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Tailoring near-field optical phenomena often requires excitation of surface plasmon polaritons
(SPPs) or surface phonon polaritons (SPhPs), surface waves at the interface between media with
electric permittivities of opposite sign. Despite their unprecedented field confinement, surface po-
laritons are limited by polarization: only transverse magnetic fields enable their excitation, leaving
transverse electric fields unexploited. By contrast, guided modes in positive permittivity materials
occur for both linear polarizations, however they typically cannot compete with SPPs and SPhPs
in terms of confinement. Here we show that omnipolarization guided modes in materials with high-
permittivity resonances can reach confinement factors similar to SPPs and SPhPs, while surpassing
them in terms of propagation distance. We explore the cases of silicon carbide and transition metal
dichalcogenides near their permittivity resonances, and compare with SPhPs in silicon carbide and
SPPs in silver, at infrared and visible frequencies, respectively.

PACS numbers: 78.66.Bz, 73.20.Mf, 78.67.Pt

I. INTRODUCTION

Electromagnetic surface waves and their interac-
tion with matter provide a path for tailoring near-
field optical phenomena. The rise of plasmonics has
generated excitement in a broad range of applica-
tions, for example in medical technology1, chemistry2,
lasers3–5, optical circuitry6–8, luminescence9,10 and ther-
mal management11,12. Surface plasmons are evanes-
cent electromagnetic waves that propagate on a metal-
lic surface13 and exponentially decay in the lateral di-
rection, as shown in Fig. 1a. Their properties originate
from the dispersion characteristics of Drude metals (black
curve in Fig. 1b), and their uniqueness lies in their large
mode confinement. Particularly, the frequency dispersion
of a surface plasmon polariton (SPP) exhibits a char-
acteristic asymptotically increasing in-plane wavenum-
ber kSPP, which is unbound in the lossless limit (see
Eq. 1 for ε(ω) = −ε1). Therefore, the wavelength
of a SPP (λSPP = 2π/kSPP) can be up to ten times
reduced compared to free space wavelengths for noble
metals14, while this confinement factor can reach hun-
dreds in graphene15. The asymptotic behavior of the
SPP dispersion curve also yields a large density of op-
tical states, a property desirable for engineering strong
light-matter interactions with applications in lumines-
cence, emission and thermal control11,16. The prerequi-
site for excitation of SPPs is an interface between media
with electric permittivities (ε) of opposite sign17.

Aside from plasmonic metals with a broadband ε < 0
below their plasma frequency, negative electric permit-
tivity is also found at the Reststrahlen band of polar
dielectrics (red curve in Fig. 1b). Particularly, the per-
mittivity of polar dielectric materials exhibits Lorentz-

shaped resonances at mid-far infrared (IR) frequencies,
as a consequence of lattice vibrations, c.f. phonons, in
their crystal structure. The Reststrahlen band’s ε < 0 al-
lows for excitation of surface phonon polaritons (SPhPs),
which, similar to SPPs, are evanescent waves. In con-
trast to SPPs that originate from free charge carriers in
metals, SPhPs occur due to bound charge oscillations in
dielectrics18–20.

Despite the unique electromagnetic features of SPPs
and SPhPs, their excitation requires an out-of-plane elec-
tric field, which renders them relevant only for transverse
magnetic (TM) fields, while they do not couple to trans-
verse electric (TE) fields. Nevertheless, unpolarized light
contains equal contributions of TE and TM components,
therefore, the polarization dependence of surface (plas-
mon or phonon) polaritons constrains their relevance and
limits the potential of plasmonic-based future technolo-
gies. To fully exploit the remarkable properties of SPPs
and SPhPs as mechanisms for manipulating light in the
nanoscale, for example in harnessing solar energy22,23,
recycling heat11,12,18 and controlling emission3,9,10, it is
valuable to explore means for overcoming this polariza-
tion bottleneck.

Here, we aim to alleviate the polarization dependence
of SPPs and SPhPs by searching for material require-
ments for simultaneously accommodating TM and TE
polarized surface waves. A naturally occurring TE-
equivalent to a surface polariton requires a material with
µ < 0, however natural magnetism typically vanishes at
IR and visible frequencies17,24–27. By contrast, guided
modes in slabs of materials that exhibit a positive electric
permittivity (see Fig. 1c) occur for both linear polariza-
tions, and have played a prominent role in integrated op-
tical devices the last decades28,29. Such guiding schemes
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FIG. 1. Guided waves in ε < 0 and ε > 0 material systems. (a) At the interface between media with electric permittivities
of opposite sign, surface plasmon polaritons (SPPs) and surface phonon polaritons (SPhPs) are supported. (b) Drude (black)
and Lorentz (red) dielectric response, supporting SPPs and SPhPs, respectively, when ε < 0 (red shaded region). (c) Guided
waves are supported in slabs with high-ε, when embedded between lower-ε media. (d) Monolayer case of (c). (e) Electric
permittivity of a polar dielectric material (red), where ωTO and ωLO correspond to the transverse and longitudinal optical
phonon energies, respectively18 (see Eq. 2), and electric permittivity of an excitonic material (cyan), for example transition
metal dichalcogenides (TMDs)21. For omnipolarization surface-confined propagation, we focus on the high-ε regime (green
shaded region). Solid lines: real parts, dashed lines: imaginary parts. γd stands for the phonon and exciton lifetimes (see Eq.
2).

can be very small by considering thin dielectric films of
high-refractive index for compact optical circuitry30–32.
The effective wavelength, or confinement, of a guided
mode scales with the refractive index as λeff ∼ λo/n,
where n =

√
ε and λo is the free space wavelength. Hence,

a large positive electric permittivity is key for exciting
guided modes with strong interface confinement, for both
linear polarizations, contrary to SPPs and SPhPs.

Such high-permittivity regimes are found, for exam-
ple, on the red side of the Reststrahlen band of polar
dielectric media, near their phonon resonances, in the IR
range (see red curve in Fig. 1e). Furthermore, large and
positive permittivity resonances occur near the exciton
transition energies of semiconductors33 that lie at visi-
ble frequencies and typically exhibit Lorentz-shaped fre-
quency dispersion, as shown with the cyan curve in Fig.
1e. A set of polar dielectric materials and semiconduc-
tors with high-permittivity resonances is shown in Fig.
2, where the displayed wavelengths refer to the peak of
their electric permittivity (frequency ωTO in Fig. 1e).
An emerging class of semiconductors with particular in-

terest to our study are transition metal dichalcogenides
(TMDs), namely WS2, MoS2, WSe2 and MoSe2, that
exhibit prominent features in their electric permittivity,
both in their bulk and monolayer form, as recently dis-
cussed in21.

In this work, we demonstrate that materials with pro-
nounced permittivity resonances (green shaded regime in
Fig. 1e) support omnipolarization guided modes (Figs.
1c, d) that can mimic the propagation characteristics of
SPPs and SPhPs. As an example system in the IR range
we investigate a slab of SiC, a polar dielectric material
previously widely explored for SPhP propagation at its
Reststrahlen band11,18–20,34,35. In contrast, here we fo-
cus on the high-ε permittivity regime of SiC and compare
with the SPhP band. At visible frequencies, we investi-
gate TMDs near their excitonic resonances21, and com-
pare with SPPs on silver, since Ag is a state-of-the-art
material for visible light plasmonics. For the selected ma-
terials, we show that omnipolarization surface-confined
propagation is possible, with confinement similar to sur-
face polaritons, and with propagation distance that sur-
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FIG. 2. Materials with Lorentz-type permittivity resonances at visible and IR frequencies. Polar dielectric materials
at IR frequencies and excitonic materials (semiconductors) at visible frequencies exhibit high-ε Lorentz-type permittivity
resonances (details for the selected materials can be found, for example, in11,18,21). ωTO stands for the central frequency of the
resonance (see Fig. 1e), near which surface-confined modes are computed in Figs. 4, 5, 6.

passes them. We extend our findings to the monolayer
case of TMDs (see Fig. 1d), where the high-ε modes
have been previously termed exciton polaritons36,37. We
start by demonstrating that the key material property
enabling this response is a sharp and low-loss permittiv-
ity resonance, which we refer to as a high-quality factor
(Q) in what follows.

II. HOW GUIDED MODES CAN COMPETE
WITH SURFACE POLARITONS

At the interface between two media with electric per-
mittivities ε1 > 0 and ε(ω) < 0, a TM-polarized surface
excitation exists. (Fig. 1a). The frequency dispersion of
its in-plane wavenumber is13

kSPP/SPhP =

√
ε(ω)ε1
ε(ω) + ε1

ko (1)

where ko = ω/c is the free-space wavenumber. As ε(ω)
approaches −ε1, kSPP/SPhP diverges, enabling extreme
mode confinement. For metals, ε(ω) is taken as the Drude

model, ε(ω) = 1 − ω2
p

ω2+iωγm
, where ωp is the plasma fre-

quency and γm is the inverse momentum-relaxation time
of electrons. The SPP dispersion is shown with the black
curve in Fig. 3 for a finite amount of loss γm. A similar
dispersion characterizes SPhPs at the Reststrahlen band
of polar dielectric materials that can be described with
the Lorentz model

εLor(ω) = ε∞,d(
ω2

LO − ω2 − iγdω

ω2
TO − ω2 − iωγd

) (2)

where ωLO and ωTO correspond to the longitudinal
and transverse phonon energies, respectively, and γd is
the inverse phonon lifetime. The back-bending of the
SPP/SPhP dispersion curve in Fig. 3 arises from ma-
terial loss, in other words from the non-zero values of
γm or γd in Drude metals and polar dielectric materi-
als, respectively13,14,38. This back-bending determines
the maximum wavenumber kSPP/SPhP that corresponds
to the highest degree of confinement, and is bounded
by material loss. A non-zero imaginary component of

the wavenumber Im(kSPP/SPhP) also arises from mate-
rial loss, and its frequency dispersion is shown with the
black curve in the inset of Fig. 3.

Next, we consider a slab of thickness d of an arbitrary
material with positive permittivity ε(ω), sandwiched be-
tween two semi-infinite spaces with permittivities ε1,2
(Fig. 1c), where we set ε(ω) > ε1,2. By selecting ap-
propriately the thickness d of the slab, one can engineer
the TE guided modes to overlap in frequency (ω) and
in-plane wavenumber (k//) with the TM ones, thereby
leading to omnipolarization, phase-matched propagation
(see Figs. 4a, 5a-d). In this configuration, k// is bounded
by the refractive indices of the surrounding and guiding
media, and its maximum value is

kmax = max{
√
ε(ω)}ko (3)

For example, a widespread waveguide system in silicon
photonics is a Si slab sandwiched between air and a SiO2

substrate. At λo = 1.5 µm, SiO2 and Si exhibit negligible
frequency dispersion, and their refractive indices are 1.5
and 3.4, respectively. Therefore, the in-plane wavenum-
ber is bounded by 1.5 ≤ k///ko ≤ 3.4. This regime is
shown with the grey shaded area in Fig. 3. By consid-
ering that the effective wavelength of a guided mode is
given by λeff = 2π/k//, it is easy to see that silicon pho-
tonic guided modes cannot typically compete with SPPs
or SPhPs in terms of confinement.

Now let us consider a dispersive electric permit-
tivity ε(ω) for the slab (Fig. 1c), and particularly
ε(ω) = εLor(ω), and let us focus in the high-ε frequency
range (green shaded area in Fig. 1e), for ω / ωTO. We
define the material quality factor Q, with respect to Eq.
2, as

Q =
ωTO

γd
(4)

The quality factorQ expresses the sharpness of the per-
mittivity resonance (Fig. 1e). In Fig. 3 we plot the maxi-
mum wavenumber kmax (Eq. 3) for two different values of
Q (cyan and red curves). It can be seen that, by increas-
ing Q, one obtains larger Re(k//), and hence improved
confinement, while also achieving low propagation losses,
since the parameter Im(k//) decreases considerably near
resonance, for increasing Q. It is noteworthy that the
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FIG. 3. SPPs and SPhPs compared to high-ε guided
modes. Black curve-dispersion for SPPs (ε(ω) < 0, ε1 = 1,
see panel (a) in Fig. 1 and Eq. 1), for transverse magnetic
(TM) polarization. In this case, ωchar = ωp/

√
2, where ωp is

the plasma frequency of Ag39 and we take γm = 0.1γm,Ag.
A similar dispersion characterizes SPhPs at IR frequen-
cies. Grey shaded region: dispersion regime of Si photonics:
wavenumber values pertain to a typical Si waveguide on a
SiO2 substrate (ε1 = 1, ε(ω) = εSi, ε3 = εSiO2 , see panel (c) in
Fig. 1). Cyan and red curves: dispersion for guided modes in
high-ε slabs (panel (c) in Fig. 1), with ε1,3 = 1, ε(ω) = εLor

(Eq. 2), for low- and high-Q (Eq. 4), respectively. We take
ωchar = ωTO,I = ωTO,II and γII = 0.1γI = 7.267 × 1013 rad/s
(Eq. 2), which is within the range of γd for most polar dielec-
tric materials11,18,20. Inset: imaginary part of the in-plane
wavenumber k//.

dispersion curve for high-Q material slabs (red curve in
Fig. 3) resembles the SPP/SPhP dispersion curve (black
curve in Fig. 3). This highlights that guided modes in
high-Q materials can reach surface confinement similar
to SPPs and SPhPs. We note that for the SPP disper-
sion in Fig. 3 we selected QSPP = ωp/γm = 1.88 × 103,
which is an overestimation of the quality factor of most
plasmonic metals (for reference, QAg = 1.88× 10239).

In Fig. 3 we demonstrated that, in principle, guided
modes in high-ε material slabs can compete with sur-
face polaritons in terms of confinement. By defining
the propagation distance f a mode as L = 1/2Im(k//),
we also see, from the inset of Fig. 3, that such modes
can propagate for longer distances, compared to SPPs
or SPhPs. We emphasize that both TE and TM guided
modes are supported in high-ε material slabs, thereby
alleviating the polarization limitation of surface polari-
tons. The key material parameter for highly confined
guided modes is large Q. In contrast to the maximum
value of kSPP/SPhP, which is bounded by loss (Eq. 1),
the maximum wavenumber of a guided mode is bounded
by max{ε(ω)} = ε(ωTO) (Eq. 3). As Q increases, permit-
tivity resonances become sharper and ε(ωTO) increases.

This also leads to increased losses on-resonance, however
this issue is overcome by operating slightly off-resonance,
to the red side of ωTO.

In what follows we perform detailed surface wave cal-
culations for selected high-Q materials, and compare
them with surface polaritons in terms of confinement,
mode volume and propagation distance. By modeling
the electric permittivity for the selected materials with
the Lorentz model (Eq. 2), we derive a quality factor
Q (Eq. 4) for each one. In search for high-permittivity
materials with pronounced resonances, we resort to po-
lar dielectrics and TMDs at IR and visible frequencies,
respectively. In the IR range, we select SiC due to its
very large QSiC = 16611 (we note that even higher val-
ues of QSiC have been reported in18,20,34,35). The high-Q
guided modes of SiC are compared to its SPhP in the
Reststrahlen band (Fig. 4). At visible frequencies, we
compare SPPs in silver with guided modes in thin films
(Fig. 5) and monolayers (Fig. 6) of WS2, MoS2, WSe2

and MoSe2. These materials support prominent permit-
tivity resonances that span the whole visible spectrum
(see Fig. 2), as reported experimentally by Li et al. in21.
By fitting the data from21 with Eq. 2 we obtain, for
bulk properties, QWS2

= 37, QMoS2
= 25, QWSe2

= 18
and QMoSe2

= 19, while slightly higher quality factors
describe monolayers.

In the dispersion curves that follow, in order to provide
a direct estimation of confinement and to facilitate com-
parison between results pertaining to different frequency
ranges, the in-plane wavenumber k// is normalized to ko.
Since k///ko = λo/λeff , the horizontal axes of the dis-
persion curves that follow display the number of modal
wavelengths that fit in the wavelength of excitation λo.
Furthermore, we define the effective propagation length
as

Leff ≡
Re(k//)

Im(k//)
= 4π

L

λeff
(5)

that expresses the number of modal wavelengths or cy-
cles that a wave propagates prior to decaying. The nor-
malization of the absolute propagation length L to λeff

also facilitates comparison between results at different
frequency ranges. Furthermore, we introduce the modal
cross-sectional area40, which, in the one-dimensional case
studied here, is given by

Aeff ≡
A1D

Ao,1D
=

[
∫
Idz]2/

∫
I2dz

λo/2
(6)

where I is the intensity profile of the mode (E2(z) or
B2(z), where z is the out-of-plane direction, see Fig. 1a).
We normalize to Ao,1D = λo/2, which is the diffraction
limited spot in one-dimension. The limits of integration
in Eq. 6 are taken to be on the order of tens of wave-
lengths away from the area where the mode is confined.

The mode detection scheme used in the results that fol-
low is the reflection pole method41. Although this work
focuses on guided modes in single-layers, our methodol-
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ogy applies to any multilayer configuration of finite thick-
ness, in contrast to Bloch-based approaches for infinitely
periodic superlattices42. By additionally employing a pa-
rameter retrieval43, we introduce conditions for distin-
guishing between surface-confined and leaky modes. For
details see Section VI.

III. RESULTS

A. High-ε modes in SiC versus SPhPs

In the IR spectral range, polar dielectrics exhibit per-
mittivity resonances due to lattice vibrations or phonons.
An overview of the properties of a number of high-Q
polar dielectrics can be found in18. We select SiC due
to its very large quality factor QSiC = 166, which is a
prerequisite for guided modes with large confinement, as
discussed in Section II. The IR permittivity of SiC is
most widely described with Eq. 2, using ε∞,d = 6.7,
ωTO = 1.49 × 1014 rad/s, ωLO = 1.83 × 1014 rad/s,
γd = 8.97× 1011 rad/s11,12,44.

We start from a semi-infinite slab, where TE and TM
modes in the positive ε permittivity regime (ω ≤ ωTO)
are degenerate. We gradually decrease the thick-
ness of the slab d until reaching the minimum thick-
ness for which the TE and TM dispersion curves of
the guided modes remain degenerate. This occurs at
d = 8πc/(ωTO

√
εSiC(ωTO)) ' 3µm. We consider Si

as the substrate material and set its refractive index to
nSi = 3.445,46.

As can be seen from Fig. 4a, in the Reststrahlen band
(red shaded area), there exist a TM-polarized SPhP, due
to εSiC < 0. The SPhP is highly localized at the air-SiC
interface, as is shown with the field profile in the upper
inset. Its effective cross-sectional area ranges between
Aeff,SPhP ∼ [0.03, 0.09], which is considerably smaller
than the mode volume of SPhPs in the majority of polar
dielectric materials11,18,20. From Fig. 4b, it is also seen
that the propagation length Leff of the SPhP decreases
for increasing frequency, as one approaches the maximum
value of kSPhP ∼ 12ko (Fig. 4a).

In contrast to the Reststrahlen band, where the SPhP
is restricted to TM polarization, in the high-ε regime
shown in the green shaded area in Fig. 4a, simultane-
ously TE- and TM-polarized guided modes exist with
overlapping dispersions. In Fig. 4 we display the guided
modes that exhibit the largest k//, however we note that
lower order (lower k//) modes also occur but are not
highly confined. We observe that the maximum in-plane
wavenumber, or parameter kmax in Eq. 3, is very large,
i.e. kmax ∼ 18ko, which follows from the large value of√
ε(ωTO) ∼ 20 in SiC. Therefore we see that, despite the

fact that these guided modes cannot be strictly classi-
fied as surface waves, they resemble them due to their
high-degree of mode confinement. Furthermore, the ef-
fective cross-sectional area Aeff of the guided modes is
comparable to the SiC SPhP for the same k//, namely
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FIG. 4. Surface-confined modes in a thin film of SiC
on Si as compared to SPhPs. (a) Dispersion curves and
(b) propagation length (Eq. 5) for surface-confined waves
supported in a slab of SiC on Si, in the IR frequency regime.
The green shaded area emphasizes the high-ε regime, where
simultaneous excitation of TE (blue) and TM (red) surface-
confined waves with overlapping dispersion curves occurs
(crossing point indicated with the cross mark), with similar
dispersion characteristics to the SiC SPhP, displayed in the
red shaded regime. The SPhP occurs at frequencies ω > ωTO,
for which εSiC < 0 (Reststrahlen band18). Numerical results
presented as points in panel (a) correspond to values of the
cross-sectional area of the mode (Eq. 6). Dashed line in panel

(a) corresponds to kmax =
√
εSiC(ω)ko.

Aeff ∼ [0.03, 0.06], and their field profiles for both lin-
ear polarizations are shown in the lower inset of Fig.
4a. These modes exhibit increasing propagation distance
(green shaded area in Fig. 4b) as the frequency is tuned
off-resonance (ω < ωTO), which stems from the tradeoff
between confinement and propagation distance.

Other polar dielectrics with high-permittivity reso-
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nances at IR frequences can also support similar surface-
confined omnipolarization guided modes that can com-
pete with their respective SPhPs, for example SiO2

35 and
hBN19,47 (see Fig. 2).

B. High-ε modes in TMDs versus SPPs in silver

In the visible part of the spectrum, excitonic res-
onances in semiconducting materials yield frequency
regimes of large electric permittivity. For Si and Ge for
example, these resonances occur near λo = 400 nm45,46

and λo = 600 nm46, respectively. Nevertheless, for most
semiconductors, the exciton lifetime (γ−1

d in Eq. 2) is
rather small, leading to low-Q permittivity resonances
that are not ideal for the concept of highly-confined
guided waves outlined in Section II.

By contrast, excitons in TMDs induce sharp permit-
tivity features21, therefore TMDs can serve as mate-
rial platforms for highly confined guided waves. Each
TMD investigated here (WS2, MoS2, WSe2 and MoSe2)
has a number of permittivity resonances at visible fre-
quencies, originating from various electronic transition
mechanisms. We focus on the frequency regime near

the highest-Q permittivity resonance for each material.
These span the whole visible spectral range, and are lo-
cated at ωTO = 2.37 × 1015 rad/s (λo ' 795 nm) for
MoSe2, ωTO = 2.5×1015 rad/s (λo ' 753 nm) for WSe2,
ωTO = 2.75 × 1015 rad/s (λo ' 685 nm) for MoS2, and
ωTO = 3×1015 rad/s (λo ' 630 nm) for WS2. The qual-
ity factors associated with these resonances, as fitted via
Eq. 2, are QMoSe2

= 19, QWSe2
= 18, QMoS2

= 25 and,
QWS2

= 37, respectively.
Similar to the case of SiC described above, we start

by considering bulk degenerate modes for TE and TM
polarizations, and gradually decrease the thickness of the
TMD slab until we reach the smallest thickness for which
the highest k// TE and TM guided modes remain degen-
erate in both frequency and wavenumber. This occurs
approximately at d = 6πc/(ωTO

√
ε(ωTO)) for all consid-

ered TMDs, and the dispersion of these guided modes is
shown on the upper panels of Figs. 5a-d. We display
only the two largest k// guided modes for each polariza-
tion, similar to Section III A, however we note that lower
order (smaller k//) and less confined guided modes also
occur, but are outside the scope of this work. We con-
sider SiO2 as a substrate material, and set its refractive
index to nSiO2

= 1.5. The field profiles of the larger-
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FIG. 6. Surface-confined modes in monolayer TMDs. Dispersion curve (upper panels) and propagation length (Eq. 5)
(lower panels) for TE-polarized surface-confined waves supported on a monolayer of (a) MoSe2, (b) WSe2, (c) MoS2, (d) WS2.
Numerical results presented as points (upper panels) correspond to values of the cross-sectional area of the mode (Eq. 6).

k// modes for both linear polarizations are shown with
the inset in Fig. 5d-lower panel for WS2, and similar
field profiles corresponds to modes in MoS2, WSe2 and
in MoSe2. For the sake of comparison with a conventional
plasmonic mode, we display in Fig. 5e the dispersion of a
SPP mode at the interface between Ag and air. For Ag,
we used the Drude model with ωp = 13.69 × 1015 rad/s
and γm = 0.7292 × 1014 rad/s from39. The field profile
of the SPP mode on Ag is shown with the inset in Fig.
5e-lower panel.

By considering the confinement factor k// displayed on
the horizontal axes in the upper panels of Figs. 5a-e, we
infer that, in fact, guided modes in TMDs are more con-
fined compared to the SPP mode on Ag in the visible
spectral range (i.e. for ω/ωp < 0.34 in Fig. 5e). This

stems from the large value of refractive index
√
ε(ωTO)

in TMDs, which yields large kmax (Eq. 3). It is note-
worthy that the cross-sectional area Aeff (Eq. 6) of these
guided modes is an order of magnitude smaller than that
of the SPP mode on Ag in the low-damping regime (for
ω/ωp � 1). As the frequency of the SPP mode ap-

proaches the surface plasmon frequency ωsp = ωp/
√

2,
the SPP confinement increases as seen with the value
Aeff,SPP = 0.091 in Fig. 5e, however this frequency
regime corresponds to ultraviolet light.

Furthermore, the propagation distance of the TMD

guided modes (lower panels in Fig. 5a-d) is greater than
that of a SPP mode on Ag (lower panel in Fig. 5e), which
is enabled by the large quality factors Q in TMDs that
yield small material loss even for frequencies very close
to ωTO (Fig. 1e). By contrast, the large and broadband
losses of silver at optical frequencies lead to smaller Leff ,
which nearly vanishes at ωsp.

To conclude this section, we showed that large con-
finement factors typically found in SPP modes on Ag
can also occur in guided modes in thin films of TMDs.
These modes occur for both linear polarizations contrary
to SPPs, and it is important to note that they can travel
for larger propagation distances at visible frequencies.

C. High-ε modes in monolayer TMDs

In this section we assess the four TMDs discussed in
the previous section as guiding materials in their mono-
layer form, as depicted in Fig. 1d. Previous work in
monolayer TMDs48 has discussed the existence of these
modes in MoS2 and WSe2

36,49, and in WS237, however
most previous reports have focused on the exciton dy-
namics and not on the dispersion, confinement and prop-
agation distance of the guided modes50,51 associated with
these excitons. In Fig. 6 we carry out a systematic study
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of the dispersion and propagation distance for the mono-
layer guided modes associated with the most prominent
permittivity resonances in WS2, MoS2, WSe2 and MoSe2,
as reported in the experimental results by Li et al. in21.

The TMDs discussed here transition from indirect to
direct band gap in their monolayer form, for which their
quality factors slightly increase to QMoSe2,mono = 29,
QWSe2,mono = 32, QMoS2,mono = 26 and QWS2,mono = 77,
with respect to the values reported for bulk in Section
III B. Similar to Section III B, we remain in the wave-
length range of λo ' 795 nm, λo ' 753 nm, λo ' 685
nm, λo ' 630 nm, for MoSe2, WSe2, MoS2 and WS2,
respectively.

In the monolayer case, the TM-polarized guided mode
discussed previously (Fig. 5) experiences a cutoff, and
only the TE polarization survives36. Fig. 6 displays the
dispersion relation near ωTO (as given in Section III B).
At ωTO the TE guided mode reaches its maximum con-
finement (k//), however, the near-zero thickness of the
monolayers largely reduces the confinement factor com-
pared to the TMD slabs of finite thickness evaluated
in the previous section. As a consequence, the cross-
sectional area increases, and the monolayer TMD modes
are confined to roughly a couple of micrometers, which is
in agreement with predictions in36. The decrease in con-
finement is, nevertheless, accompanied by a considerable
increase in propagation distance. As seen in the lower
panels in Figs. 6a-d, Leff can be as large as hundreds
to thousands of modal wavelengths, which follows from
the indirect to direct band gap transition in the mono-
layer case, or, in other words, from the increase in quality
factor, Q, compared to bulk TMDs.

IV. CONCLUSIONS

In nanoscience, tailoring electromagnetic phenomena
in the near-field is enabled via evanescent waves. The
excitation of surface waves at the interface between dif-
ferent electromagnetic media requires opposite signs of
electric permittivities or magnetic permeabilities for TM
and TE polarization, respectively. However, the lack of
magnetic materials at high-frequencies leads to a natural
asymmetry in surface wave propagation, which is only
accessible for TM polarization. Here, we proposed a con-
cept for circumventing this limitation with guided modes
in slabs of materials with positive and large permittiv-
ity. Contrary to surface polaritons, these guided modes
can occur for both linear polarizations simultaneously.
We showed that the material requirement for omnipo-
larization surface wave propagation with high-degree of
surface-confinement and large propagation distance is a
large material quality factor. As example materials, we
studied SiC at IR frequencies and TMDs at visible fre-
quencies, and demonstrated that the omnipolarization
guided modes in these systems can compete with SPhPs
in SiC and SPPs in Ag at IR and visible frequencies, re-
spectively, in terms of both confinement and propagation

distance.
We note that the large in-plane wavenumber of highly

confined modes and surface waves (k// > ko) renders
them non-radiative, which introduces a phase mismatch
with free space radiative modes (k// < ko). There-
fore, excitation and detection in the far-field requires
a grating14,52–55, scattering center, e.g. a slit52, or a
prism30 or overlayer26. A prism or an overlayer achieves
coupling to free space by shifting the dispersion of pho-
tons to larger wavenumbers (kprism = nω/c > ko, where n
is the refractive index of the prism or overlayer). A grat-
ing with periodicity Λg ascribes an additional wavenum-
ber component to the scattered field, kg = 2π/Λg, there-
fore coupling to any wavenumber and corresponding fre-
quency can be achieved by controlling Λg, as has been
previously shown for SPPs53–55. The grating configu-
ration is particularly relevant to the modes proposed
here, because the dispersion overlap in frequency and
wavenumber between the two polarizations (Figs. 4, 5,
6), renders them phase-matched, i.e. k//TE = k//TM.
Therefore, a single grating may be used for excitation
and detection of both polarizations at a single frequency.
Alternative excitation schemes include injection of an
electron beam54, or coupling to a dipole moment in the
near-field, for example via scanning near-field optical
microscopy47–49.

Our results convey that the polarization bottleneck of
plasmonics may be alleviated with high-Q positive per-
mittivity polar dielectrics and semiconductors. These
systems can support omnipolarization phase-matched
surface-confined guided modes with large propagation
distances.
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VI. APPENDIX I - SURFACE WAVES
DETERMINATION VIA HOMOGENIZATION

The boundary condition problem of a guided or sur-
face mode at a single interface may be analytically
treated13,38,56, however larger systems such as single
slabs and multilayers require a numerical solver41,57–65.
Here, we present our methodology for computing the
modes discussed in Figs. 4, 5, 6. Our approach is gen-
eral and applies to any planar heterostructure of finite
thickness, while also being able to distinguish between
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eigenmodes that constitute surface waves, i.e. modes that
exponentially decay away from the interface of interest,
and leaky modes, that oscillate in the out-of-plane (z)
direction (see Fig. 7b).

A schematic of the general structure we investigate
is displayed in Fig. 7a. We consider a layered ar-
rangement consisting of an arbitrary number of layers
of non-magnetic materials in an arbitrary sequence, with
layer thicknesses that may be in the subwavelength limit
(di << λo) or thicker. Using the transfer matrix for-
malism for layered media66, we obtain the matrix M~

~

el-
ements m11(k//, ω) and m21(k//, ω) for varying in-plane
wavenumber k// = kx and frequency ω. The transmis-
sion and reflection complex coefficients are then given
by t = 1/m11 and r = m21/m11, respectively. We seek
for surface waves and guided modes by first determin-
ing the full set of eigenmodes of the heterostructure, for
which t → ∞, r → ∞66 . Alternatively, the eigenmodes
are zeros of the matrix element m11(k//, ω). We em-

ploy the reflection pole method (RPM)41, which is based
on the residue theorem of complex analysis, for detect-
ing these zeros in the complex plane. Zeros of the com-
plex function m11 yield phase shifts of Arg(m11) = π
in the lossless limit, which are detected by seeking for
peaks of its derivative, dArg(m11)/dk//, per frequency
and wavenumber (Fig. 7c). As a result, we obtain pairs
of (ω, k//), that correspond to eigenmodes. We note
that, in the presence of loss, the peaks of dArg(m11)/dk//
broaden both in ω and k//. For more details regarding

the RPM, see41. This approach can be generalized to
account for anisotropic materials by replacing the tradi-
tional 2×2 transfer matrix66 with a 4×4 formalism (see,
for example67–69).

Not all eigenmodes of a heterostructure constitute sur-
face waves. For a wave (or mode) to be surface-confined,
it is required to be in the optical band gap of both bound-
ing media70. In the general case of Fig. 7a, these are
air and the arbitrary layered heterostructure. A surface-
confined wave requires an out-of-plane wavenumber kz
that has a non-zero imaginary part, assuring decay away
from the interface z = 0. However, for more than one
layer, the parameter kz is not a well-defined quantity.
For an A-B-A-.. binary photonic crystal, wave propaga-
tion in the z-direction is usually expressed in terms of
the Bloch wavenumber

cos(kBlochΛchar) =
m11 +m22

2
(7)

where Λchar is the period of the photonic crystal and m11,
m22 are the transfer matrix M~

~

diagonal elements. The
condition for a photonic band is, then, given by66

|cos(kBlochΛchar)| ≤ 1 (8)

A mode belonging in a band is allowed to propagate sinu-
soidally into the structure, with Re(kBloch)� Im(kBloch).
We refer to these modes as photonic or leaky modes in
contrast to surface-confined modes that mainly reside at

the interface between air and the heterostructure, and
decay in the lateral direction.

The condition in Eq. 7 is limited to infinite and purely
periodic binary systems. Here, we generalize this condi-
tion to any random finite arrangement, for example ape-
riodic, chirped, non-centrosymmetric layered structures,
and finite number of layers. Our approach originates
from, but is not limited to, metamaterials’ homogeniza-
tion.

Most homogenization schemes are based on S-
parameter retrieval approaches43,71–73, based on which,
an arbitrary composite system of finite thickness d and
known scattering properties t and r is represented by
an effective impedance and an effective out-of-plane
wavenumber, Zeff and keff , respectively. These func-
tions are analytical expressions of the transmission and
reflection coefficients. The expression for the effective
wavenumber keff at oblique incidence was derived by
Menzel et al.72

cos(keffd) =
ks(1− r2) + kc(t/A)2

(t/A)[ks(1− r) + kc(1 + r)]
(9)

For TE polarization, A = 1, kc = kz,c and ks = kz,s,

whereas for TM polarization A =
√
εs/εc, kc = kz,c/εc

and ks = z, s/εs, where the subscripts c and s represent
the cladding and substrate, with permittivities εc and
εs, respectively. Typically, based on the subwavelength
thickness of the layers, the parameters Zeff and keff are
translated to constitutive effective parameters, namely
permittivity and permeability, through keff =

√
εeffµeff

ω
c

and Zeff =
√

µeff

εeff
. The conditions under which the as-

signment of effective parameters εeff and µeff is valid
are complex74,75 and remain an area of active literature
discussion25,76.

By contrast, the description of a system in terms of
an effective impedance and a wavenumber, Zeff and keff ,
respectively, remains valid at any scale. Since keff is di-
rectly associated with the scattering coefficients t and r
(Eq. 9)71–73, it can be used for describing an arbitrary
heterostructure at any scale, not necessarily in the meta-
material subwavelength limit, as long as t and r may be
computed. As a sanity check, it is straightforward to
notice that the Bloch wavenumber kBloch in Eq. 7 is a
special case of keff in Eq. 9 for binary, purely periodic
systems, when the cladding and substrate are composed
of the same material (εs = εc). This may be seen by
expressing t and r in Eq. 9 in terms of transfer matrix
elements, using the identity det(M~

~

) = 1, and the fact
that m21 = m∗12, for purely dielectric materials (where
m21 and m12 are purely imaginary), and m21 = −m12,
for dispersive materials66.

To summarize, for an excitation to be considered as
a surface wave, three conditions must be satisfied; first,
it has to be an eigenmode of the structure, which we
evaluate with the RPM. Second, it has to be in the optical
band gap of the surrounding medium (k// > ko) and,
third, it has to be in the band gap of the heterostructure.
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This third condition is implemented by introducing the
notion of a generalized band structure, applicable to any
planar configuration, based on Eq. 9 and keff . A band is
a set of (ω, k//) for which

|cos(keffd)| ≤ 1 (10)

Surface waves exist at the exterior of a band or at its
edge (|cos(keffd)| ≥ 1).

We demonstrate this methodology, in Fig. 7c we study
an eigenmode of a planar structure. At the eigenmode’s
in-plane wavenumber k//eig, the matrix element m11 van-
ishes (black curve), therefore it’s phase Arg(m11) drops
by π (black dashed curve). Taking the derivative of m11

with respect to k//, we obtain a peak, as shown with the
green curve. Its half-width-half-maximum corresponds to
the in-plane decay length through L = 1/2Im(k//eig). In
order to determine the nature of the mode (photonic or
surface-confined), we employ our generalized band edge
condition (Eq. 10). The quantity |cos(keffd)| is shown for
three different frequencies ω1, ω2 and ω3 (right vertical
axis). For ω1, |cos(keffd)| < 1 at k//eig, and this mode
belongs to a photonic band, resulting in propagation in-
side the heterostructure, in other words it is a photonic
or leaky mode. For ω2, the parameter |cos(keffd)| crosses
unity at k//eig and this mode is located exactly at the
band edge. Finally, for frequency ω3, the mode is inside

the band gap, highlighted in Fig. 7c with the upper or-
ange shaded area, and the mode is forbidden from prop-
agating inside the structure, in other words, it is surface-
confined. By retrieving keff , we are also able to estimate
the degree of confinement through the penetration depth
t = 1/2Im(keff).

VII. APPENDIX II - OPTICAL PROPERTIES

Here, we append the optical properties for the mate-
rials used in this work. For the electric permittivity of
silver we used the Drude model39, with ωp = 13.69×1015

rad/s and γm = 0.7292 × 1014 rad/s from39. We mod-
eled SiC, WS2, MoS2, WSe2 and MoSe2 with the Lorentz
permittivity in Eq. 2. The optical properties for SiC
were taken from11,12,44, while the TMDs optical proper-
ties were extracted from21. In Table 1, we present the
parameters ε∞,d, ωTO, ωLO, and γd for each of these ma-
terials. For TMDs, bulk and monolayer parameters are
displayed separately.

We note that calculations for TMDs were carrier out at
different frequency ranges, based on the location of the
most prominent exciton permittivity resonance in each
material. Calculations were centered around ωTO, while
spanning the frequency range displayed on the vertical
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ε∞,d ωTO ωLO γd

SiC 6.7 1.49× 1014 1.83× 1014 8.97× 1011

WS2 18 2.995× 1015 3.021× 1015 8.094× 1013

MoS2 20.4 2.754× 1015 2.81× 1015 1.1× 1014

WSe2 18.3 2.502× 1015 2.523× 1015 1.4× 1014

MoSe2 25.3 2.37× 1015 2.395× 1015 1.25× 1014

WS2 (mono) 17 3.053× 1015 3.085× 1015 3.94× 1013

MoS2 (mono) 21 2.837× 1015 2.878× 1015 1× 1014

WSe2 (mono) 15.3 2.512× 1015 2.543× 1015 7.813× 1013

MoSe2 (mono) 21.3 2.355× 1015 2.377× 1015 8× 1013

TABLE I. Lorentz parameters (Eq. 2) for the materials con-
sidered in Figs. 4-6. ωTO, ωLO, and γd are presented in units
of rad/s.

axes in Figs. 5, 6. The quality factors for the considered
materials are: QSiC = 166, QMoSe2

= 19, QWSe2
= 18,

QMoS2
= 25 and, QWS2

= 37, QMoSe2,mono = 29,
QWSe2,mono = 32, QMoS2,mono = 26 and QWS2,mono = 77.
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