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Materials adopting the diamond structure possess useful properties in atomic and colloidal systems, and are a
popular target for synthesis in colloids where a photonic band gap is possible. The desirable photonic properties
of the diamond structure pose an interesting opportunity for reconfigurable matter: can we create a crystal able
to switch reversibly to and from the diamond structure with a photonic band gap in the visible light range?
Drawing inspiration from high-pressure transitions of diamond-forming atomic systems, we design a system
of polyhedrally-shaped colloidal particles with spherical cores that transitions from diamond to a tetragonal
diamond derivative upon a small pressure change. The transition can alternatively be triggered by changing the
shape of the particle in situ. We propose that the transition provides a reversible reconfiguration process for a
potential new colloidal material, and draw parallels between this transition and phase behavior of the atomic
transitions from which we take inspiration.

In the century since it was first characterized in 1913 by
W. H. and W. L. Bragg, the diamond structure has been a
popular focus of materials research [1]. Diamond-type ma-
terials, including the diatomic equivalent, zincblende, exhibit
extraordinary properties, such as high hardness, high thermal
conductivity, and a high refractive index at room temperature.
Also known for its optical properties, diamond was the first
structure calculated to have a photonic band gap, meaning
it reflects all electromagnetic waves over a range of wave-
lengths that depends on the interparticle distance. Ho, et
al. [2] showed that a diamond structure of overlapping silicon
spheres arranged at a filling fraction of 34% reflects wave-
lengths a factor of roughly 2.4 times the crystal lattice param-
eter, at any length scale (e.g., a lattice parameter of 100 nm
would result in the reflection of UV light). Crystals with pho-
tonic band gaps in the visible range can be achieved by using
colloidal particles with sub-micron to micron diameters and
are commonly a target for self-assembly within the colloids
community [3–6].

The unique properties of diamond-structured materials pro-
vide an interesting target for reconfigurable photonic mate-
rials; that is, a material designed to switch to and from a
diamond-like structure with its concomitant properties. There
is precedent for reconfigurable diamond-structured materials
in elemental structures: Si, Ge, and Sn each form the dia-
mond structure at ambient pressure and transition to a tetrag-
onal metallic phase, β-Sn, at higher pressures [7, 8].

This inspires the question: can we design a photonic crys-
tal that reflects wavelengths in the visible range of the elec-
tromagnetic spectrum, and whose structure and thus band gap
are reconfigurable? Such target criteria lead us to consider
colloidal crystals, where reconfigurability has been demon-
strated [9, 10] and where the self-assembly of the diamond
structure is possible [11–17]. Core-shell colloidal crystals of-
fer the further possibility of operating on two separate length
scales, that of the high dielectric core and that of the shell. Be-

cause the size and shape of the core is independent of the size
and shape of the particle in which it is imbedded, the photonic
properties are independently tunable from the length scale that
is relevant for assembly.

Particle shape adds anisotropy dimensions ([18]) that allow
one to assemble and transition between a diversity of crystal
structures not easily achievable with spherical particles [19]
and colloidal polyhedra have now been realized for a variety
of materials [18, 20–25]. Moreover, it has been demonstrated
that directional entropic forces [13, 26] arising from the sta-
tistical tendency for particle facets to align are more than suf-
ficient to produce crystal structures of extraordinary complex-
ity and diversity [27–29], including diamond [13]. Polyhedral
nanoparticles have been synthesized with spherical and non-
spherical cores [30–33], comprised of materials such as silica,
silver, gold, or palladium.

Here we report a reversible structural phase transition with
photonic implications for a simulated system of hard core-
shell polyhedra with tetrahedral symmetry ordering via direc-
tional entropic forces into a diamond structure. The transition
is driven by pressure, and leads from the well-known cubic
diamond structure to a tetragonal diamond derivative (TDD)
distinct from the aforementioned β-Sn. The transition pro-
vides a reversible reconfiguration process for a new target for
synthesis: a photonic colloidal material that can be switched
among as many as four possible photonic states, each of which
permits a different frequency range of light in the infrared or
visible regimes. Additionally, by noting that all three phases
— cubic diamond, TDD, and β-Sn — are related through scal-
ing along a major axis, we gain insight into the mechanism
driving high-pressure transitions between diamond and β-Sn
in atomic systems.

To represent the particle shells, we simulated a family of
convex shapes with tetrahedral symmetry (here denoted ∆323)
[34] using the Digital Alchemy (DA) framework [35]. In DA,
a design parameter is introduced as a thermodynamic state
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Figure 1. The ∆323 Shape Parameterization. (a–b) The ∆323

shape family, ranging from an octahedron (α = 0.0) to a tetrahe-
dron (α = 1.0). The intersection of planes at parameterized dis-
tances shown in (a) generate the resulting shapes in (b). All shapes
are scaled to unit volume in simulations.

variable, which defines an extended alchemical ensemble in
which either the design parameter, the alchemical variable, or
its conjugate, the alchemical potential can fluctuate while the
other remains fixed.

The ∆323 family is constructed through the intersection
of planes arranged tetrahedrally around the particle center,
parametrized by α3, which can be viewed as the truncation
along a set of three-fold axes, in the following called α for
brevity. The shape family is shown in Fig. 1; all shapes are
scaled to unit volume. Hard shapes with α = 0.3–0.5 as-
semble into diamond at packing fraction (synonymous with
filling fraction) φ = 0.5–0.6 [13]. When these assembled
crystals are compressed to higher packing fractions, we ob-
serve a transition to a tetragonal diamond derivative (TDD)
structure. Because this transition occurs via local particle re-
arrangement only, it is easily achievable at higher densities,
where self-assembly from a fluid may be thwarted by an in-
tervening glass transition.

These two crystal structures, diamond and TDD, differ in
two major respects: the aspect ratio of the unit cell and the
particle orientations. The TDD structure is defined by lat-
tice vectors ~a1 = [a, 0, 0], ~a2 = [0, a, 0], ~c = [0, 0, c], with
particles situated at positions 0,0,0 and 1

4 ,
1
4 ,

1
4 (in fractional

coordinates) on a face-centered lattice (i.e., with centering
vectors [0, 0, 0], [ 12 ,

1
2 , 0], [ 12 , 0,

1
2 ], and [0, 12 ,

1
2 ]). For ease of

comparison, tetragonal unit cells will be expressed in a non-
standard face-centered setting tF8, such that all unit cells can
be described in terms of c/a for a face-centered unit cell (con-
taining 8 particles), where c/a = 1 for the face-centered cubic
unit cell of diamond (cF8-C). Shapes from the ∆323 family
densely pack into TDD with c/a =

√
0.4 ≈ 0.6325 (which is

also c/amin for ∆323) and α = 0.5.
The β-Sn structure (referred to by its Pearson symbol tI4-

Sn) can be defined as a TDD structure at c/a ≈ 0.3859 (given
a tF8 unit cell). tI4-Sn and TDD structures in ∆323 both
have space group I41/amd and Wyckoff position 4c 0, 0, 0,
albeit at different ratios of c/a. TDD structures with c/a
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Figure 2. Structural Diagrams for Diamond and its Tetragonal
Derivative. (a–d) Structural comparison between (a, c) diamond and
(b, d) the tetragonal diamond derivative (TDD) with c/a =

√
0.4,

both shown with shape at α = 0.5. Here, we show projections along
the major axis of cubic diamond and along two differing axes in the
tetragonal derivative structure (~c in (b) and one of the equivalent ~a-
axes in (d)). The particle positions appear unchanged when viewed
along the ~c-axis, but the particles rotate about the ~c-direction. (e) The
peaks in the radial distribution function (RDF), i.e., the distances of
the nearest-neighbor shells. The fourth nearest neighbors (yellow) in
the~c-direction in diamond are immediately outside the third neighbor
shell in TDD at c/a =

√
0.4.

≥
√

0.4 have tetrahedral coordination (coordination number
4), whereas tI4-Sn has two additional particles adjacent to
the first neighbor shell, resulting in an octahedral coordina-
tion (coordination number 6). Other TDD phases have been
found in studies of atomic structures although with aspect ra-
tios near that of tI4-Sn or high-pressure tI4-Cs, which has
c/a > 1 [36, 37].

Snapshots of the two structures observed in our simulations
are shown in Fig. 2(a–d), with their radial distribution func-
tion (RDF) peaks in Fig. 2(e) [38] .

We report phase diagrams comparing the c/a ratio of the
tF8 unit cell for varying densities and shape parameter α.
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These phase diagrams reveal that, although all shapes with
0.3 ≤ α ≤ 0.5 assemble into diamond, they will transition to
tetragonal unit cells at higher densities. The NV Tα simula-
tions generating this phase diagram and NPTα simulations
for computing the equation of state were conducted by initial-
izing both in the assembled and densely packed structures and
equilibrating at the desired density or pressure.

In Fig. 3(a), the contour lines map the c/a value of the unit
cell of the equilibrium structure for systems of constant shape
at varying densities. The shades of red represent the c/a ra-
tio of the unit cell lattice vectors, with the lighter red region
showing where cubic diamond is the configuration with the
lowest free energy (c/a = 1), and darker reds indicating TDD
structures, where c/a < 1 is lower in free energy. The region
marked as geometrically forbidden (grey) shows the densities
and α values at which particles would be forced to overlap.

In this study, shape and structure are intrinsically inter-
twined due to the shape-dependency of the transition from
cubic diamond to its tetragonal derivative. Using Alchemical
hard particle Monte Carlo (Alch-HPMC) (described in [49]
and [38]) with constant alchemical potential µ = 0, we can
find the shape that produces the lowest free energy structure at
a given density or pressure, and determine where the crossover
from the diamond to the TDD stability region occurs (〈α〉
shown in black on Fig. 3(a)). At low densities, the lowest free
energy phase is diamond, but at densities & 0.75 (or equiva-
lently at unitless pressures p∗ ≥ 10–15) a TDD structure will
have lower free energy in this shape space. Decompression of
this high-density system showed full recovery of the diamond
structure.

We investigated the nature of the phase transition and be-
havior of potentials of mean force and torque (PMFTs) for the
phase transition corresponding to the largest change in c/a,
at α = 0.50, in Fig. 3(b, c). In Fig. 3(b), the main plot
represents the average for both initializations, with an inset
representing the average and standard deviations around the
transition pressure. The transition exhibits a small discontinu-
ity in βP (φ) and no hysteresis, which implies that it is either
a weak first-order or a second-order transition [39]. PMFTs,
the calculation of which is detailed in [26], provide a statis-
tical landscape for entropic particle bonding—i.e., they show
the probable locations for the neighboring particles of a given
reference particle in units of free energy. PMFTs show that af-
ter the transition occurs, the bonding remains four-fold, with
the coordination being that of a distorted tetrahedron.

Diamond exhibits a complete photonic band gap when the
lattice sites are populated with dielectric spheres [2]; thus the
transition from the diamond structure to any form of TDD
structure would result in a shift in the photonic properties due
to the symmetry reduction of the lattice from cubic to tetrag-
onal. We computed the photonic band structure of the equili-
brated crystals found through simulation using MIT Photonic
Bands (MPB) [40], replacing each polyhedral shell with its in-
sphere core. Because the polyhedra are scaled to unit volume,
there is a one-to-one mapping between shape parameter α and
insphere radius.
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Figure 3. Simulation results for NV Tα, NPTα, and NV Tµ. (a)
Composite “phase diagram” from all simulations. The putative dens-
est packing in either diamond or TDD structure as a function of shape
is the upper limit of the phase diagram, the geometrically forbidden
region shown in grey. Shades of red represent the c/a ratio of the
unit cell, with the lighter red region showing where diamond is the
configuration with the lowest free energy (c/a = 1), and darker reds
indicating TDD structures with lower c/a values. The black data
set represents results from NV Tµ simulations, denoting where the
crossover from the diamond to the TDD stability region occurs as a
function of density and shape. (b) Equation of state for α = 0.5 eval-
uated in compression and expansion runs. The main plot shows the
average values, with an inset showing the average and standard de-
viations around the transition pressure. (c) Potentials of mean force
and torque for α = 0.5 at varying pressures. The PMFT wells shift
from the center of the large face of each particle toward one edge.
This shows that the coordination remains tetrahedral, but becomes
distorted with increasing pressure.

We report the photonic band frequencies in units of
(speed of light)/a, where a is the lattice constant. Each com-
plete photonic band gap is reported in unitless dimensions, de-
fined as the width of the band gap over the mid-gap frequency,
ω∗. The conversion from ω∗ to absolute wavelength is:

λ =
a

ω∗ . (1)

While we anticipated a change in photonic properties from
an “on” to “off” state upon converting the diamond structure
to TDD, we were surprised to find that the results suggest a po-
tential multistate material with one of four possibilities with
regards to a complete photonic band gap: i) no gap, ii) a com-
plete gap between bands 8 and 9, iii) a complete gap between
bands 2 and 3, and (iv) complete gaps between both bands 2
and 3, and 8 and 9. Examples of (ii) and (iii) are shown in
Fig. 4(b) and (c), respectively. These findings suggest how to
make a material that could switch between permitting all light
and blocking one set of frequencies or another.
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Figure 4. Photonic Band Gap Structures and Sizes (a) Size of photonic band gaps between bands 2 and 3 (red) and bands 8 and 9 (blue) for
structures in Fig. 3(a). All polyhedra have been replaced with spheres with radius equal to the polyhedral insphere radius, and with dielectric
constant ε = 11.56. (b–c) Representative photonic band structures for α = 0.5 at (b) φ = 0.6, where it is in cubic diamond, and (c) φ = 0.95,
where it is in TDD at ≈

√
0.4. The insphere radius of ∆323|α=0.5 is 0.425.

Taking the equilibrated structures (i.e., thermalized) from
simulation and considering each core of the polyhedral par-
ticles as the high dielectric medium dielectric constant ε =
11.56, we computed the photonic band structure for structures
with packing fractions φ = 0.6–0.975 and shape parameters
α = 0.3–0.5. The maximum band gap width is 9.2% and all
bands were centered around mid-gap frequencies of approxi-
mately 0.260–0.298 (between bands 2 and 3) or 0.384–0.459
(between bands 8 and 9). Unitless band gap widths are shown
for the ∆323 family of shapes as a function of packing fraction
in Fig. 4(a).

In addition to computing the photonic band structure for
ε = 11.56, we also considered lower dielectric constants [38].
From these, we learn that complete photonic band gaps be-
tween bands 2 and 3 are possible with a minimum dielectric
constant of 5.0, and between 8 and 9 with a minimum dielec-
tric constant of 8.0. These values suggest that this type of
photonic band structure would not be possible with crystals
made of polymeric materials (which generally have ε < 4.0,
such as poly(methyl methacrylate) particles), but would re-
quire materials of higher dielectric constant.

We posit that this system could be synthesized via a va-
riety of methods, including by assembling spherical core-
polyhedral shell nanoparticles, as outlined earlier. The dia-
mond structure has been stabilized with nanocages made of
DNA that are functionalized to hybridize with coated nanopar-
ticles [41]. This could potentially extend to the TDD structure
by changing the length of the strands at the binding sites or the
cage geometry. The transition may also be achievable through
DNA-programmable assembly [42], for which the lengths and

bonding strength of DNA may be gleaned by examination of
the PMFTs [43].

These results represent the theoretical behavior of an ideal
system, and will be affected by imperfections introduced dur-
ing synthesis. Previous studies have discussed the sensitivity
of high band-number gaps to disorder [44], which may cause
the gap between bands 8 and 9 to disappear in most real-world
systems. In this case the system would only demonstrate a
gap between bands 2 and 3, and the material would exhibit
two states (e.g., “on” in the TDD state and “off” in the dia-
mond state). This, in addition to the fact that the 8-9 band gap
requires a much higher dielectric constant than the 2-3 gap,
would make a two-state material a more robust target.

The phase transition we report at the colloidal length scale
may also reveal insights about the atomic transition on which
it is based. Although other TDD structures have not been ob-
served as an intermediary between atomic diamond and β-
Sn phases, such a consideration could provide new perspec-
tive into the mechanism underlying the phase transition. In
our simulations, all effects other than shape entropy are ex-
cluded [26], and we restrict the particle geometry to symmet-
ric truncations of tetrahedra, i.e., the ∆323 shape family. Thus
we prove that entropy alone suffices to explain the transition
in colloidal systems from diamond to a lower c/a tetragonal
derivative. This correlation strengthens a supposition made by
G. J. Ackland, who proposed that it was plausible that entropy
is the driving force for diamond-to-β-Sn transitions, based on
the absence of such a transition at 0 K [7].

Our colloidal system differs from atomic systems in several
respects. At the higher c/a ratio (≈ 0.63 vs. ≈ 0.39), the co-
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ordination remains four-fold, while the neighboring particles
form a distorted tetrahedron (as compared to a regular tetrahe-
dron in perfect diamond). This retention of four-fold coordi-
nation may explain the reversibility in our system, compared
to the irreversibility in atomic systems, which transition to oc-
tahedral coordination.

The same cannot be said for systems adopting the diatomic
analog to diamond, zincblende, as these systems do not adopt
a β-Sn-equivalent structure upon pressurization: the transi-
tion geometry would result in the nearing of like-charged,
mutually repulsive atoms [45]. Most III-V semiconducting
zincblende-formers transition to wurtzite, a hexagonal dia-
mond derivative under pressure. While β-Sn is topologically
identical to diamond, wurtzite is to cubic diamond as cubic-
close sphere packing is to its hexagonally-close packed rela-
tive: the local coordination is identical, but its network is topo-
logically distinct, which would require a breaking of bonds
and rearrangement of the constituent atoms in the transition.

We have predicted a new phase transition achievable in col-
loidal systems, induced by a slight change in pressure or in
particle shape. This structural transition provides an exciting
target for synthesis: a photonic material switchable between
multiple photonic band gap states, either between two differ-
ent gaps, or –perhaps more practically– between “on”/“off”
states. Given the placement of the two possible gaps, complete
photonic band gaps would be achievable in colloidal crystals
in visible or infrared wavelengths, and could potentially tog-
gle between two colors or separate regimes in the electromag-
netic spectrum. For example, by using spheres made of a high-
dielectric material with ε ≈ 8.0 − 9.0 (such as titania [46])
that inscribe truncated tetrahedra with α = 0.5 (see Fig. 4)
and a lattice constant of a = 200 nm, a three-state material
could be self-assembled with a violet (400 nm) band gap at
low densities, no band gap at intermediate densities, and a red
(685 nm) band gap at high densities. If a larger lattice constant
of a = 8.2 µm is used, which is achievable for colloidal sys-
tems, the lower band gap occurs at 28 µm, or about 11 THz,
suitable for sub-millimeter photonic applications. If a is a tun-
able design parameter, this system could exhibit bands gaps at
target wavelengths whose ratios are approximately 5:3.
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Model and Methods

We conduct our study in the alchemical thermodynamic en-
semble, implemented through the Digital Alchemy framework
[35]. This ensemble is an extension of the canonical ensem-
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ble that treats particle shape, parametrized by a set of values
αi, as a thermodynamic state variable. Each αi parameter has
an associated conjugate alchemical potential µi. The NV Tµ
ensemble, in which each αi is allowed to fluctuate, is defined
with the partition function

Z =
∑
σ

e−β(H−
∑

i µiNαi). (2)

Here,
∑
σ denotes a sum over all microstates σ and shape

parameter values αi. The variables αi and µi are related to
derivatives of F , the thermodynamic potential for the ensem-
ble:

µi =
1

N

(
∂F

∂αi

)
N,φ,T,αj 6=i

(3)

and

αi =
1

N

(
∂F

∂µi

)
N,φ,T,µj 6=i

, (4)

where

F = −kBT log (Z) . (5)

For all simulations, we used the hard-particle Monte Carlo
sampling method of the HOOMD-blue simulation toolkit
[47, 48]. We conducted alchemical hard particle Monte Carlo
(Alch-HPMC) simulations within the NV Tα, NPTα, and
NV Tµ ensembles. Further details on Alch-HPMC can be
found in Refs. [35, 49]. All simulations were run so that each
particle’s shape is specified by one α and every particle in the
system changes identically and simultaneously as α changes.

Simulations in NV Tα

In theNV Tα ensemble, we simulated systems of 1728 par-
ticles with unit volume, with state points from α ∈ [0.3, 0.5]
with ∆α = 0.01 initialized in the diamond structure at
φ = 0.55, the known assembly structure for these shapes
[13]. These simulations were then incrementally compressed
to a target density of φ = 0.55–0.95 with ∆φ = 0.05, allow-
ing for the box aspect ratio to change as a separate MC move
while maintaining constant box volume. For regions of inter-
est, additional state points were run at ∆φ = 0.025. The box
aspect ratio search radius was set to 0.01 per sweep. Simula-
tions were then run for 1.1× 107–2.4× 107 MC sweeps, until
equilibrated. A minimum of four replicas were run for each
state point.

Similar simulations were run by initializing at the densest
packing of the shape family in both diamond and its tetrago-
nal derivative. The box was expanded isotropically to a tar-
get density, then simulated using MC with box moves for
1.1×107–2.4×107 sweeps. These simulations were run with
the same parameters as systems initialized in the diamond as-
sembly phase.

Analysis

Each frame of a simulation was separated into crystal grains
using in-house environment-matching algorithms (E. G. Te-
ich, private communication) analyzing the bond angles of
each particle with its nearest neighbors and then separating
the particles into groups based upon these arrangements. For
some simulations, compression and the reduction in symmetry
caused the formation of multiple grains within the assembly,
and these state points were removed from the results to avoid
distorting the influence of these simulation data. We used in-
house software injavis to determine the 8-particle unit cells of
all simulation runs. We used the signac framework for all data
management [50].

Simulations in NPTα

We simulated systems of 512 particles with unit volume and
constant shape in an NPTα ensemble to generate an equa-
tion of state for the given transformation at 35 unitless pres-
sures (= PV

kBT
with unit volume) between βP = 5–100 and

α = 0.4–0.5, with ∆α = 0.01. Additional state points were
run for regions of interest and for α = 0.5. Systems were
initialized in the tetragonal diamond derivative (c/a =

√
0.4)

at maximum density or in their assembled diamond phase at
the assembly density, and held at target pressure to equilibrate
over 1× 107–4× 107 MC sweeps. Simulations for shapes of
interest (α = 0.5, P = 9.8–10.0) were run with longer sim-
ulations and additional state points (up to 10). A minimum
of three independent simulations were run for all other state
points.

Potential of Mean Force and Torque (PMFT)

For the data shown, we averaged the PMFT values for 150
frames from earlierNV Tµ simulations at a range of φ values.
The PMFT results were visualized using the Python package
mayavi.

Simulations in NV Tµ

Alch-HPMC simulations were run in the NV Tµ ensemble
to find the thermodynamically preferred structure and particle
shape. Systems of 512 particles were initialized with α =
1
3 and φ = 0.6 and allowed to equilibrate in shape space.
The particles were then compressed isotropically to a target
φ ∈ [0.70, 0.95] with ∆φ = 0.05, and allowed to equilibrate
using MC box moves and subsequently within shape space.
This step was repeated until both structure and shape were
at equilibrium. Systems were then decompressed to φ = 0.60
and allowed once again to equilibrate to check for reversibility
[38].
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Calculation of Photonic Band Structure

We computed the photonic band structure for different
forms of tetragonal diamond using MIT Photonic Bands
(MPB) [40]. This package computes the eigenmodes of
Maxwell’s equations through conjugate-gradient minimiza-
tion of the block Rayleigh quotient in a plane-wave basis [40].

We computed the size and location of all photonic band
gaps for all structures computed in NV Tα simulations in
Fig. 3(b), including both c/a ratio and lattice vector magni-
tude (to reflect density). For radius we took the insphere of

the respective polyhedra in ∆323 and for the dielectric con-
stant we chose 11.56, that of a theoretical silicon-type mate-
rial and assume the material to be lossless, as has been done in
similar studies [51–53] Actual silicon would not make a good
candidate material for photonic crystals in the visible range,
as it has high absorbance in this range. We computed the irre-
ducible Brillouin zone using the package SeeK-path [54], an
open-source k-space path finder.

Resulting photonic band gaps were normalized by the mid-
gap frequency, consistent with convention.
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