuration
space. The indicator monitors on-the-fly the con-
figurations explored by the sampler, selects those
with low prediction accuracy, and sends them to
the labeling step.

2. Labeling means generating reference ab initio ener-
gies and forces for the selected configurations. La-
beling can be done by a code that implements high-
level quantum chemistry, quantum Monte Carlo, or
density functional theory (DFT) methods. The la-
beled configurations are then added to the existing
dataset and used in the new iteration for training.

3. Training requires a good model, or PES representa-
tion, which can fit the ever-increasing dataset with
satisfactory accuracy. Such a representation should
be efficient and should satisfy certain physical con-
straints like the extensive and symmetry-preserving
properties of the PES.

The whole scheme falls into a closed loop: One starts with
a relatively poor approximation of the PES and uses it
to explore different configurations. Then a selected set of
new configurations is labeled, and a new approximation
of the PES is obtained by training. These three steps are

repeated until convergence is achieved, i.e., the configu-
ration space has been explored sufficiently, and a minimal
set of data points have been accurately labeled. At the
end of this procedure, a uniformly accurate PES model
is generated.

In this work, our first goal is to translate the general
proposal described above into a practical scheme for mod-
eling the PES. In this scheme, for the PES representa-
tion, we use an advanced version of the Deep Potential
(DP) model19, which has shown great promise in learning
the PES of a broad range of systems, such as insulators,
molecular crystals, and a 5-component high entropy al-
loy, etc. See, e.g., Fig. 1 of Ref.19. For the sampler, we
use molecular dynamics (MD) based on the DP model.
Thereafter DP based MD will be referred to as DPMD.
At the same time, we introduce an indicator that we call
the model deviation. This is done as follows. We train an
ensemble of DP models using the same dataset but dif-
ferent initialization of the DP parameters. For each new
configuration that is explored by DPMD, these models
generate an ensemble of predictions. For each configu-
ration, the model deviation is defined as the maximum
standard deviation of the predicted atomic forces. A high
model deviation indicates low quality in the model pre-
diction and is proposed for labeling. In this work, we use
in the labeling stage DFT within the generalized gradi-
ent approximation23–26, which works well in the chosen
testing examples. We will see that sampling is much
cheaper than labeling, and only a very small fraction of
the explored configurations is selected for labeling. We
call the methodology introduced here the Deep Potential
Generator, abbreviated DP-GEN.

Our second goal is to demonstrate the uniform accu-
racy of a PES model obtained in this way. To this end,
we consider the example of Al, Mg, as well as Al-Mg
alloys. Using DP-GEN, we construct a model that can
accurately describe these systems at different composi-
tions and thermodynamic conditions. The resulting PES
model is evaluated from the point of view of a mate-
rial scientist. We calculate several statical, dynamical,
and mechanical properties, such as radial distribution
functions (RDF), phonon spectra, elastic constants, etc.
Some of these properties are compared with DFT results.
We also compare DP calculated properties directly with
experimental results when these are available. To further
test the quality of the PES model, we introduce an au-
tomatic procedure based on the Materials Project (MP)
database27. In this procedure, one searches the database
by entering a material composition, such as Al-Mg in the
present case. The database will then return a large num-
ber of locally stable structures, including many structures
of potential practical interest. Based on these structures,
we evaluate several equilibrium properties and compare
the DFT predictions with those of the PES model. In
addition, for each one of these structures, we automati-
cally generate unrelaxed vacancy and interstitial defects
as well as the set of surfaces corresponding to a range
of Miller indices28. We then compare the relaxed forma-
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tion energies of the defects and the unrelaxed formation
energies of the surfaces predicted by DFT and by the
PES model. We stress that these structures, i.e., crys-
tals, defects, and surfaces, were not explicitly included
in the training data. We find that our PES model can
achieve uniform accuracy in the prediction of all of these
structural properties.
We notice that there is a difference between active

learning in conventional ML problems and the active
learning we pursue here. This difference lies in explo-
ration or sampling. Conventional active learning prob-
lems in ML typically deal with an existing unlabeled
dataset. Here our dataset is generated on the fly via
sampling. This means that we need to have an efficient
sampling method.
We should mention that related work can be found in

the literature 29–33. In particular, Smith et al30 utilized
an active learning scheme to model the PES of organic
molecules based on an existing large database34. More-
over, Bartok et al35 constructed a kernel based general
purpose PES model for pure silicon, wherein they ex-
haustively enumerated possible structures for labeling.
Finally, the principle of active learning was also used in
the reinforced dynamics scheme36 for enhanced sampling
and free energy calculation.

II. METHODOLOGY

In this section, we introduce the three essential com-
ponents of the DP-GEN scheme: the model, the sampler,
and the indicator. Fig. 1 shows a schematics of DP-GEN.
To initialize the procedure, we label a small set of initial
structures introduced in Fig. 1(a) and train an ensemble
of preliminary DP models. See Supplemental Material
(SM) at [URL will be inserted by publisher] and
additional references therein63,64 for more details on the
simulation protocol and the iterative process.
Model. The DP scheme assumes that the potential en-

ergy E can be written as a sum of atomic energies, i.e.,
E =

∑

i
Ei. Each atomic energy Ei is a function of

Ri, the local environment of atom i in terms of the rel-
ative coordinates of its neighbors within a cut-off radius
rc. The dependence of Ei on Ri embodies the nonlin-
ear and many-body character of the inter-atomic interac-
tions. Therefore, we use a deep neural network function
(DNN) to parameterize it, i.e., Ei = Ewαi (Ri). Here
αi indicates the chemical species of the i-th atom; wαi

denotes the parameters of the DNN we call network pa-
rameters, that are determined by the training procedure.
A vital component of the DP model is a general proce-
dure that encodes Ri into the so-called feature matrix
Di. This procedure guarantees the conservation of the
translational, rotational, and permutational symmetries
of the system, without losing coordinate information in
the local environment. Derivatives of the energy with re-
spect to the atomic positions give the forces. During the
training process, the network parameters evolve in or-

FIG. 1: Schematic plot of one iteration of the DP-GEN
scheme, taking the Al-Mg system as an example. (a) Explo-
ration with DPMD. (a.1) Preparation of initial structures. I.
For bulk structures: start from stable crystalline structures
of pure Al and Mg. In this work, we use face-centered-cubic
(FCC), hexagonal-closed-packed (HCP), simple cubic (SC),
and diamond structures. II. Compress and dilate the stable
structures uniformly to allow for a larger range of number den-
sities. We use α to denote the scale factor of the compression
and dilation operations. Here α ranges in the interval 0.96-
1.04. III. Randomly perturb the atomic positions and cell vec-
tors of all the initial crystalline structures. The magnitude of
perturbations on the atomic coordinates is σa = 0.01Å. The
magnitude of perturbation on each cell vector is σc = 0.03
times the length of the cell vector. IV. Generate random al-
loy structures: starting from all the structures prepared for
pure systems, randomly place Al or Mg at different sites. V.
Generate structures with rigid displacement: starting from
stable FCC and HCP structures, rigidly displace two crys-
talline halves along specific crystallographic directions. We
only use (100), (110), (111), and (0001), (101̄0), (112̄0), re-
spectively, for FCC and HCP, as the displacement directions.
The magnitudes d of the displacements range in the interval
0.2-10.0Å. Based on all the displaced structures, perform di-
lation α and perturbation σa and σc, and generate random
alloy structures. (a.2) Canonical simulation at a given tem-
perature. The temperature increases with the iteration in-
dex within the range 50-2000 K. (b) Labeling with electronic
structure calculations. (c) Training with the DP model.

der to minimize the loss function, a measure of the error
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in the energies and the forces predicted by DP relative
to the labels, i.e., the corresponding DFT predictions37.
Upon convergence, the model can match the labels within
a small error tolerance. The details of the architecture
of the DP model and the training process are given in
Ref.19.
Sampler. The goal of the sampler is to explore the

configuration space in a range of thermodynamic vari-
ables, say temperature and pressure. Ideally one should
develop an automatic/adaptive procedure for this pur-
pose. However, since exploration is relatively cheap com-
pared to labeling, we adopt a more heuristic approach
in which the exploration is done through: (1) carefully
selecting the initial configurations, and (2) exploring the
volume-temperature space. We use a variety of crystal
structures as our initial configuration, as in the proce-
dure illustrated in Fig. 1(a). To explore the volume-
temperature phase space, we adopt a temperature in-
creasing scheme, in which the temperature of the DPMD
simulations is increased systematically with the iteration
index in the range 50-2000 K. We notice that many struc-
tures constructed in this way are far from equilibrium
structures so that the subsequent DPMD simulations in
the 50-2000K temperature range produce a large sample
of configurations that may differ substantially from the
initial structure. More details on the initial structures
and the thermodynamic conditions in each iteration are
summarized in Tables S1-S4.
Indicator. It is well-known that neural network mod-

els are highly nonlinear functions of the network param-
eters wαi

. The loss function, as a function of wαi
, is

highly non-convex, i.e., several local minima exist in the
landscape of the loss function. In the current work, we
initialize the wαi

randomly according to the standard
normal distribution. As a result, different initializations
often lead to different minimizers of the loss function.
These minimizers fit well the training data, so in the
configurational region belonging to the neighborhood of
the training data, they generate equally accurate ener-
gies and forces and show small deviations in their pre-
dictions. However, for snapshots “far” from the training
data, these minimizers usually predict inaccurate values
that show significantly larger deviation. This property
of neural network models motivates us to define the in-
dicator as the deviation of the predictions generated by
an ensemble of DP models trained with the same dataset
but with different parameter initializations. In practice,
we define the model deviation, denoted as E , as the maxi-
mum standard deviation of the predictions for the atomic
forces, i.e.:

E = max
i

√

〈

‖fi − f̄i‖2
〉

, f̄i =
〈

fi

〉

, (1)

where i runs through the atomic indices in a configura-
tion, and the ensemble average 〈· · · 〉 is taken over the
ensemble of models. We find that using the predicted
forces to evaluate the model deviation is generally better
than using the predicted energies. The force is an atomic

property and is sensitive to a failure in local predictions,
while the energy is a global quantity and does not seem
to provide sufficient resolution in this regard. Moreover,
we find that a failure in local predictions can be better
signaled by using the maximum over i in Eqn. 1, instead
of the average over i ( 1

N

∑

i
).

III. RESULTS

As examples, we report the results of the DP-
GEN scheme for Al, Mg and their alloys. At the end of
the DP-GEN scheme, we collect a set of labeled data and
obtain a DP model for the Al-Mg system. As shown in
Table S4, about 650 million configurations were explored
by DPMD, but only 0.0044% of them were selected for
labeling. To get an idea of the usefulness of the resulting
DP model for materials science applications, we compare
the accuracy of the DP model in predicting important
material properties with a state-of-the-art empirical FF
like the modified embedded atom method (MEAM)38.
MEAM adopts a more general definition of embedding
than EAM in order to improve the description of direc-
tional bonding and of alloy systems. In this work, we
compare our method with a very recent version of the
Al-Mg MEAM potential that is available in the liter-
ature39. We used DeePMD-kit40 in the training step,
LAMMPS41 in the exploration step, and VASP24,25 in
the labeling step.

A. Pure Al and Mg

The equilibrium properties of pure Al are presented in
Table I, including the atomization energy and equilib-
rium volume per atom, defect formation energies, elastic
constants and moduli, stacking fault energies, melting
point, enthalpy of fusion, and diffusion coefficient. The
defect formation energy is defined as Edf = Ed(Nd) −
NdE0, d = v(i) indicating vacancy (interstitial) defects.
Ed denotes the relaxed energy of a defective structure
with Nd atoms and E0 denotes the energy per atom of
the corresponding ideal crystal at T = 0 K. To com-
pute the defect formation energies, we use a supercell in
which we replicate 7×7×7 times the primitive FCC cell.
We estimate the melting temperature (Tm) by simulat-
ing with DPMD coexisting crystal and liquid phases in
a supercell containing 8000 atoms within the isothermal-
isobaric ensemble at standard pressure. To estimate the
liquid diffusion coefficient (D), we perform DPMD sim-
ulations on large supercells (6912 atoms) for which finite
size effects are negligible. For all the properties in Ta-
ble I, the DP predictions are in satisfactory agreement
with DFT and/or experiment. Notice that MEAM re-
produces quite accurately the solid state properties in Ta-
ble I, particularly when compared to experiment, which
is not surprising since the basic experimental solid state
properties have been used to tune the parameters of this
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TABLE I: Equilibrium properties of Al: atomization energy
Eam, equilibrium volume per atom V0, vacancy formation en-
ergy Evf, interstitial formation energies Eif for octahedral in-
terstitial (oh) and tetrahedral interstitial (th). independent
elastic constants C11, C12, and C44, Bulk modulusBV (Voigt),
shear modulus GV (Voigt), stacking fault energy γsf, twin
stacking fault energy γtsf, melting point Tm, enthalpy of fu-
sion ∆Hf , and diffusion coefficient D at T = 1000K.

Al EXP DFTa DP MEAM

Eam [eV/atom] −3.49b −3.655 −3.654 −3.353
V0 [Å3/atom]c 16.50d 16.48 16.51 16.61
Evf [eV] 0.66e 0.67f 0.79 0.67
Eif (oh) [eV] - 2.91f 2.45 2.77
Eif (th) [eV] - 3.23f 3.12 3.32
C11 [GPa] 114.3g 111.2 120.9 111.4
C12 [GPa] 61.9g 61.4 59.6 61.4
C44 [GPa] 31.6g 36.8 40.4 29.7
BV [GPa] 79.4g 78.0 80.1 78.1
GV [GPa] 29.4g 32.1 36.5 27.0
γsf [J/m

2] 0.11–0.21h 0.142i 0.132 0.143
γtsf [J/m

2] - 0.135i 0.130 0.144
Tm [K] 935j 950(±50)k 918(±5) 898(±5)
∆Hf [kJ/mol] 10.7(±0.2)l - 10.2 4.4
D [10−9m2/s] 7.2–7.9m - 7.1 0.4

aThe DFT results, unless specified with a reference, are com-
puted by the authors. We notice that a K-mesh spacing equal
to 0.06 Å−1 was used to obtain more converged DFT results in
this table. However, in the labeling stage, we used a K-mesh spac-
ing equal to 0.08 Å−1, which gives converged values for most of
the properties except for elastic constants and moduli. Using K-
mesh spacing equal to 0.08 Å−1 gives C11 = 129.3 GPa, C12 =
52.8 GPa, C44 = 37.4 GPa, BV = 78.3 GPa, and GV = 37.7 GPa.
bRef.42. cExperiment values obtained at T = 298K; DFT, DP, and
MEAM results obtained at T = 0K. dRef.43. eRefs.44,45. fRef.46.
gRef.47. hRefs.48–51. iRef.52. jRef.53. kRef.54. lRef.55. mRef.56,
D = 7.2× 10−9m2/s at 980K and 7.9× 10−9m2/s at 1020K.

FF. However, the vibrational properties at short wave-
length, particularly the zone boundary phonons, are not
reproduced well by MEAM in contrast to DP, as shown
in Fig. 2. MEAM fails even more dramatically in pre-
dicting the properties of the liquid: the MEAM liquid is
largely overstructured (see Fig. 3). Its diffusion coeffi-
cient is one order of magnitude smaller than in experi-
ment or DP, and its enthalpy of fusion is also significantly
smaller than in experiment or DP (see Table I).

DFT, DP, and MEAM predictions for the equation of
state (EOS) of Al are reported in Fig. 4. DP reproduces
well the DFT results for all the crystalline structures con-
sidered here, i.e., FCC, HCP, double-hexagonal-closed-
packed (DHCP), body-centered-cubic (BCC), SC and di-
amond. Interestingly, the range of DP accuracy extends
well beyond the volume interval that was included in the
training data, which is indicated by the yellow shaded
area in the figure. As shown in the inset of Fig. 4, the
energy difference between FCC and DHCP, and the one
between DHCP and HCP is small, only 12 meV/atom
and 19 meV/atom, respectively, yet DP reproduces ac-
curately the relative stabilities. The MEAM potential
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FIG. 2: The phonon dispersion relations of Al at T = 80K
and P = 1bar. Here q denotes the wave number and ν the
frequency. The experimental data is taken from57.
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FIG. 3: The RDFs g(r) of liquid Al at P = 1 bar and tem-
peratures T = 943 K. The DP and MEAM predictions are
compared with the experimental data taken from58. The in-
serted plot is the zoom-in of RDFs in range 3.5Å≤ r ≤ 7Å.

performs well for FCC, HCP, DHCP, and SC, but shows
significant deviations from DFT for diamond and BCC.
DP and MEAM predictions for the phonon dispersion re-
lations are compared with experimental results in Fig. 2.
DP results agree very well with experiment.
The promise of ML potential models is to retain the

accuracy of ab initio molecular dynamics (AIMD) at the
cost of FF simulations. Therefore, ML potential models
can be used to simulate much larger systems for much
longer times than possible with AIMD. This is illustrated
by our calculations for the diffusion coefficient and the ra-
dial distribution function (RDF) of the liquid, which were
performed on large cells with 4000 atoms with very mod-
est computational resources when using DP. Thus, the
DP model opens opportunities for extending the power
of ab initio methods.
The DP method gives similarly good results for the

corresponding properties of pure Mg, which are reported
in the SM and compared with additional references
therein65–70.
Finally, we examine the surface formation energy

Esf((lmn)), which describes the energy needed to create
a surface with Miller indices (lmn) for a given crystal,
and is defined by Esf((lmn)) = 1

2A
(Es((lmn)) − NsE0).

Here Es((lmn)) and Ns denote the energy and number
of atoms of the relaxed surface structure with Miller in-
dices (lmn). A denotes the surface area. We enumerate
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all the non-equivalent surfaces corresponding to Miller
index values smaller than 4 for Al, and smaller than 3
for Mg. As shown in Fig. 5, the surfaces formation en-
ergies predicted by DP are close to DFT59, and those
predicted by MEAM are worse in all cases. We report in
detail the values of surface formation energies for Al and
Mg in Tables S6 and S7, respectively.

B. Mg-Al Alloys

For alloy systems, we adopted the testing scheme intro-
duced in Section I, finding 28 crystalline (ordered) Mg-Al
alloy structures in the MP database27, corresponding to

relative Mg concentrations (cMg) ranging from 25% to
94%. Most of these structures were found initially from
experiment and were recorded in the inorganic crystal
structure database (ICSD)60. When recorded in the MP
database they were further relaxed with DFT. In Figs. 6
(a-f), we compare predictions of DFT, DP, and MEAM
for the 28 alloy structures. The 6 panels in Fig. 6 report
(a) the formation energies, (b) the equilibrium volumes
per atom,(c) the elastic constants, (d) the relaxed va-
cancy formation energies, (e) the total energies per atom
along interstitial relaxation pathways, and (f) the unre-
laxed surface formation energies. Notice that only the
elastic constants from DP are compared with DFT in
Fig. 6 (c). The corresponding MEAM elastic constants
are compared with DFT in Fig. S3.
The formation energy of an Mg-Al alloy system is de-

fined as

Eaf = E0(cMg)− cMgE
0
Mg − (1− cMg)E

0
Al

where E0(cMg) denotes the equilibrium energy (0 K) per
atom of the Mg-Al alloy structure with Mg concentra-
tion equal to cMg, and E0

Mg and E0
Al denote the equi-

librium energies per atom of the corresponding stable
crystals of pure Mg and Al at 0 K. The precise values
of the formation energies and equilibrium volumes per
atom are reported in Table S9.To generate the vacancy
and interstitial structures, we used supercells that are
periodic copies of the MP structures. The size of the su-
percell for each MP structure is reported in Table S5.We
further notice that the interstitial structures are auto-
matically generated based on 12 MP structures71 that
are the most stable ones at the corresponding concentra-
tions. Since most of the interstitial structures are ener-
getically highly unstable, their relaxation likely ends up
with structures that do not represent locally relaxed in-
terstitial point defects, as shown in Fig. S4. In this case,
the end structures depend very sensitively on the details
of the relaxation. Therefore, instead of performing in-
dependent relaxations within DFT, DP, and MEAM, we
compare the predictions of these models for configura-
tions along the DFT relaxation pathways (excluding the
initial high energy configurations).
In almost all tested cases, we observe an overall satis-

factory agreement between DP predictions and DFT ref-
erence results. The accuracy of DP is significantly better
than that of MEAM. We stress that the DP-GEN proce-
dure is blind to the alloy structures used to compute the
properties reported in Fig. 6, because these structures
were not explicitly included in the training data. The
number of atoms in the unit cell of 6 MP structures is
larger than 32, which was the maximum number of atoms
in the unit cell of the structures belonging to the train-
ing dataset. This suggests that in the case of Mg-Al al-
loys the DP model trained with relatively small periodic
structures can, to some extent, be used to predict the
properties of larger structures. Some structures tested
have little in common with the initial training data. Yet
the DP model produced satisfactory results, suggesting
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FIG. 6: Comparisons of Al-Mg alloy properties predicted by DFT, DP, and MEAM, based on 28 structures in the MP database.
(a) 28 formation energies. (b) 28 equilibrium volumes per atom. (c) 225 elastic constants. Three structures, mp-1039192, mp-
1094664, and mp-12766, are excluded because they resulted unstable under small displacements within DFT. (d) 125 relaxed
vacancy formation energies. Three structures, mp-1039192, mp-1094664, and mp-1038818, are excluded because they resulted
unstable under vacancy relaxations within DFT. Two DP predictions and three MEAM predictions are outside the range of the
plot due to large errors. (e) 86,199 energies per atom along the interstitial relaxation pathways within DFT. (f) 903 unrelaxed
surface energies.

that it could work for a broader range of materials.

IV. SUMMARY AND OUTLOOK

The DP-GEN scheme is general, practical, and fairly
automatic. To generate the DP model for the Al-Mg sys-
tem, we did not use any existing DFT database (the MP
database was only used for testing), nor did we use an ex-
haustive list of possible structures based on physical and
chemical considerations. Instead, we explored the space
of configurations using computationally efficient DPMD
simulations. DFT calculations were only performed on
a small subset of the configurations that showed large
model deviation. This made possible to progressively im-
prove the DP model.
The DP-GEN scheme is quite flexible. The three com-

ponents, training, exploration, and labeling, are highly
modularized and can be implemented separately and
then recombined. This makes it easy to incorporate ad-
ditional functionalities. For example, enhanced sampling
techniques32 or genetic algorithms61 can be incorporated
with minimal effort in the exploration module. We ex-
pect that the modular structure of DP-GEN should make
possible to use this method to generate models for a va-

riety of important problems, such as finding transition
pathways for structural transformations and chemical re-
actions. The outcome of DP-GEN include the model and
the accumulated data, which could be used for further ap-
plications. For example, if a rare-earth species is added
to the Al-Mg system, one does not need to start the DP-
GEN scheme from scratch. Instead, one could restart the
DP-GEN scheme with the current model and data, and
continue with the exploration of the configuration space
involving the new species.

Besides alloys dominated by metallic bonding, it would
be interesting to use the DP-GEN scheme to study other
materials, such as ceramics, polymers, etc., which include
different types of bond interactions. This should be pos-
sible because the applicability of DP-GEN relies on three
main points: the representability of the model, the va-
lidity of the indicator, and the capability of the sampler.
Several investigations suggest that the first two issues
should be relatively independent of the details of the mi-
croscopic interactions. Indeed, our earlier studies18,19 in-
dicate that the DP model can represent equally well the
PES of systems that differ significantly in their bonding
character, such as organic molecules, molecular crystals,
hydrogen bonded systems, semiconductors and semimet-
als. In addition, extensive observations by our group
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show that the DP-GEN indicator, which derives from the
variance of the predictions within an ensemble of DNN
models, works equally well for different applications36,62.
These observations are further supported by recent work
by other groups who used closely related indicators in
applications to a variety of different systems30,33. We
are left with the sampler, which may require case specific
strategies. We are currently investigating this issue in a
range of materials, finding that in all cases the search for
optimal sampling strategies is facilitated by the modular
structure of DP-GEN. We will present specific examples
in future work.
Last but not least, one should be aware that DP-GEN

scheme may fail in some circumstances. We think that
this should occur most likely when the sampler and/or
the indicator fail. For example, the sampler could fail
when the configuration space has high dimensionality and
large free energy barriers prevent exploring important
configurations. In these situations, specifically designed
good reaction coordinates might be necessary. Additional
difficulties may be due to the indicator. To the best of
the authors’ knowledge, a rigorous mathematical theory
of the indicator is missing. A large value of the proposed
indicator is only a sufficient, not a necessary, condition
for poor performance of a DP model. There may be situa-
tions in which the physics is poorly described by a model,
yet the corresponding ensemble of predictions has small
variance. We did not face these difficulties in the present
investigation but the reader should be aware that system-

atic validation tests should always be performed before
using a DP model to explore new physics.
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13 Kristof Schütt, Pieter-Jan Kindermans, Huziel

mailto:wang_han@iapcm.ac.cn
mailto:weinan@math.princeton.edu


9

Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A
continuous-filter convolutional neural network for mod-
eling quantum interactions. In Advances in Neural
Information Processing Systems, pages 992–1002, 2017.
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