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Exceptional points (EPs) are responsible for a number of interesting phenomena in non-Hermitian
wave systems. Here we show, both theoretically and experimentally, that EPs can be synthesized
in non-Hermitian acoustic systems with unbalanced loss factors in different sections. Numerical
simulations and measurements confirm that unidirectional zero reflection, one of the hallmarks of
EPs, can be realized in such a compact system with controlled Willis coupling and loss. When
approached from one direction in the parameter space, the material slab mimics a conventional
parity-time (PT) symmetric system. Our findings provide an efficient way for advanced engineering
of scattering properties of artificial acoustic materials with EP-related physics.

I. INTRODUCTION

The emergence of exceptional points (EPs) in non-
Hermitian systems has stimulated extensive research in-
terest in recent years [1–3]. In a two-level system,
EPs mark the spontaneous symmetry-breaking transition
point in which the energy spectrum jumps from real to
complex value abruptly [3–5]. This type of phase transi-
tion exists in non-Hermitian Hamiltonians and is respon-
sible for a number of useful and unexpected phenom-
ena. Although EPs were originally analyzed in the realm
of quantum mechanics, they have attracted research ef-
fort in other regimes as well, thanks to the mathematical
equivalence between Schrödinger equation and paraxial
electromagnetic wave equations. To date, EPs have been
studied in various physical systems, including optics [6–
9], photonics [10–13], acoustics [14–18] and others [19–
21]. Numerous intriguing applications have been demon-
strated within the context of EPs, such as unidirectional
invisibility [9, 15], single-mode or vortex lasers [22–24],
enhanced sensing [25, 26] and topological effects [27–29].

Physical realizations of EPs generally fall into two cat-
egories. The first approach is to use PT-symmetric syn-
thetic media, in which the constitutive components are
patterned so that the entire system display an exact bal-
anced loss and gain. Such PT-symmetric media typically
involve wave amplification/absorption materials or struc-
tures and precise control of their spatial variation for the
access of the whole complex parameter domain to respect
PT-symmetry. The lack of easily controllable gain media
also poses additional challenges on the fabrication of a
PT-symmetric medium, as an external energy supply or
a means of field control are required. Although entirely
passive PT-symmetric media have been proposed [9, 30],
a continuous varying loss profile is demanded which in-
evitably adds to the system complexity.

The other approach to realize EPs uses coupled sys-
tems such as resonators, cavities or waveguides. Al-
though these systems exhibit EPs in a compact imple-

mentation, they require relatively sophisticated design
and carefully controlled loss within the system. The cou-
pling strength and additional loss, which are critical for
the synthesis of EPs, may be unstable under small per-
turbations and are difficult to control precisely in prac-
tice. These requirements make EPs difficult to access
physically, limiting their use in practical applications.

A necessary condition for the formation of EPs is the
coalescence of the eigenstates of the scattering matrix,
which requires |r+| 6= |r−|. This means that the system
should exhibit a directionally dependent response under
different excitations. Bianisotropic media are possible
candidates to realize such asymmetric responses. The
term bianisotropy originates from electromagnetism [31]
and the concept is the direct analogue to Willis cou-
pling [32] in acoustics and elastodynamics, in which a
cross-coupling between strain and velocity takes place.
Recent studies have shown that bianisotropic acoustic
media can lead to asymmetric responses [33–37]. How-
ever, they are generally designed to be lossless and thus
obey |t±|2 + |r±|2 = 1, in which t± and r± are the local
transmission and reflection coefficients in the forward and
backward directions, respectively. As t+ = t− for recip-
rocal systems, the amplitudes of the local reflection coef-
ficients are the same, i.e., |r+| = |r−|. Therefore, lossless
bianisotropic structures do not have access to EPs and
are not suitable for unidirectional scattering manipula-
tion with different amplitudes.

In this paper, we show that EPs can be systematically
synthesized in bianisotropic non-Hermitian acoustic sys-
tems with engineered loss. When loss is carefully incorpo-
rated into the system, unidirectional zero reflection, i.e.,
vanishing reflection in only one direction of illumination,
can be realized in the all-passive structure. This prop-
erty is a result of degenerate non-Hermitian scattering
matrix at the EP of the system. Distinct from conven-
tional PT-symmetric systems where loss and gain need
to be judiciously tailored, the EPs proposed here can be
synthesized conveniently by adding appropriate loss into
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the host medium of the system. Moreover, no continu-
ous variation of loss is required for the synthesis of EPs.
Such compact, entirely passive structure can serve as a
versatile platform to engineer scattering properties and
explore EP-related physics.

II. THEORY AND DESIGN

To begin with, we consider an asymmetric structure
as shown in Fig.1. The structure consists of two lossy
medium regions and is loaded in a circular waveguide.
Thin plates are connected at the termination of each re-
gion. The lengths of the two regions are L1 and L2,
respectively and are not equal. Such a structure lacks
inversion symmetry and therefore exhibits bianisotropic
response. It is worth pointing out that, to realize uni-
directional scattering properties, asymmetry is essential
since the behavior of a symmetrical structure is the same
regardless of the direction of incidence. It has been shown
that for a lossless and reciprocal system, the amplitudes
of the reflection coefficients when illuminated on two
sides are identical [36]. In order to obtain different reflec-
tion amplitudes, loss is introduced as another ingredient
so that the system becomes non-Hermitian. To do this,
loss factors δ1 and δ2 are assumed in the two medium
regions and the wave number ki inside the medium be-
comes ki = k0(1 − jδi), where k0 is the free space wave
number. While the impedances of the plates can gener-
ally be different to allow arbitrary bianisotropic response
[33, 36, 38], here they are considered identical for simplic-
ity and we will show that the geometrical asymmetry and
unbalanced loss factors are sufficient for the synthesis of
EPs.

The system can be analyzed by the standard two-port
network model as below:

[
pin

−n̂ · ~vin

]
=

[
A B
C D

] [
pout

−n̂ · ~vout

]
(1)

Here pin and pout represent the input and output com-
plex pressure amplitudes at the two terminals of the
structure, n̂ is the normal vector of the wave propaga-
tion direction, ~vin and ~vout are the associated input and
output velocity fields. The total transfer matrix is ex-
pressed as:

[
A B
C D

]
= MZMT1MZMT2MZ (2)

MZ and MTi are the transfer matrices of the plate (re-
garded as an impedance Zs) and the lossy medium, re-
spectively, and are expressed as:

MZ =

[
1 Zs
0 1

]
(3)

FIG. 1. Sketch of the bianisotropic system composed of three
thin plates and two lossy medium regions. All the components
are loaded in a circular waveguide to ensure 1D wave prop-
agation. The arrows indicate incident acoustic waves from
different directions.

MTi =

[
cos(kiLi) jZ0 sin(kiLi)

j 1
Z0

sin(kiLi) cos(kiLi)

]
(4)

where Z0 = ρ0c0 is the characteristic impedance of the
background medium (air in our study), with ρ0 and c0
being the density and speed of sound in air. Generally
Z0 will be a complex number by the introduction of loss,
however, its absolute value change is small and the re-
sulting impedance mismatch is therefore negligible. We
note that the plates serve as impedance sheets in the
transmission line system, and they can be replaced by
other structures that can be regarded as an impedance,
e.g., side-loaded Helmholtz resonators. Here we chose to
use paper plates for the sake of the compactness of the
system. The corresponding S matrix of the system can
be derived as (note that the S matrix here is different
from its conventional form in electromagnetics [39, 40]):

S =

[
t− r−

r+ t+

]
=[

2
A+B/Z0+CZ0+D

−A+B/Z0−CZ0+D
A+B/Z0+CZ0+D

A+B/Z0−CZ0−D
A+B/Z0+CZ0+D

2
A+B/Z0+CZ0+D

] (5)

To this end, the components of the S matrix of the
system are first calculated by inserting Eqs. (3) and (4)
in to Eq. (5) and varying δ1 and δ2 in the parameter
space. Without loss of generality, Zs is set to be i620
Pa · s/m, which is purely imaginary. This condition can
be satisfied if the plates are thin and elastic and can be
considered lossless. The value is chosen such that it is
moderate compared to Z0 (Zs = 1.46iZ0) and is there-
fore conveniently attainable for plate-type metamaterials
[41]. On the other hand, as will be shown later, this Zs
will lead to a reasonable set of δ1 and δ2 values that need
to be realized in experiments to induce EPs. The fre-
quency of the incident wave is chosen to be 2.95 kHz for
the convenience of experimental realization. Operation
at other frequencies can be achieved simply by changing
the geometrical configuration of the system such that the
plates have desired impedance. Figure 2 (a-c) depicts the
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calculated absolute values of r+, r− and t+(t−) against
the two control parameters δ1 and δ2, with fixed lengths
L1 = 20 mm and L2 = 30 mm. The local reflectance dis-
play different characteristics while the transmittance is
identical in both directions. This is because the system is
linear time-invariant and does not break the reciprocity.
Unidirectional zero reflection, i.e., r+ = 0 and r− 6= 0,
occurs when δ1 = 0.02 and δ2 = 0.22.

To confirm that this operation point is truly an EP,
we further calculate the eigenvalues of the S matrix
λ1,2 = t ± (r+r−)1/2 (here t = t+ = t−) by setting
δ1 = 0.02 and increasing δ2 monotonically. As can be
seen from Fig. 2(d-e), at δ2 = 0.22, there is a coalescence
of the real part of the eigenvalues and the imaginary part
experiences biased distributions when δ2 > 0.22. The ab-
solute values of λ1,2 shown in Fig. 2(f) undergo a phase
transition at this point and the two eigenstates become
degenerate. Such an eigenvalue spectrum is quite similar
to the behavior of a PT-symmetric system that is experi-
encing a change from PT-exact phase to PT-broken phase
at the EP. Interestingly, the eigenvalues are not unimod-
ular at the EP compared with balanced PT-symmetric
systems. This is similar to a passive PT-symmetric sys-
tem in which the eigenvalues are offset by the introduc-
tion of losses [30].

It should be pointed out that although δ1 is not zero,
the system can still possess EPs if medium 1 is entirely
lossless (i.e., δ1 = 0). In other words, in our transmission-
line system, the additional tuning of δ1 is not required in
order to form an EP. Medium 1 can generally be either
lossless or lossy and only δ2 is important in the parameter
space so that an EP appears. Here it is chosen to have a
finite value to represent a typical loss in the experimental
environment. The corresponding Zs for the emergence of
an EP with only one lossy medium (medium 2) can be
calculated by enforcing δ1 = 0 and r+ = 0, which is
found to be i580 Pa · s/m. Likewise, an EP can also
be achieved by keeping δ2 = 0 and varying δ1. Since
the only parameter that needs to be tuned is δ2, the
proposed scheme here using bianisotropic non-Hermitian
system greatly facilitates the synthesis of an EP.

To fully design the physical system, the radius r of
the circular waveguide must be determined such that the
paper plates display the desired impedance. The acoustic
impedance of the plates with clamped boundaries can
be computed by a lumped model described by acoustic
compliance Ca and acoustic mass Ma [41, 42]:

Za =
1

jωCa
+ jωMa (6)

For circular plates, the values can be approximated by

Ma = 1.8830
ρph
πr2 and Ca = πr6

196.51D , where ρp, h and
D are the density, thickness and flexural rigidity of the
plate, respectively. The characteristic impedance Zs of
the plate is therefore Zs = ZaA with A = πr2 being the

surface area of the plate. For the plates we use in the
study, the density and thickness are 728 kg/m3 and 0.26
mm, respectively. The flexural rigidity is determined by
measuring the transmission spectrum of a single plate
[43]. For a circular plate with clamped boundaries, the
flexural rigidity is given by [44]:

D = 0.0383f20A
2ρph (7)

where f0 is the first resonance frequency of the plate.
Figure 3 shows the measured transmission coefficient
through a single paper plate with r = 10 mm. The peak
frequency is 2.81 kHz, with transmission coefficient be-
ing greater than 0.9, which justifies the assumption of
low loss of the paper plates around resonance frequen-
cies. From Eq. (7), the flexural rigidity of the plates is
found to be 0.0057 Pa · m4. The calculated radius r of
the plate according to Eq.(6) is 10 mm so that Zs = 620i
Pa · s/m at 2.95 kHz, and is used in the following section
for numerical simulations and experiments.

III. SIMULATION AND MEASUREMENTS

Full-wave simulations are performed with the finite ele-
ment solver COMSOL Multiphysics. The pressure acous-
tic module and solid mechanics module are used so that
both lossy medium and plates can be fully modeled. The
acoustic pressure distribution and mode shapes of the
plates are shown in Fig. 4 at 2.95 kHz and 3.00 kHz. It
can be seen that for incoming waves in opposite direc-
tions, the reflected pressure fields display vastly differ-
ent characteristics at the designed operational frequency
2.95 kHz. The reflection in the forward direction is al-
most zero, which agrees well with theoretical predictions.
When the incident frequency is increased to 3.00 kHz,
the reflection increases in the forward direction. On the
other hand, the acoustic pressure distributions on the
transmission are identical for both frequencies in terms
of amplitude and phase since the system does not break
reciprocity.

To experimentally demonstrate unidrectional zero re-
flection with the bianisotropic system, a prototype is con-
structed with the configuration described and simulated
above. The experimental setup is shown in Fig. 5(a).
The tubes are 3D printed using nylon whose impedance
is much greater than air and can be considered acousti-
cally rigid. The thickness of the tubes is 5 mm to ensure
1D wave propagation. The plates are rigidly clamped be-
tween adjacent sections of the tubes and a speaker with
0.9 cm radius and 4 Ohm input impedance is positioned
at one end of the tube. The speaker is powered by an am-
plifier (type PAM8403) and generates acoustic waves to
excite the system. To measure the reflection of the sam-
ple, two breakout boards (type ADMP401) are mounted
inside the tube with a distance of 4 cm. The breakout
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FIG. 2. Characteristics of the non-Hermitian acoustic system. (a-c) Scattering parameters of the system in the parameter
space δ1,2. The reflection coefficients r+ and r− show distinctive behavior, which is a clear signature of asymmetric response.
The arrow marks unidirectional zero reflection, which occurs for δ1 = 0.02 and δ2 = 0.22. (d) Real and (e) imaginary part
of the eigenvalues in the parameter space. The eigenvalues are plotted as a function of δ2 by fixing δ1 = 0.02. (f) Absolute
eigenvalues of the corresponding S matrix.

FIG. 3. Experimentally measured transmission spectrum
through a single paper plate with clamped boundaries. The
first resonance frequency (corresponds to a transmission peak)
is found to be f0 = 2.81 kHz.

boards have a size of 13.6 mm by 10.4 mm and feature
a 1.2 mm diameter MEMS microphone on the tip. The
boards are slid into the tube through a slit such that
only the tip is inserted into the tube to ensure minimal
contact with the field (see the inset of Fig. 5(a)). The
microphones are oriented on the same side in front of the
sample and the signals are recorded and data acquisition
is performed using NI board PCI-6251 and CB-68LP as
the interface. The reflectivity is extracted via the stan-

dard two-microphone method [45]. The direction of in-
cident waves is then switched to obtain the response of
the other direction. Six individual measurements are av-
eraged to reduce noise.

The loss factors of the two medium sections are first
determined so that they display theoretically required
values. For lossy medium 1, its loss factor δ1 = 0.02 rep-
resents a typical loss in the experimental environment
and therefore no additional tailoring is applied [46]. On
the other hand, for lossy medium 2, a suitable amount
of additional loss should be introduced so that its loss
factor reaches 0.22. To do this, several equally spaced
disk-like pieces of sponges [47] are inserted inside the
tube. The radius of the sponges is identical to the inner
radius of the tube r so that an effectively uniform lossy
region can be created. The loss factor can be adjusted by
varying the number and thickness of the sponges that are
used. Since the sponges are dissipative to acoustic waves,
higher loss factors can be obtained by monotonically in-
crease the overall sponge thickness that is inserted in the
tube until the requirement is met [48]. To show the tun-
ability of the lossy medium using sponges, we measure
the transmission coefficient of medium 2 with different
configurations of sponges and the results are depicted in
Fig. 5(b). The blue and red curves represent the cases of
using two 3mm-thick and three 4mm-thick sponges, re-
spectively. Clearly, the transmission coefficient decreases
with more and thicker sponges added. We further calcu-
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FIG. 4. Simulated sound pressure distribution and mode shape of the plates of the non-Hermitian acoustic system. The incident
waves are omitted for better visualization of the reflected waves. Top and bottom panels show the forward and backward
incidence, respectively. (a) Response at the designed frequency 2.95 kHz, with zero reflection in the forward direction. (b)
Response at a slightly higher frequency 3.00 kHz, the reflection in both directions has a finite value.

FIG. 5. (a) Experimental setup for reflection measurement.
Two microphones are inserted into the tube to capture the
incident and reflected signals. The inset shows how the mi-
crophones are positioned inside the tube. (b) Measured trans-
mission coefficient and (c) retrieved loss factor of the 3 cm
lossy medium.

late the corresponding loss factors of the medium using
the transfer matrix method. Figure 5(c) shows the cal-
culated loss factors of the two cases. The retrieved loss
factors are a little dispersive and are slightly larger at
higher frequencies, which is typical for sound absorbing
sponges. The retrieved loss factor is roughly 0.22 around
the operational frequency (2.95 kHz) and corresponds to
the case used in the study.

Figures 6(a) and (b) show the measured reflection spec-
tra of the sample in the forward and backward directions.
Good agreement is observed between the simulated re-
sults and measurements. The small discrepancies can
be attributed to the slight non-uniformity of the paper
plates and weak scattering caused by the microphones.
The operational frequency for unidirectional zero reflec-
tion is slightly shifted from 2.95 kHz to 2.96 kHz in ex-
periments, which can be caused by non-ideal performance
of the plates due to imperfect boundary conditions and
small material loss. The non-Hermitian bianisotropic

FIG. 6. Experimental demonstration of unidirectional zero
reflection of the non-Hermitian acoustic system. Measured
and simulated reflection spectrum in the (a) forward and (b)
backward directions. The error bars are generated out of six
measurements.

system shows distinctly different reflection characteris-
tics in opposite directions, indicating unidirectional scat-
tering properties. At 2.95 kHz, the reflectivity in the
forward direction approaches -30 dB in both simulations
and experiments, while reflectivity in the backward di-
rection is much larger and near -5 dB in measurement.
This clearly illustrates exceptional point behavior of the
system.

IV. CONCLUSIONS

To conclude, we have shown both theoretically and ex-
perimentally that a non-Hermitian bianisotropic acous-
tic system can exhibit the exceptional point behavior
of much more complicated PT-symmetric systems. The
constraint of balanced loss and gain can be relaxed for
the synthesis of EPs in such a material slab. Unidirec-
tional zero reflection, a key property of PT-symmetric
systems, can be realized by adding modest loss to the
constitutive medium of an appropriately designed sys-
tem. The bianisotropy and non-Hermiticity add a new
degree of freedom to the system design and it is shown
that they can contribute to strongly asymmetric scatter-
ing properties. Although such EPs are demonstrated in
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the acoustic regime, the theory is not restricted to acous-
tics and can easily be extended to other scenarios such as
microwaves. For example, the plates can be replaced by
impedance sheets and the lossy medium can be realized
by materials with certain dielectric loss. The size of the
structure in our study is less than half of the operational
wavelength and can be reduced by further optimization.
The structure is also able to be integrated into two di-
mensions in the lateral direction to form a metasurface.
The bianisotropic non-Hermitian systems demonstrated
here can serve as a simple platform for the exploration
and realization of EP-related physics and can thus find
applications in directional sensing and communication,
unidirectional invisibility, and other areas without the
need for more complicated full PT-symmetric systems.
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