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Intrinsic, two-dimensional (2D) ferromagnetic semiconductors are an important class of materials
for spintronics applications. Cr2X2Te6 (X = Si and Ge) semiconductors show 2D Ising-like ferromag-
netism, which is preserved in few-layer devices. The maximum magnetic entropy change associated
with the critical properties around the ferromagnetic transition for Cr2Si2Te6 −∆Smax

M ∼ 5.05 J
kg−1 K−1 is much larger than −∆Smax

M ∼ 2.64 J kg−1 K−1 for Cr2Ge2Te6 with an out-of-plane
field change of 5 T. The rescaled −∆SM (T,H) curves collapse onto a universal curve indepen-
dent of temperature and field for both materials. This indicates similar critical behavior and 2D
Ising magnetism, confirming the magnetocrystalline anisotropy that could preserve the long-range
ferromagnetism in few-layers of Cr2X2Te6.

I. INTRODUCTION

Layered ferromagnets such as Cr2Ge2Te6, CrI3, and
Fe3GeTe2 have recently attracted considerable atten-
tion since long-range ferromagnetism (FM) persists in
atomically thin devices.1–6 Intrinsic magnetic order is
not allowed at finite temperature in the two-dimensional
(2D) isotropic Heisenberg model by the Mermin-Wagner
theorem7, however large magnetocrystalline anisotropy
in van der Waals (vdW) magnets would lift this restric-
tion.
Bulk Cr2X2Te6 (X = Si and Ge) exhibit FM below

the Curie temperature (Tc) of 32 K for Cr2Si2Te6 and 61
K for Cr2Ge2Te6, respectively, and show large magne-
tocrystalline anisotropy as a result of strong spin-orbit
coupling (SOC).8–12 Neutron scattering measurements
showed that bulk Cr2Si2Te6 is a strongly anisotropic 2D
Ising-like ferromagnet with a critical exponent β = 0.17
and a spin gap of ∼ 6 meV.13 On the other hand, re-
cently observed β = 0.151 and a much smaller spin
gap of ∼ 0.075 meV argue that the spins in Cr2Si2Te6
are Heisenberg-like.14 Cr2Ge2Te6 is proposed to be a
2D Heisenberg ferromagnet based on spin wave theory,4

but was also found to follow the tricritical mean-field
model,15 calling for further studies. The magnetocaloric
effect (MCE) in the FM vdW materials is also of inter-
est since it can give insight into the magnetic properties.
Fe3−xGeTe2 with Tc = 225 K shows the maximum value
of magnetic entropy change −∆Smax

M about 1.1 J kg−1

K−1 at 5 T.16 CrI3 exhibits anisotropic −∆Smax
M with

values of 4.24 and 2.68 J kg−1 K−1 at 5 T for H//c and
H//ab, respectively.17

In this work we studied the anisotropic magnetocaloric
effect associated with the critical behavior of Cr2X2Te6
(X = Si and Ge) single crystals. The magnetocrystalline
anisotropy constant Ku is temperature-dependent, and
is evidently larger for Cr2Si2Te6 when compared to
Cr2Ge2Te6. The maximum magnetic entropy change in
out-of-plane field up to 5 T −∆Smax

M ∼ 5.05 J kg−1

K−1 for Cr2Si2Te6 is nearly double of −∆Smax
M ∼ 2.64 J

kg−1 K−1 for Cr2Ge2Te6. Critical exponents β, γ, and δ
and critical isotherm analysis suggest 2D Ising-like spins.

This is further confirmed by the scaling analysis of mag-
netic entropy change −∆SM (T,H), in which the rescaled
−∆SM (T,H) collapse on a universal curve. Our work
provides evidence for magnetocrystalline anisotropy that
drives the 2D Ising ferromagnetic state in few layers of
Cr2X2Te6 (X = Si and Ge).

II. EXPERIMENTAL DETAILS

Single crystals of Cr2X2Te6 (X = Si and Ge) were fabri-
cated by the self-flux technique starting from an intimate
mixture of pure elements Cr (3N, Alfa Aesar) powder, Si
or Ge (5N, Alfa Aesar) pieces and Te (5N, Alfa Aesar)
pieces with a molar ratio of 1 : 2 : 6. The starting mate-
rials were vacuum-sealed in a quartz tube, heated to 1100
◦C over 20 h, held at 1100 ◦C for 3 h, and then cooled to
680 ◦C at a rate of 1 ◦C/h. The x-ray diffraction (XRD)
data were taken with Cu Kα (λ = 0.15418 nm) radia-
tion of a Rigaku Miniflex powder diffractometer. The dc
magnetization was collected in Quantum Design MPMS-
XL5 system. The magnetic entropy change−∆SM (T,H)
from the dc magnetization data was estimated using the
Maxwell relation.

III. RESULTS AND DISCUSSION

A. Structural and basic magnetization data

Bulk Cr2X2Te6 (X = Si and Ge) were first synthesized
by Carteaux et al..9,10 They crystalize in a layered struc-
ture [Fig. 1(a)]. The Cr ions are located at the centers of
slightly distorted octahedra of Te atoms. The short X-X
bonds result in X-X dimers forming an ethane-like X2Te6
groups, similar to P-P dimers in CdPS3.

18 Figure 1(c)
presents the single crystal x-ray diffraction (XRD) data.
The observed (00l) peaks distinctly shift to higher angles
in Cr2Ge2Te6 when compared to Cr2Si2Te6 indicating
a smaller vdW gap in Cr2Ge2Te6. The powder XRD
data can be indexed in the R3̄h space group [Fig. 1(d)].
The determined lattice parameters are a = 6.772(2) Å
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FIG. 1. (Color online) Crystal structure of Cr2X2Te6 (X =
Si and Ge) from (a) side and (b) top views. (c) Single crys-
tal x-ray diffraction (XRD) and (d) powder XRD patterns of
Cr2X2Te6 (X = Si and Ge). The vertical tick marks represent
Bragg reflections of the R3̄h space group.

TABLE I. The parameters obtained from fits of the 1/M vs
T data for Cr2X2Te6 (X = Si and Ge) single crystals.

Fit T range C θp µeff

(K) (emu K/mol) (K) (µB/Cr)

X = Si

H//c 130 ≤ T ≤ 300 1.70(1) 63(1) 3.68(2)

H//ab 130 ≤ T ≤ 300 1.60(1) 63(1) 3.57(1)

X = Ge

H//c 150 ≤ T ≤ 300 1.22(1) 114(2) 3.12(1)

H//ab 150 ≤ T ≤ 300 1.54(2) 101(1) 3.51(2)

and c = 20.671(2) Å for Cr2Si2Te6 [a = 6.826(2) Å and
c = 20.531(2) Å for Cr2Ge2Te6], in agreement with the
reported values.9,10

Figure 2(a) presents the temperature dependence of
the zero field cooling (ZFC) magnetization M(T ) mea-
sured in H = 10 kOe applied in the ab plane and parallel
to the c axis, respectively. The FM transition stems from
the near-90◦ Cr-Te-Cr superexchange interaction and is
observed in both materials. An apparent bifurcation at
low temperature is observed in Cr2Si2Te6. The absence
of bifurction in Cr2Ge2Te6 indicates smaller magnetic
anisotropy. The smaller vdW gap and larger in-plane Cr-
Cr distance in Cr2Ge2Te6 contribute to the enhancement
of the Tc from 32 K for Cr2Si2Te6 to 63 K for Cr2Si2Te6.
The 1/M vs T curves at high temperature follow the
Curie-Weiss law, χ(T ) = M/H = C/(T − θp), where χ
is magnetic susceptibility, M is magnetization, C is the
Curie constant, and θp is the Weiss temperature. The
obtained parameters C and θp are listed in Table I. The
positive Weiss temperatures θp, nearly twice the values
of Tc, for both directions suggest strong short-range FM
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FIG. 2. (Color online) (a) Temperature dependence of zero
field cooling (ZFC) magnetic susceptibility χ (left axis) and
corresponding 1/χ (right axis) for Cr2X2Te6 (X = Si and Ge)
measured in in-plane and out-of-plane field of H = 10 kOe.
(b) Field dependence of magnetization measured at T = 2 K.

correlation in Cr2X2Te6 (X = Si and Ge) above Tc. The

effective magnetic moment µeff ≈
√
8C is also listed in

Table I. The values are close to the theoretical value ex-
pected for Cr3+ of 3.87µB. The isothermal magnetization
at T = 2 K is shown in Fig. 2(b). We estimate the satu-
ration magnetization Ms from the intercept of a linear fit
of M(H) at high field and the saturation field Hs as the
point of deviation from the linear behavior. The derived
Ms ≈ 2.86(1) µB/Cr with out-of-plane field for Cr2Si2Te6
is larger than that of 2.40(2) µB/Cr for Cr2Ge2Te6. The
saturation field Hs ≈ 3 kOe with out-of-plane field is
smaller than Hs ≈ 5 kOe with in-plane field and is much
smaller than that of 25 kOe for Cr2Si2Te6. These results
confirm the easy c-axis and smaller magnetic anisotropy
in Cr2Ge2Te6, in agreement with previous reports.9–12
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FIG. 3. (Color online) Typical initial isothermal magnetiza-
tion curves measured in (a,c) H//ab and (b,d) H//c around
Tc for Cr2X2Te6 (X = Si and Ge).

B. Magnetocrystalline anisotropy

Figure 3 shows the magnetization isotherms with field
up to 50 kOe applied for both H//ab and H//c around
Tc for Cr2X2Te6 (X = Si and Ge). When H//ab, the
saturation field Hs is associated with the uniaxial magne-
tocrystalline anisotropy parameterKu and the saturation
magnetization Ms, i.e., 2Ku/Ms = µ0Hs, where µ0 is the
vacuum permeability.19 The temperature dependence of
Ku as well as Ms and Hs for Cr2X2Te6 (X = Si and Ge)
are depicted in Fig. 4. The calculated Ku for Cr2Si2Te6
is about 61 kJ/m3 at 5 K. It gradually decreases to 38
kJ/m3 at Tc = 32 K, comparable with the Ku values in
CrBr3.

20 The anisotropy parameter Ku is much lower for
Cr2Ge2Te6: about 12 kJ/m

3 at 44 K and 5.6 kJ/m3 at Tc

= 63 K. For clarity, only the Ku values from Tc to 44 K
are presented for Cr2Ge2Te6. The Ku of 20 kJ/m3 at 2 K
for Cr2Ge2Te6 estimated from Fig. 2(b) is much smaller
than that of 65 kJ/m3 for Cr2Si2Te6, in line with the
magnetization data. The observed decrease of Ku with
increasing temperature arises solely from a large num-
ber of local spin clusters fluctuating randomly around
the macroscopic magnetization vector and activated by
a nonzero thermal energy, whereas the anisotropy con-
stants are temperature-independent.21,22 This provides
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FIG. 4. (Color online) Temperature dependence of the calcu-
lated anisotropy constant Ku, the estimated saturation field
Hs and the saturation magnetization Ms (insets) below Tc for
Cr2X2Te6 (X = Si and Ge).

insight into the understanding of FM in few-layers of
Cr2X2Te6 (X = Si and Ge). While in pure 2D system no
long-range magnetic order is expected,7 mechanical cor-
rugations and magnetic anisotropy are possible pathways
to establish magnetism in few-layers samples.

C. Magnetic entropy change

We estimate the magnetic entropy change

∆SM (T,H) =

∫ H

0

(

∂S

∂H

)

T

dH =

∫ H

0

(

∂M

∂T

)

H

dH,

(1)
where

(

∂S
∂H

)

T
=

(

∂M
∂T

)

H
is based on Maxwell’s relation.

In the case of magnetization measured at small discrete
field and temperature intervals [Fig. 3], ∆SM can be
approximated:

∆SM (Ti, H) =

∫ H

0
M(Ti, H)dH −

∫H

0
M(Ti+1, H)dH

Ti − Ti+1

.

(2)
Figures 5(a) and 5(b) present the calculated
−∆SM (T,H) as a function of temperature with in-
plane and out-of-plane fields. All the −∆SM (T,H)
curves show a pronounced peak at Tc, and the peak
broads asymmetrically on both sides with increasing
field. The maximum value of −∆SM is 4.9 J kg−1 K−1

for Cr2Si2Te6 and 2.6 J kg−1 K−1 for Cr2Ge2Te6 with
in-plane field change of 5 T. These slightly increase to
5.05 and 2.64 J kg−1 K−1, respectively, with out-of-plane
field change of 5 T. The obtained −∆SM values are com-
parable and larger than that of Fe3GeTe2 and CrI3.

16,17

The rotational magnetic entropy change ∆SR
M is cal-

culated as ∆SR
M (T,H) = ∆SM (T,Hc) − ∆SM (T,Hab).
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FIG. 5. (Color online) Temperature dependence of isother-
mal magnetic entropy change −∆SM obtained from magne-
tization at various magnetic fields change (a) in the ab plane
and (b) along the c axis, respectively, for Cr2X2Te6 (X = Si
and Ge). (c) Temperature dependence of −∆SR

M obtained by
rotating from the ab plane to the c axis in various fields.

As shown in Fig. 5(c), the value of ∆SR
M for Cr2Si2Te6

is larger than that for Cr2Ge2Te6, in line with the
calculated Ku [Fig. 4]. The anisotropy is gradually
suppressed in higher field, and interestingly, it splits into
two peaks on both sides of Tc with field above 3 T for
Cr2Si2Te6.

D. Critical behavior

According to the scaling hypothesis, the second-order
phase transition around Tc can be characterized by a set
of interrelated critical exponents and magnetic equation
of state.24 The exponents β and γ can be obtained from
spontaneous magnetization Msp and inverse initial sus-

ceptibility χ−1
0 , below and above Tc, respectively, while δ

is a critical isotherm exponent at Tc. The mathematical
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FIG. 6. (Color online) (a) Temperature dependence of the
spontaneous magnetization Msp (left axis) and the inverse
initial susceptibility χ−1

0
(right axis) in out-of-plane field with

solid fitting curves for Cr2X2Te6 (X = Si and Ge). Inset
shows logM vs logH collected at Tc with linear fitting curves.
(b) Kouvel-Fisher plots of Msp(dMsp/dT )

−1 (left axis) and
χ−1

0
(dχ−1

0
/dT )−1 (right axis) with solid fitting curves.

definitions of the exponents from magnetization measure-
ment are given below:

Msp(T ) = M0(−ε)β , ε < 0, T < Tc, (3)

χ−1
0 (T ) = (h0/m0)ε

γ , ε > 0, T > Tc, (4)

M = DH1/δ, T = Tc, (5)

where ε = (T − Tc)/Tc is the reduced temperature, and
M0, h0/m0 and D are the critical amplitudes.25

The critical exponents β, γ, and δ, as well as the precise
Tc can be obtained by the modified Arrott plot of M1/β

vs (H/M)1/γ in the vicinity of Tc with a self-consistent
method.26,27 This gives χ−1

0 (T ) and Msp(T ) as the inter-
cepts on the H/M axis and the positive M2 axis, respec-
tively. Figure 6(a) presents the final Msp(T ) and χ−1

0 (T )
as a function of temperature. According to Eqs. (3) and
(4), the critical exponents β = 0.169(4) with Tc = 31.8(1)
K [β = 0.196(3) with Tc = 62.6(1) K], and γ = 1.33(8)
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TABLE II. Critical exponents of Cr2X2Te6 (X = Si and Ge).
The MAP, KFP and CI represent the modified Arrott plot,
the Kouvel-Fisher plot and the critical isotherm, respectively.

β γ δ n m

X = Si

−∆Smax
M 0.52(2)

RCP 1.09(1)

MAP 0.169(4) 1.33(8) 8.9(3) 0.45(3) 1.112(4)

KFP 0.178(9) 1.32(4) 8.4(2) 0.45(3) 1.119(3)

CI 9.28(3) 1.108(1)

X = Ge

−∆Smax
M 0.51(1)

RCP 1.13(1)

MAP 0.196(3) 1.32(5) 7.7(2) 0.47(2) 1.130(3)

KFP 0.200(3) 1.28(3) 7.4(1) 0.46(1) 1.135(2)

CI 7.73(2) 1.129(1)

with Tc = 32.2(3) K [γ = 1.32(5) with Tc = 62.7(1) K],
are obtained for Cr2Si2Te6 [Cr2Ge2Te6].
Based on the Kouvel-Fisher (KF) relation:28

Msp(T )[dMsp(T )/dT ]
−1 = (T − Tc)/β, (6)

χ−1
0 (T )[dχ−1

0 (T )/dT ]−1 = (T − Tc)/γ. (7)

Linear fitting to the plots ofMsp(T )[dMsp(T )/dT ]
−1 vs T

and χ−1
0 (T )[dχ−1

0 (T )/dT ]−1 vs T , as shown in Fig. 6(b),
yield β = 0.178(9) with Tc = 32.2(4) K [β = 0.200(3)
with Tc = 62.7(1) K], and γ = 1.32(4) with Tc = 32.1(2)
K [γ = 1.28(3) with Tc = 62.8(1) K]. The third expo-
nent δ can be calculated from the Widom scaling relation
δ = 1 + γ/β. From β and γ obtained with the modi-
fied Arrott plot and the Kouvel-Fisher plot, δ = 8.9(3)
and 8.4(2) [7.7(2) and 7.4(1)] for Cr2Si2Te6 [Cr2Ge2Te6],
which are close to the direct fits of δ taking into account
that M = DH1/δ at Tc [δ = 9.28(3) at 32 K and 7.73(2)
at 63 K, inset in Fig. 6(a)]. The critical exponents of
Cr2X2Te6 (X = Si and Ge) are summarized in Table II.
They are close to but not identical to values expected
for the 2D-Ising model (β = 0.125, γ = 1.75 and δ =
15). This deviation is most likely associated with non-
negligible interlayer coupling and spin-lattice coupling in
this system.11,13

E. Scaling analysis of the ∆SM data

For a material displaying a second-order transition,29

the field dependence of the maximum magnetic entropy
change shows a power law −∆Smax

M = aHn,30 where a
is a constant and the exponent n at Tc is related to the
critical exponents as n(Tc) = 1 + (β − 1)/(β + γ). An-
other important parameter is the relative cooling power
(RCP): RCP = −∆Smax

M × δTFWHM where −∆Smax
M
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FIG. 7. (Color online) (a) Field dependence of the maxi-
mum magnetic entropy change −∆Smax

M and the relative cool-
ing power RCP with power law fitting in red solid lines for
Cr2X2Te6 (X = Si and Ge). (b) Temperature dependence of
n in various fields.

is the maximum entropy change near Tc and δTFWHM

is the full-width at half maximum.31 The RCP also de-
pends on the magnetic field with RCP = bHm, where b is
a constant and m is associated with the critical exponent
δ, m = 1 + 1/δ.

Figure 7(a) presents the summary of the out-of-plane
field dependence of −∆Smax

M and RCP. The calculated
values of RCP are about 114 and 87 J kg−1 for Cr2Si2Te6
and Cr2Ge2Te6, respectively, with out-of-plane field
change of 5 T. Fitting of the −∆Smax

M gives that n =
0.52(2) and 0.51(1) for Cr2Si2Te6 and Cr2Ge2Te6, re-
spectively [Fig. 7(a)], which is quite close to that of
n = 0.53 for the 2D-Ising model (β = 0.125, γ = 1.75).
Fitting of the RCP generates m = 1.09(1) and 1.13(1)
[Fig. 7(a)], which is also close to the expected value of
1.07 for 2D-Ising model (δ = 15). Figure 7(b) displays
the temperature dependence of n(T ) in various fields. All
n(T ) curves follow an universal behavior.32 At low tem-
peratures, well below Tc, n has a value around 1. On the
other side, well above Tc, n is close to 2 as a consequence
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FIG. 8. (Color online) The normalized ∆SM as a function of
the reduced temperature θ with (a) out-of-plane and (b) in-
plane field for Cr2X2Te6 (X = Si and Ge). Scaling plot for (c)
Cr2Si2Te6 and (d) Cr2Ge2Te6 based on the critical exponents
β and γ obtained in out-of-plane field.

of the Curie-Weiss law. At T = Tc, n(T ) has a minimum.
Scaling analysis of −∆SM can be built by normalizing

all the −∆SM curves against the respective maximum
−∆Smax

M , namely, ∆SM/∆Smax
M by rescaling the reduced

temperature θ± as defined in the following equations,33

θ− = (Tpeak − T )/(Tr1 − Tpeak), T < Tpeak, (8)

θ+ = (T − Tpeak)/(Tr2 − Tpeak), T > Tpeak, (9)

where Tr1 and Tr2 are the temperatures of two reference
points that corresponds to ∆SM (Tr1, Tr2) = 1

2
∆Smax

M .
Following this method, all the −∆SM (T,H) curves in

various fields collapse into a single curve in the vicinity
of Tc for Cr2X2Te6 (X = Si and Ge), as shown in Figs.
8(a) and 8(b). The values of Tr1 and Tr2 depend onH1/∆

with ∆ = β + γ [inset in Fig. 8(a)].
In the phase transition region, the scaling analysis of

−∆SM can also be expressed as

−∆SM

aM
= Hnf(

ε

H1/∆
), (10)

where aM = T−1
c Aδ+1B with A and B representing the

critical amplitudes as in Msp(T ) = A(−ε)β and H =
BM δ, respectively, and f(x) is the scaling function.34

If the critical exponents are appropriately chosen, the
−∆SM vs T curves should be rescaled into a single curve,
consistent with normalizing the −∆SM curves with two
reference temperatures (Tr1 and Tr2). As shown in Figs.
8(c) and 8(d), the rescaled −∆SM for Cr2X2Te6 (X =
Si and Ge) with out-of-plane field collapse onto a single
curve, confirming the reliable critical exponents and 2D
Ising behavior for Cr2X2Te6 (X = Si and Ge).

IV. CONCLUSIONS

In summary, we have studied the critical behavior and
magnetocaloric effect around the FM-PM transition in
Cr2X2Te6 (X = Si and Ge) single crystals. The criti-
cal exponents β, γ, and δ estimated from various tech-
niques match reasonably well and the scaling analysis
of magnetic entropy change confirms that they are 2D
Ising ferromagnents with non-negligible interlayer cou-
pling. The uniaxial magnetocrystalline anisotropy con-
firmed here could be the possible origin of existence of
long-range FM in few-layers of Cr2X2Te6 (X = Si and
Ge).
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