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The angular dependence of spin-orbit torque in a disordered Co/Pt bilayer is calculated using
a first-principles non-equilibrium Green’s function formalism blue with an explicit supercell aver-
aging over Anderson disorder. In addition to the usual damping-like and field-like terms, the odd
torque contains a sizeable planar Hall-like term (m ·E)m× (z×m) whose contribution to current-
induced damping is consistent with experimental observations. The damping-like and planar Hall-
like torquances depend weakly on disorder strength, while the field-like torquance declines with
increasing disorder. The torques that contribute to damping are almost entirely due to spin-orbit
coupling on the Pt atoms, but the field-like torque does not require it.

Spin-orbit torque (SOT)1, which is a manifes-
tation of relativistic physics in solid-state systems,
has attracted considerable interest due to its device
applications2 in memory technologies3–7 and spin-torque
nano-oscillators8–12. SOT can arise in systems lack-
ing bulk inversion symmetry, such as (Ga,Mn)As crys-
talline systems13, or in systems lacking structural in-
version symmetry. It can be described in terms of
the nonequilibrium spin density14–16 and can affect the
magnetization dynamics17. For systems containing a
heavy metal/ferromagnet interface, two mechanisms of
SOT have been suggested: the inverse spin-galvanic ef-
fect (ISGE)18–20 arising at a heavy-metal/ferromagnet
interface21–25 and the bulk spin-Hall effect26 originat-
ing in the bulk of the heavy metal27–29. These mecha-
nisms lead to the field-like (z×E)×m and damping-like
m × [(z × E) × m] terms in SOT, which are, respec-
tively, odd and even with respect to the magnetization
described by the unit vector m. Other terms with more
complicated angular dependence are allowed by symme-
try and have been experimentally identified in several
systems33–35. Such contributions can arise due to inter-
facial scattering alone36,37, without any bulk spin-Hall
effect, and are not captured by simple models30–32. Ax-
ially asymmetric contributions to SOT induced by low
crystalline symmetry have also been observed38.

The layers in SOT bilayers are usually made about
a nanometer thick or even less. The phenomenological
notion of an interface between bulk regions, as well as
the interpretation in terms of the bulk spin-Hall effect,
is, therefore, unjustified, and a fully quantum-mechanical
treatment of the whole device is essential. An extreme
case is that of a magnetic layer in contact with a topologi-
cal insulator (TI)39,40, which can generate strong SOT41.
There is ample experimental evidence of the existence of
an interfacial contribution to SOT42–44. Ab-initio studies
of Pt/Py bilayers also suggest the importance of interfa-
cial contributions to the spin-Hall effect45, which should
lead to an interfacial SOT.

Most of the existing ab-initio studies of SOT rely on
the use of phenomenological broadening for the Green’s
functions16,46, which does not capture the full physics

of SOT. A calculation of SOT using the coherent poten-
tial approximation (CPA) for disorder averaging was also
reported47, but only one orientation of the magnetization
was considered.

In this Letter, we develop the non-equilibrium Green’s
function (NEGF) approach48 within the tight-binding
linear muffin-tin orbital (LMTO) method49 for ab-initio
calculations of SOT in magnetic multilayered systems
with explicit treatment of disorder and apply it to study
SOT in a Co/Pt bilayer. Our results reveal a complicated
angular dependence of SOT, including a sizeable planar
Hall-like contribution.

In our LMTO-NEGF treatment, spin-orbit coupling is
included as a perturbation to the second-order LMTO
potential parameters50,51. The spin torque on atom i is
calculated as Ti =

∫
Bxc,in(r)×mout(r)d3ri, where the

integral is over the atomic sphere for atom i, Bxc,in(r) is
the “input” exchange-correlation field, which is aligned
with the prescribed direction of the magnetization, and
mout(r) the “output” magnetization obtained from the
NEGF calculation16,52–54. This approach is justified by
introducing the constraining fields62 stabilizing the in-
stantaneous orientation of magnetization, whereby the
internal spin torque is balanced by the torque of the con-
straining field54. The spin-density matrix

ρ̂(r) = − i

2π

∞∫
−∞

Ĝ<(E, r, r)dE (1)

is obtained48 from the Green’s function G< of the
Keldysh formalism, given by

G< = iG (fLΓL + fRΓR)G†, (2)

where G and G† are the retarded and advanced Green’s
functions, ΓL/R is the anti-Hermitian part of the self-
energy for lead L (left) or R (right), and fL/R(E) are the
occupation functions for the two leads.

The bias V is applied symmetrically, shifting both the
potential and the chemical potential of the left (right)
lead by ±eV/2. In the steady state of a homogeneous



2

metallic conductor with an applied bias, there is a lin-
ear potential drop between the leads, while the density
is translationally invariant. Thus, instead of performing
a self-consistent calculation for the whole system, we im-
pose a linear potential drop and use equilibrium charge
and spin densities for all atoms as inputs in the Kohn-
Sham Hamiltonian.

Using the identity G(ΓL + ΓR)G† = i(G − G†), the
integral in Eq. (1) is formally split in two parts referred
to as the Fermi-sea and the Fermi-surface contributions:

ρ̂sea(r) =
i

2π

∫
f̄(E)(G−G†)dE (3)

ρ̂F (r) =
eV

4π

∫ (
− ∂f̄
∂E

)
G(ΓL − ΓR)G†dE (4)

where f̄ is the Fermi function with the unperturbed
chemical potential, and only the linear term has been
kept in (4). This separation is not unique and represents
a convenient choice of gauge63. In the Fermi-sea contri-
bution (3), the bias enters through the linear potential
drop. The Fermi-sea term can contribute to magnetiza-
tion damping54.

We consider a Co/Pt bilayer with six monolayers each
of Co and Pt. The atoms are placed on the sites of the
ideal face-centered cubic (fcc) lattice with the lattice pa-

rameter a = 3.75 Å, which is approximately half-way
between those of fcc Co and Pt. The interface is taken
along a (001) plane, and the current direction is [110].
The free surfaces are separated by four monolayers of
empty spheres representing vacuum. The length of the
active region is 120 monolayers, or 15.9 nm54.

The thin-film bilayers used for SOT measurements
have rather large resistivities in the 20-100 µΩ·cm
range33–35, reflecting a large degree of disorder. The
dominant types of defects responsible for the large resid-
ual resistivity are not known. As a generic representa-
tion, we use the Anderson disorder model, in which a ran-
dom potential Vi with a uniform distribution in a range
−Vm < Vi < Vm is applied on each site i, including the
empty spheres. In order to gain insight about the mecha-
nisms of SOT and its dependence on the relaxation time
τ , we considered four values of Vm: 0.77, 1.09, 1.33, and
1.54 eV; the corresponding resistivities range from 23 to
46 µΩ·cm54.

The total torque T is split into two parts: T = Te+To,
which are, respectively, even and odd with respect to m.
The crystallographic symmetry of the bilayer is C4v. We
align the x axis with the current direction [110] and z
with [001], which is normal to the film plane. Group-
theoretical analysis gives the allowed terms in the angular
dependence of SOT:

Te = P ({A} , θ) m× [(z×E)×m] + P ({A′} , θ) (m ·E) z×m

+ P ({Aα} , θ)mz

(
m2
x −m2

y

)
m× (Ex,−Ey, 0) + P ({Aβ} , θ)

[(
m2
x −m2

y

)
(m× z)(Exmx − Eymy)− 〈. . . 〉

]
+ · · ·

(5)

To = P ({B} , θ) (z×E)×m + P ({B′} , θ) (m ·E)m× (z×m) + P ({Bα} , θ)
(
m2
x −m2

y

)
m× (Ey, Ex, 0) + · · ·

(6)

Here {X} denotes a set of coefficients X2n, n = 0, 1, . . . ,
and P ({X} , θ) =

∑
nX2nP2n(cos θ) is a linear combi-

nation of even Legendre polynomials. The A, A′, B,
B′ terms are allowed in a system with axial symmetry
group C∞v, while the Aα, Aβ , Bα terms appear once
the symmetry is reduced to C4v. A0 and B0 represent
the conventional damping-like and field-like SOT terms,
respectively.

The brackets 〈. . . 〉 in Eq. (5) stand for the average of
the preceding term over the axial rotations of the bilayer
(which is proportional to the corresponding A′0 term).
Such averages already vanish for theAα andBα terms. In
the axially symmetric polycrystalline sample with (001)
texture, the predicted angular dependence is given by the
A, A′, B, and B′ terms only.

In all calculations we have E = Ex̂, and the torquances
are defined as τe = Te/(ME), τo = To/(ME), where M
is the total magnetization, and have the dimension of a
magnetoelectric coefficient [B/E] = ns/m = T · nm/V.

The contribution of SOT to magnetization damping

α, which is obtained in ferromagnetic resonance (FMR)
linewidth measurements35, is ∆α = C(E/B), where

C = m · ∇m × [m× τ (m)] (7)

is the negative curl of the effective field54.
The Fermi-sea term is calculated in the middle of the

device with a finite bias of order 1 mV applied symmetri-
cally, as required by Eq. (3)-(4), without disorder. Equi-
librium torque from the magnetic anisotropy is removed
by subtracting the torque at positive and negative bias.
To avoid the formidable task of evaluating the integral in
Eq. (3), the Fermi-sea term is calculated at a finite tem-
perature, using the integration method of Ref. 64. The
integrand only needs to be calculated at a finite number
of points on the imaginary axis, most of which allow a
coarse mesh in the reciprocal-space integral. The Fermi-
sea term, which is strictly even, is calculated for 61 ori-
entations of the magnetization65 and then fitted to Eq.
(5). We have verified that the Fermi-sea torque depends
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linearly on the bias voltage, is insensitive to the length
of the active region at constant field, and vanishes if the
linear potential drop is replaced by two abrupt steps at
the edges of the active region.

The Fermi-sea torquances obtained for T = 50, 100,
200, and 300 K are shown in Fig. 1. The minimal set
of terms giving an acceptable fit at all temperatures in-
cludes A0, A2, A′0, and Aβ0 (see Table I); a more accurate
multi-parametric fit is used to compute the parameter C
shown in Fig. 1. A′0 is the largest term in the minimal fit,
and it becomes quite large at low temperatures. A2 and
Aβ0 are also important at lower T , although Aβ0 should
average out in polycrystalline samples.

FIG. 1. Fermi sea contribution to the torquance τe (arrows)
at (a) 50 K, (b) 100 K, (c) 200 K, (d) 300 K. The intensity
of red (blue) color shows the positive (negative) magnitude
of the damping parameter C [Eq. (7)]. In each panel, the
number on bottom right gives the scale of an arrow with a
length equal to the sphere radius, and one on top right gives
the color map scale (both in ns/m).

The integrand in Eq. (4) for the Fermi-surface term
contains a delta-function at zero temperature and needs
to be calculated only near the Fermi level EF . The tem-
perature dependence of this term is determined primarily
by τ rather than the temperature in the Fermi distribu-
tion function. The reciprocal-space integration requires
about 1000 points to keep the relative errors within a
few percent. The Fermi surface contribution to the total
torquance, summed up over all sites in the active region,
is calculated for 32 orientations of the magnetization,
which form 16 antiparallel pairs, and averaged over a
sufficient number of disorder configurations66. The sym-
metric and antisymmetric parts of the torque are then
fitted to Eqs. (5) and (6). Only A0, A′2, B0, and B′0
coefficients turned out to be sizeable; they are listed in
Table I. With the exception of A′0, all coefficients depend
weakly on the transverse supercell size Ly, confirming the
reliability of disorder averaging. The fitted expressions
were used to evaluate the damping parameter C, and the

results are displayed in Fig. 2 for two strengths of disor-
der, Vm = 0.77 and 1.54 eV.

FIG. 2. Fermi surface contribution to the torquance (arrows):
(a) τe at Vm = 0.77 eV, (b) τe at Vm = 1.54 eV, (c) τo
at Vm = 0.77 eV, (d) τo at Vm = 1.54 eV. The scales are
indicated as in Fig. 1. Supercells with Ly = 2 were used for
disorder averaging.

The Fermi-surface contribution to the even torquance
is dominated by the simple damping-like term A0. The
leading contribution to damping from the even torquance
is given by C = −(2A0 + A′0)my. Although the Fermi-
surface part of A′0 converges slowly with the transverse
supercell size Ly, it is clear from Table I that its contri-
bution to C is small compared to A0.

Table I shows that, as the disorder strength increases
from 0.77 to 1.54 eV, the A0 term remains essentially con-
stant, while the resistivity and the resistance of the active
region increase by more than a factor of 254. This shows
that the damping-like torquance A0 depends weakly on
τ . The magnitude of A0 is consistent with experimental
data67 for a Co/Pt bilayer with similar layer thicknesses,
as well as with prior calculations using phenomenological
broadening46. These observations suggest that damping-
like SOT in this bilayer is dominated by intrinsic band-
structure effects.

In addition to the simple field-like B0 term, the odd
torquance contains a sizeable B′0 term of comparable
magnitude (see Table I); other terms are relatively small.
This is in contrast to calculations based on phenomeno-
logical broadening46, where no terms beyond B0 were
found. The B0 coefficient decreases with increasing dis-
order strength, as expected for ISGE. However, the rel-
atively large error bar for B0, which is evident from its
dependence on Ly, does not allow us to predict its tem-
perature dependence at constant current density.

The mechanisms of SOT are closely related to its tem-
perature dependence through their dependence on τ .
The intrinsic damping-like SOT is independent of τ at
a fixed electric field, and hence it should be proportional
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TABLE I. Coefficients (ns/m) in the angular expansion of the
spin-orbit torquance in the Co/Pt bilayer. Ly is the lateral
supercell size in the units of a/

√
2 (only relevant for the Fermi-

surface part). E is the energy; E± = EF ± 0.046 eV.

E Ly
Fermi surface, Vm (eV) Fermi sea, T (K)

0.77 1.09 1.33 1.54 300 200 100 50

A0

EF 1 29.4 24.8 23.4 21.9 1.4 0.8 0.8 -1.3

EF 2 29.9 31.3 24.4 27.7

EF 3 27.5

E+ 2 30.5

E− 2 26.8

A′0

EF 1 -5.2 -3.1 -2.6 -0.7 5.3 7.6 10.6 13.6

EF 2 -3.3 -10.7 -2.8 -7.5

EF 3 -6.0

E+ 2 -4.7

E− 2 -2.2

A2 EF 2 -1.3 -2.2 -0.3 -0.9 0.6 1.4 3.2 6.3

Aβ0 EF 2 -1.5 -0.3 0.0 0.0 0.3 1.4 5.2 7.3

B0

EF 1 -8.1 -8.0 -6.3 -4.1

EF 2 -8.8 -5.0 -3.8 -1.7

EF 3 -6.3 0

E+ 2 -7.5

E− 2 -3.2

B′0

EF 1 -6.8 -8.2 -10.7 -9.9

EF 2 -7.5 -7.6 -6.8 -5.8

EF 3 -8.3 0

E+ 2 -9.3

E− 2 -8.3

to the resistivity ρ(T ) at a constant current density. Al-
though the field-like SOT due to interfacial ISGE scales
with τ similar to the conductivity, the interfacial and
bulk scattering rates may be different.

There are few experimental measurements of the tem-
perature dependence of SOT, and they are poorly un-
derstood. In Ta-based systems the field-like SOT was
reported to increase quickly with temperature while
the resistivity and the damping-like SOT are nearly
constant68,69. This behavior is inconsistent with the
ISGE mechanism of the field-like-SOT. Temperature de-
pendence of the field-like SOT is different in as-grown
Pt/Co and annealed Pt/CoFeB bilayers70. The unex-
pected temperature dependence of the field-like SOT sug-
gests that processes involving phonons or magnons may
play an important role1,71.

The terms B′0 and B2 in the odd torquance contribute
to damping as C = 3(B′0 +B2)mxmz, which is the “pla-
nar Hall-like” damping observed when m lies in the xz
plane35. Table I shows that the term B′0 is not sensitive
to disorder strength, similarly to A0. The B2 term was
found to be small in all cases.

The existence of large terms beyond B0 in the odd SOT
is consistent with experimental observations33–35. How-
ever, while we found large B′0 and B2 ≈ 0 in a Co/Pt

bilayer, measurements of SOT in AlOx/Co/Pt33 and
AlOx/Co/Pd34 suggest an approximate relation B2 =
− 2

3B
′
0 in these systems54. The relative magnitude of the

damping parameter C measured in the xy (spin-Hall-like
SOT) and xz planes (planar Hall-like SOT) agrees with
FMR linewidth measurements35, but the sign of B′0 is dif-
ferent. This disagreement may be due the inadequacy of
the Anderson disorder model. Indeed, weak dependence
of B′0 on disorder strength (see Table I) and the absence
of any terms beyond B0 in calculations based on band
broadening46 suggest that these terms arise from vertex
corrections, which are sensitive to the type of disorder
present in the system.

Table I also lists the Fermi-surface SOT coefficients cal-
culated at energies E± = E±0.046 eV, where (−∂f̄/∂E)
is reduced by 50% compared to its maximal value at 300
K. Weak energy dependence of A0 and B′0, and approxi-
mately linear dependence of B0, suggests that these coef-
ficients are not sensitive to the Fermi temperature. The
A′0 coefficient remains small.

For further insight in the origin of SOT, Fig. 3 shows
atom-resolved contributions to the A0, A′0, B0, and B′0
terms at Vm = 1.09 eV. For comparison, these quan-
tities are also shown for the free-standing 6-monolayer
Co film with the same lattice parameter, where the total
torquance vanishes by symmetry.

FIG. 3. Atom-resolved torquances in the Co(6)Pt(6) bilayer
(solid lines) and in the free-standing Co(6) film (dashed lines)
at Vm = 1.09 eV, obtained with Ly = 3. (a) Even terms A0

and A′0, (b) odd terms B0 and B′0. Light-blue curves (labeled
ξPt = 0): A0 in Co(6)Pt(6) with SOC on Pt atoms set to
zero, obtained with Ly = 1.

The contributions to A0 and B0 are spread throughout
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the thickness of the film, with the largest contributions
coming from the Co atoms at the Co/Pt interface and at
the free surface of Co. On the other hand, the B′0 term
appears to originate at the Co/Pt interface. It is inter-
esting to observe a considerable contribution to B0 from
the Pt atoms near the interface, which carry a magnetic
moment of about 0.24µB thanks to the magnetic proxim-
ity effect72. In fact, SOT on the Pt atoms contributes as
much as 40% of the total magnitude of B0. Surprisingly,
the atom-resolved contributions at the surface Co atoms
in the free-standing Co film are even larger in magnitude
than those at the Co/Pt interface.

Finally, we examine the SOT with the SOC on Pt
atoms switched off, using the supercell with Ly = 2.
The A0 term essentially disappears, but, as seen in Fig.
3(a), atom-resolved contributions remain sizeable, and
those near the free Co surface barely change. The B′0
term is strongly suppressed from −7.6 to −1.4 ns/m,
which is comparable to the averaging error. On the
other hand, the B0 term increases to −10.8 ns/m, with
strongly redistributed atom-resolved contributions [Fig.
3(b)]. These results suggest that, without SOC on Pt, the
SOT in our Co/Pt bilayer is nearly non-dissipative, i.e., it
does not affect magnetization damping. Current-induced
Dzyaloshinskii-Moriya interaction73 formally leads to
damping-like atom-resolved torques that add up to
zero54. Thus, strong field-like SOT does not require a
heavy-metal layer, but understanding the prerequisites

for observing damping-like SOT without heavy metals74

will require further research.
In conclusion, we have demonstrated the feasibility of

calculating the SOT for a Co/Pt bilayer with an explicit
model of disorder within the NEGF formalism based
on density-functional theory. Terms beyond the usual
damping-like and field-like torques were found, including
a sizeable planar Hall-like B′0 term [Eq. (6)], consistent
with FMR measurements35. The dissipative part of SOT
is almost entirely due to SOC on Pt atoms.
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berger, Electronic Structure of Disordered Alloys, Surfaces
and Interfaces (Kluwer, Boston, 1997).

50 I. Turek, V. Drchal, and J. Kudrnovský, Philos. Mag. 88,
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